/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include #include #include #include #include #include #include "internal.h" #include "../../internal.h" #define BN_MUL_RECURSIVE_SIZE_NORMAL 16 #define BN_SQR_RECURSIVE_SIZE_NORMAL BN_MUL_RECURSIVE_SIZE_NORMAL static void bn_abs_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, size_t num, BN_ULONG *tmp) { BN_ULONG borrow = bn_sub_words(tmp, a, b, num); bn_sub_words(r, b, a, num); bn_select_words(r, 0 - borrow, r /* tmp < 0 */, tmp /* tmp >= 0 */, num); } static void bn_mul_normal(BN_ULONG *r, const BN_ULONG *a, size_t na, const BN_ULONG *b, size_t nb) { if (na < nb) { size_t itmp = na; na = nb; nb = itmp; const BN_ULONG *ltmp = a; a = b; b = ltmp; } BN_ULONG *rr = &(r[na]); if (nb == 0) { OPENSSL_memset(r, 0, na * sizeof(BN_ULONG)); return; } rr[0] = bn_mul_words(r, a, na, b[0]); for (;;) { if (--nb == 0) { return; } rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]); if (--nb == 0) { return; } rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]); if (--nb == 0) { return; } rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]); if (--nb == 0) { return; } rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]); rr += 4; r += 4; b += 4; } } // bn_sub_part_words sets |r| to |a| - |b|. It returns the borrow bit, which is // one if the operation underflowed and zero otherwise. |cl| is the common // length, that is, the shorter of len(a) or len(b). |dl| is the delta length, // that is, len(a) - len(b). |r|'s length matches the larger of |a| and |b|, or // cl + abs(dl). // // TODO(davidben): Make this take |size_t|. The |cl| + |dl| calling convention // is confusing. static BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int cl, int dl) { assert(cl >= 0); BN_ULONG borrow = bn_sub_words(r, a, b, cl); if (dl == 0) { return borrow; } r += cl; a += cl; b += cl; if (dl < 0) { // |a| is shorter than |b|. Complete the subtraction as if the excess words // in |a| were zeros. dl = -dl; for (int i = 0; i < dl; i++) { r[i] = CRYPTO_subc_w(0, b[i], borrow, &borrow); } } else { // |b| is shorter than |a|. Complete the subtraction as if the excess words // in |b| were zeros. for (int i = 0; i < dl; i++) { r[i] = CRYPTO_subc_w(a[i], 0, borrow, &borrow); } } return borrow; } // bn_abs_sub_part_words computes |r| = |a| - |b|, storing the absolute value // and returning a mask of all ones if the result was negative and all zeros if // the result was positive. |cl| and |dl| follow the |bn_sub_part_words| calling // convention. // // TODO(davidben): Make this take |size_t|. The |cl| + |dl| calling convention // is confusing. static BN_ULONG bn_abs_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int cl, int dl, BN_ULONG *tmp) { BN_ULONG borrow = bn_sub_part_words(tmp, a, b, cl, dl); bn_sub_part_words(r, b, a, cl, -dl); int r_len = cl + (dl < 0 ? -dl : dl); borrow = 0 - borrow; bn_select_words(r, borrow, r /* tmp < 0 */, tmp /* tmp >= 0 */, r_len); return borrow; } int bn_abs_sub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { int cl = a->width < b->width ? a->width : b->width; int dl = a->width - b->width; int r_len = a->width < b->width ? b->width : a->width; BN_CTX_start(ctx); BIGNUM *tmp = BN_CTX_get(ctx); int ok = tmp != NULL && bn_wexpand(r, r_len) && bn_wexpand(tmp, r_len); if (ok) { bn_abs_sub_part_words(r->d, a->d, b->d, cl, dl, tmp->d); r->width = r_len; } BN_CTX_end(ctx); return ok; } // Karatsuba recursive multiplication algorithm // (cf. Knuth, The Art of Computer Programming, Vol. 2) // bn_mul_recursive sets |r| to |a| * |b|, using |t| as scratch space. |r| has // length 2*|n2|, |a| has length |n2| + |dna|, |b| has length |n2| + |dnb|, and // |t| has length 4*|n2|. |n2| must be a power of two. Finally, we must have // -|BN_MUL_RECURSIVE_SIZE_NORMAL|/2 <= |dna| <= 0 and // -|BN_MUL_RECURSIVE_SIZE_NORMAL|/2 <= |dnb| <= 0. // // TODO(davidben): Simplify and |size_t| the calling convention around lengths // here. static void bn_mul_recursive(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n2, int dna, int dnb, BN_ULONG *t) { // |n2| is a power of two. assert(n2 != 0 && (n2 & (n2 - 1)) == 0); // Check |dna| and |dnb| are in range. assert(-BN_MUL_RECURSIVE_SIZE_NORMAL/2 <= dna && dna <= 0); assert(-BN_MUL_RECURSIVE_SIZE_NORMAL/2 <= dnb && dnb <= 0); // Only call bn_mul_comba 8 if n2 == 8 and the // two arrays are complete [steve] if (n2 == 8 && dna == 0 && dnb == 0) { bn_mul_comba8(r, a, b); return; } // Else do normal multiply if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) { bn_mul_normal(r, a, n2 + dna, b, n2 + dnb); if (dna + dnb < 0) { OPENSSL_memset(&r[2 * n2 + dna + dnb], 0, sizeof(BN_ULONG) * -(dna + dnb)); } return; } // Split |a| and |b| into a0,a1 and b0,b1, where a0 and b0 have size |n|. // Split |t| into t0,t1,t2,t3, each of size |n|, with the remaining 4*|n| used // for recursive calls. // Split |r| into r0,r1,r2,r3. We must contribute a0*b0 to r0,r1, a0*a1+b0*b1 // to r1,r2, and a1*b1 to r2,r3. The middle term we will compute as: // // a0*a1 + b0*b1 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0 // // Note that we know |n| >= |BN_MUL_RECURSIVE_SIZE_NORMAL|/2 above, so // |tna| and |tnb| are non-negative. int n = n2 / 2, tna = n + dna, tnb = n + dnb; // t0 = a0 - a1 and t1 = b1 - b0. The result will be multiplied, so we XOR // their sign masks, giving the sign of (a0 - a1)*(b1 - b0). t0 and t1 // themselves store the absolute value. BN_ULONG neg = bn_abs_sub_part_words(t, a, &a[n], tna, n - tna, &t[n2]); neg ^= bn_abs_sub_part_words(&t[n], &b[n], b, tnb, tnb - n, &t[n2]); // Compute: // t2,t3 = t0 * t1 = |(a0 - a1)*(b1 - b0)| // r0,r1 = a0 * b0 // r2,r3 = a1 * b1 if (n == 4 && dna == 0 && dnb == 0) { bn_mul_comba4(&t[n2], t, &t[n]); bn_mul_comba4(r, a, b); bn_mul_comba4(&r[n2], &a[n], &b[n]); } else if (n == 8 && dna == 0 && dnb == 0) { bn_mul_comba8(&t[n2], t, &t[n]); bn_mul_comba8(r, a, b); bn_mul_comba8(&r[n2], &a[n], &b[n]); } else { BN_ULONG *p = &t[n2 * 2]; bn_mul_recursive(&t[n2], t, &t[n], n, 0, 0, p); bn_mul_recursive(r, a, b, n, 0, 0, p); bn_mul_recursive(&r[n2], &a[n], &b[n], n, dna, dnb, p); } // t0,t1,c = r0,r1 + r2,r3 = a0*b0 + a1*b1 BN_ULONG c = bn_add_words(t, r, &r[n2], n2); // t2,t3,c = t0,t1,c + neg*t2,t3 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0. // The second term is stored as the absolute value, so we do this with a // constant-time select. BN_ULONG c_neg = c - bn_sub_words(&t[n2 * 2], t, &t[n2], n2); BN_ULONG c_pos = c + bn_add_words(&t[n2], t, &t[n2], n2); bn_select_words(&t[n2], neg, &t[n2 * 2], &t[n2], n2); OPENSSL_STATIC_ASSERT(sizeof(BN_ULONG) <= sizeof(crypto_word_t), crypto_word_t_is_too_small) c = constant_time_select_w(neg, c_neg, c_pos); // We now have our three components. Add them together. // r1,r2,c = r1,r2 + t2,t3,c c += bn_add_words(&r[n], &r[n], &t[n2], n2); // Propagate the carry bit to the end. for (int i = n + n2; i < n2 + n2; i++) { BN_ULONG old = r[i]; r[i] = old + c; c = r[i] < old; } // The product should fit without carries. assert(c == 0); } // bn_mul_part_recursive sets |r| to |a| * |b|, using |t| as scratch space. |r| // has length 4*|n|, |a| has length |n| + |tna|, |b| has length |n| + |tnb|, and // |t| has length 8*|n|. |n| must be a power of two. Additionally, we must have // 0 <= tna < n and 0 <= tnb < n, and |tna| and |tnb| must differ by at most // one. // // TODO(davidben): Make this take |size_t| and perhaps the actual lengths of |a| // and |b|. static void bn_mul_part_recursive(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n, int tna, int tnb, BN_ULONG *t) { // |n| is a power of two. assert(n != 0 && (n & (n - 1)) == 0); // Check |tna| and |tnb| are in range. assert(0 <= tna && tna < n); assert(0 <= tnb && tnb < n); assert(-1 <= tna - tnb && tna - tnb <= 1); int n2 = n * 2; if (n < 8) { bn_mul_normal(r, a, n + tna, b, n + tnb); OPENSSL_memset(r + n2 + tna + tnb, 0, n2 - tna - tnb); return; } // Split |a| and |b| into a0,a1 and b0,b1, where a0 and b0 have size |n|. |a1| // and |b1| have size |tna| and |tnb|, respectively. // Split |t| into t0,t1,t2,t3, each of size |n|, with the remaining 4*|n| used // for recursive calls. // Split |r| into r0,r1,r2,r3. We must contribute a0*b0 to r0,r1, a0*a1+b0*b1 // to r1,r2, and a1*b1 to r2,r3. The middle term we will compute as: // // a0*a1 + b0*b1 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0 // t0 = a0 - a1 and t1 = b1 - b0. The result will be multiplied, so we XOR // their sign masks, giving the sign of (a0 - a1)*(b1 - b0). t0 and t1 // themselves store the absolute value. BN_ULONG neg = bn_abs_sub_part_words(t, a, &a[n], tna, n - tna, &t[n2]); neg ^= bn_abs_sub_part_words(&t[n], &b[n], b, tnb, tnb - n, &t[n2]); // Compute: // t2,t3 = t0 * t1 = |(a0 - a1)*(b1 - b0)| // r0,r1 = a0 * b0 // r2,r3 = a1 * b1 if (n == 8) { bn_mul_comba8(&t[n2], t, &t[n]); bn_mul_comba8(r, a, b); bn_mul_normal(&r[n2], &a[n], tna, &b[n], tnb); // |bn_mul_normal| only writes |tna| + |tna| words. Zero the rest. OPENSSL_memset(&r[n2 + tna + tnb], 0, sizeof(BN_ULONG) * (n2 - tna - tnb)); } else { BN_ULONG *p = &t[n2 * 2]; bn_mul_recursive(&t[n2], t, &t[n], n, 0, 0, p); bn_mul_recursive(r, a, b, n, 0, 0, p); OPENSSL_memset(&r[n2], 0, sizeof(BN_ULONG) * n2); if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL && tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) { bn_mul_normal(&r[n2], &a[n], tna, &b[n], tnb); } else { int i = n; for (;;) { i /= 2; if (i < tna || i < tnb) { // E.g., n == 16, i == 8 and tna == 11. |tna| and |tnb| are within one // of each other, so if |tna| is larger and tna > i, then we know // tnb >= i, and this call is valid. bn_mul_part_recursive(&r[n2], &a[n], &b[n], i, tna - i, tnb - i, p); break; } if (i == tna || i == tnb) { // If there is only a bottom half to the number, just do it. We know // the larger of |tna - i| and |tnb - i| is zero. The other is zero or // -1 by because of |tna| and |tnb| differ by at most one. bn_mul_recursive(&r[n2], &a[n], &b[n], i, tna - i, tnb - i, p); break; } // This loop will eventually terminate when |i| falls below // |BN_MUL_RECURSIVE_SIZE_NORMAL| because we know one of |tna| and |tnb| // exceeds that. } } } // t0,t1,c = r0,r1 + r2,r3 = a0*b0 + a1*b1 BN_ULONG c = bn_add_words(t, r, &r[n2], n2); // t2,t3,c = t0,t1,c + neg*t2,t3 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0. // The second term is stored as the absolute value, so we do this with a // constant-time select. BN_ULONG c_neg = c - bn_sub_words(&t[n2 * 2], t, &t[n2], n2); BN_ULONG c_pos = c + bn_add_words(&t[n2], t, &t[n2], n2); bn_select_words(&t[n2], neg, &t[n2 * 2], &t[n2], n2); OPENSSL_STATIC_ASSERT(sizeof(BN_ULONG) <= sizeof(crypto_word_t), crypto_word_t_is_too_small) c = constant_time_select_w(neg, c_neg, c_pos); // We now have our three components. Add them together. // r1,r2,c = r1,r2 + t2,t3,c c += bn_add_words(&r[n], &r[n], &t[n2], n2); // Propagate the carry bit to the end. for (int i = n + n2; i < n2 + n2; i++) { BN_ULONG old = r[i]; r[i] = old + c; c = r[i] < old; } // The product should fit without