/* Copyright (c) 2018, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include "internal.h" static BN_ULONG word_is_odd_mask(BN_ULONG a) { return (BN_ULONG)0 - (a & 1); } static void maybe_rshift1_words(BN_ULONG *a, BN_ULONG mask, BN_ULONG *tmp, size_t num) { bn_rshift1_words(tmp, a, num); bn_select_words(a, mask, tmp, a, num); } static void maybe_rshift1_words_carry(BN_ULONG *a, BN_ULONG carry, BN_ULONG mask, BN_ULONG *tmp, size_t num) { maybe_rshift1_words(a, mask, tmp, num); if (num != 0) { carry &= mask; a[num - 1] |= carry << (BN_BITS2-1); } } static BN_ULONG maybe_add_words(BN_ULONG *a, BN_ULONG mask, const BN_ULONG *b, BN_ULONG *tmp, size_t num) { BN_ULONG carry = bn_add_words(tmp, a, b, num); bn_select_words(a, mask, tmp, a, num); return carry & mask; } static int bn_gcd_consttime(BIGNUM *r, unsigned *out_shift, const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) { size_t width = x->width > y->width ? x->width : y->width; if (width == 0) { *out_shift = 0; BN_zero(r); return 1; } // This is a constant-time implementation of Stein's algorithm (binary GCD). int ret = 0; BN_CTX_start(ctx); BIGNUM *u = BN_CTX_get(ctx); BIGNUM *v = BN_CTX_get(ctx); BIGNUM *tmp = BN_CTX_get(ctx); if (u == NULL || v == NULL || tmp == NULL || !BN_copy(u, x) || !BN_copy(v, y) || !bn_resize_words(u, width) || !bn_resize_words(v, width) || !bn_resize_words(tmp, width)) { goto err; } // Each loop iteration halves at least one of |u| and |v|. Thus we need at // most the combined bit width of inputs for at least one value to be zero. unsigned x_bits = x->width * BN_BITS2, y_bits = y->width * BN_BITS2; unsigned num_iters = x_bits + y_bits; if (num_iters < x_bits) { OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG); goto err; } unsigned shift = 0; for (unsigned i = 0; i < num_iters; i++) { BN_ULONG both_odd = word_is_odd_mask(u->d[0]) & word_is_odd_mask(v->d[0]); // If both |u| and |v| are odd, subtract the smaller from the larger. BN_ULONG u_less_than_v = (BN_ULONG)0 - bn_sub_words(tmp->d, u->d, v->d, width); bn_select_words(u->d, both_odd & ~u_less_than_v, tmp->d, u->d, width); bn_sub_words(tmp->d, v->d, u->d, width); bn_select_words(v->d, both_odd & u_less_than_v, tmp->d, v->d, width); // At least one of |u| and |v| is now even. BN_ULONG u_is_odd = word_is_odd_mask(u->d[0]); BN_ULONG v_is_odd = word_is_odd_mask(v->d[0]); assert(!(u_is_odd & v_is_odd)); // If both are even, the final GCD gains a factor of two. shift += 1 & (~u_is_odd & ~v_is_odd); // Halve any which are even. maybe_rshift1_words(u->d, ~u_is_odd, tmp->d, width); maybe_rshift1_words(v->d, ~v_is_odd, tmp->d, width); } // One of |u| or |v| is zero at this point. The algorithm usually makes |u| // zero, unless |y| was already zero on input. Fix this by combining the // values. assert(BN_is_zero(u) || BN_is_zero(v)); for (size_t i = 0; i < width; i++) { v->d[i] |= u->d[i]; } *out_shift = shift; ret = bn_set_words(r, v->d, width); err: BN_CTX_end(ctx); return ret; } int BN_gcd(BIGNUM *r, const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) { unsigned shift; return bn_gcd_consttime(r, &shift, x, y, ctx) && BN_lshift(r, r, shift); } int bn_is_relatively_prime(int *out_relatively_prime, const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) { int ret = 0; BN_CTX_start(ctx); unsigned shift; BIGNUM *gcd = BN_CTX_get(ctx); if (gcd == NULL || !bn_gcd_consttime(gcd, &shift, x, y, ctx)) { goto err; } // Check that 2^|shift| * |gcd| is one. if (gcd->width == 0) { *out_relatively_prime = 0; } else { BN_ULONG mask = shift | (gcd->d[0] ^ 1); for (int i = 1; i < gcd->width; i++) { mask |= gcd->d[i]; } *out_relatively_prime = mask == 0; } ret = 1; err: BN_CTX_end(ctx); return ret; } int bn_lcm_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { BN_CTX_start(ctx); unsigned shift; BIGNUM *gcd = BN_CTX_get(ctx); int ret = gcd != NULL && // bn_mul_consttime(r, a, b, ctx) && bn_gcd_consttime(gcd, &shift, a, b, ctx) && // |gcd| has a secret bit width. bn_div_consttime(r, NULL, r, gcd, /*divisor_min_bits=*/0, ctx) && bn_rshift_secret_shift(r, r, shift, ctx); BN_CTX_end(ctx); return ret; } int bn_mod_inverse_consttime(BIGNUM *r, int *out_no_inverse, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) { *out_no_inverse = 0; if (BN_is_negative(a) || BN_ucmp(a, n) >= 0) { OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED); return 0; } if (BN_is_zero(a)) { if (BN_is_one(n)) { BN_zero(r); return 1; } *out_no_inverse = 1; OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE); return 0; } // This is a constant-time implementation of the extended binary GCD // algorithm. It is adapted from the Handbook of Applied Cryptography, section // 14.4.3, algorithm 14.51, and modified to bound coefficients and avoid // negative numbers. // // For more details and proof of correctness, see // https://github.com/mit-plv/fiat-crypto/pull/333. In particular, see |step| // and |mod_inverse_consttime| for the algorithm in Gallina and see // |mod_inverse_consttime_spec| for the correctness result. if (!BN_is_odd(a) && !BN_is_odd(n)) { *out_no_inverse = 1; OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE); return 0; } // This function exists to compute the RSA private exponent, where |a| is one // word. We'll thus use |a_width| when available. size_t n_width = n->width, a_width = a->width; if (a_width > n_width) { a_width = n_width; } int ret = 0; BN_CTX_start(ctx); BIGNUM *u = BN_CTX_get(ctx); BIGNUM *v = BN_CTX_get(ctx); BIGNUM *A = BN_CTX_get(ctx); BIGNUM *B = BN_CTX_get(ctx); BIGNUM *C = BN_CTX_get(ctx); BIGNUM *D = BN_CTX_get(ctx); BIGNUM *tmp = BN_CTX_get(ctx); BIGNUM *tmp2 = BN_CTX_get(ctx); if (u == NULL || v == NULL || A == NULL || B == NULL || C == NULL || D == NULL || tmp == NULL || tmp2 == NULL || !BN_copy(u, a) || !BN_copy(v, n) || !BN_one(A) || !BN_one(D) || // For convenience, size |u| and |v| equivalently. !bn_resize_words(u, n_width) || !bn_resize_words(v, n_width) || // |A| and |C| are bounded by |m|. !bn_resize_words(A, n_width) || !bn_resize_words(C, n_width) || // |B| and |D| are bounded by |a|. !bn_resize_words(B, a_width) || !bn_resize_words(D, a_width) || // |tmp| and |tmp2| may be used at either size. !bn_resize_words(tmp, n_width) || !bn_resize_words(tmp2, n_width)) { goto err; } // Each loop iteration halves at least one of |u| and |v|. Thus we need at // most the combined bit width of inputs for at least one value to be zero. // |a_bits| and |n_bits| cannot overflow because |bn_wexpand| ensures bit // counts fit in even |int|. size_t a_bits = a_width * BN_BITS2, n_bits = n_width * BN_BITS2; size_t num_iters = a_bits + n_bits; if (num_iters < a_bits) { OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG); goto err; } // Before and after each loop iteration, the following hold: // // u = A*a - B*n // v = D*n - C*a // 0 < u <= a // 0 <= v <= n // 0 <= A < n // 0 <= B <= a // 0 <= C < n // 0 <= D <= a // // After each loop iteration, u and v only get smaller, and at least one of // them shrinks by at least a factor of two. for (size_t i = 0; i < num_iters; i++) { BN_ULONG both_odd = word_is_odd_mask(u->d[0]) & word_is_odd_mask(v->d[0]); // If both |u| and |v| are odd, subtract the smaller from the larger. BN_ULONG v_less_than_u = (BN_ULONG)0 - bn_sub_words(tmp->d, v->d, u->d, n_width); bn_select_words(v->d, both_odd & ~v_less_than_u, tmp->d, v->d, n_width); bn_sub_words(tmp->d, u->d, v->d, n_width); bn_select_words(u->d, both_odd & v_less_than_u, tmp->d, u->d, n_width); // If we updated one of the values, update the corresponding coefficient. BN_ULONG carry = bn_add_words(tmp->d, A->d, C->d, n_width); carry -= bn_sub_words(tmp2->d, tmp->d, n->d, n_width); bn_select_words(tmp->d, carry, tmp->d, tmp2->d, n_width); bn_select_words(A->d, both_odd & v_less_than_u, tmp->d, A->d, n_width); bn_select_words(C->d, both_odd & ~v_less_than_u, tmp->d, C->d, n_width); bn_add_words(tmp->d, B->d, D->d, a_width); bn_sub_words(tmp2->d, tmp->d, a->d, a_width); bn_select_words(tmp->d, carry, tmp->d, tmp2->d, a_width); bn_select_words(B->d, both_odd & v_less_than_u, tmp->d, B->d, a_width); bn_select_words(D->d, both_odd & ~v_less_than_u, tmp->d, D->d, a_width); // Our loop invariants hold at this point. Additionally, exactly one of |u| // and |v| is now even. BN_ULONG u_is_even = ~word_is_odd_mask(u->d[0]); BN_ULONG v_is_even = ~word_is_odd_mask(v->d[0]); assert(u_is_even != v_is_even); // Halve the even one and adjust the corresponding coefficient. maybe_rshift1_words(u->d, u_is_even, tmp->d, n_width); BN_ULONG A_or_B_is_odd = word_is_odd_mask(A->d[0]) | word_is_odd_mask(B->d[0]); BN_ULONG A_carry = maybe_add_words(A->d, A_or_B_is_odd & u_is_even, n->d, tmp->d, n_width); BN_ULONG B_carry = maybe_add_words(B->d, A_or_B_is_odd & u_is_even, a->d, tmp->d, a_width); maybe_rshift1_words_carry(A->d, A_carry, u_is_even, tmp->d, n_width); maybe_rshift1_words_carry(B->d, B_carry, u_is_even, tmp->d, a_width); maybe_rshift1_words(v->d, v_is_even, tmp->d, n_width); BN_ULONG C_or_D_is_odd = word_is_odd_mask(C->d[0]) | word_is_odd_mask(D->d[0]); BN_ULONG C_carry = maybe_add_words(C->d, C_or_D_is_odd & v_is_even, n->d, tmp->d, n_width); BN_ULONG D_carry = maybe_add_words(D->d, C_or_D_is_odd & v_is_even, a->d, tmp->d, a_width); maybe_rshift1_words_carry(C->d, C_carry, v_is_even, tmp->d, n_width); maybe_rshift1_words_carry(D->d, D_carry, v_is_even, tmp->d, a_width); } assert(BN_is_zero(v)); if (!BN_is_one(u)) { *out_no_inverse = 1; OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE); goto err; } ret = BN_copy(r, A) != NULL; err: BN_CTX_end(ctx); return ret; }