carries. assert(c == 0); } // bn_mul_impl implements |BN_mul| and |bn_mul_consttime|. Note this function // breaks |BIGNUM| invariants and may return a negative zero. This is handled by // the callers. static int bn_mul_impl(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { int al = a->width; int bl = b->width; if (al == 0 || bl == 0) { BN_zero(r); return 1; } int ret = 0; BIGNUM *rr; BN_CTX_start(ctx); if (r == a || r == b) { rr = BN_CTX_get(ctx); if (rr == NULL) { goto err; } } else { rr = r; } rr->neg = a->neg ^ b->neg; int i = al - bl; if (i == 0) { if (al == 8) { if (!bn_wexpand(rr, 16)) { goto err; } rr->width = 16; bn_mul_comba8(rr->d, a->d, b->d); goto end; } } int top = al + bl; static const int kMulNormalSize = 16; if (al >= kMulNormalSize && bl >= kMulNormalSize) { if (-1 <= i && i <= 1) { // Find the largest power of two less than or equal to the larger length. int j; if (i >= 0) { j = BN_num_bits_word((BN_ULONG)al); } else { j = BN_num_bits_word((BN_ULONG)bl); } j = 1 << (j - 1); assert(j <= al || j <= bl); BIGNUM *t = BN_CTX_get(ctx); if (t == NULL) { goto err; } if (al > j || bl > j) { // We know |al| and |bl| are at most one from each other, so if al > j, // bl >= j, and vice versa. Thus we can use |bn_mul_part_recursive|. // // TODO(davidben): This codepath is almost unused in standard // algorithms. Is this optimization necessary? See notes in // https://boringssl-review.googlesource.com/q/I0bd604e2cd6a75c266f64476c23a730ca1721ea6 assert(al >= j && bl >= j); if (!bn_wexpand(t, j * 8) || !bn_wexpand(rr, j * 4)) { goto err; } bn_mul_part_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d); } else { // al <= j && bl <= j. Additionally, we know j <= al or j <= bl, so one // of al - j or bl - j is zero. The other, by the bound on |i| above, is // zero or -1. Thus, we can use |bn_mul_recursive|. if (!bn_wexpand(t, j * 4) || !bn_wexpand(rr, j * 2)) { goto err; } bn_mul_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d); } rr->width = top; goto end; } } if (!bn_wexpand(rr, top)) { goto err; } rr->width = top; bn_mul_normal(rr->d, a->d, al, b->d, bl); end: if (r != rr && !BN_copy(r, rr)) { goto err; } ret = 1; err: BN_CTX_end(ctx); return ret; } int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { if (!bn_mul_impl(r, a, b, ctx)) { return 0; } // This additionally fixes any negative zeros created by |bn_mul_impl|. bn_set_minimal_width(r); return 1; } int bn_mul_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { // Prevent negative zeros. if (a->neg || b->neg) { OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER); return 0; } return bn_mul_impl(r, a, b, ctx); } void bn_mul_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a, const BN_ULONG *b, size_t num_b) { if (num_r != num_a + num_b) { abort(); } // TODO(davidben): Should this call |bn_mul_comba4| too? |BN_mul| does not // hit that code. if (num_a == 8 && num_b == 8) { bn_mul_comba8(r, a, b); } else { bn_mul_normal(r, a, num_a, b, num_b); } } // tmp must have 2*n words static void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, size_t n, BN_ULONG *tmp) { if (n == 0) { return; } size_t max = n * 2; const BN_ULONG *ap = a; BN_ULONG *rp = r; rp[0] = rp[max - 1] = 0; rp++; // Compute the contribution of a[i] * a[j] for all i < j. if (n > 1) { ap++; rp[n - 1] = bn_mul_words(rp, ap, n - 1, ap[-1]); rp += 2; } if (n > 2) { for (size_t i = n - 2; i > 0; i--) { ap++; rp[i] = bn_mul_add_words(rp, ap, i, ap[-1]); rp += 2; } } // The final result fits in |max| words, so none of the following operations // will overflow. // Double |r|, giving the contribution of a[i] * a[j] for all i != j. bn_add_words(r, r, r, max); // Add in the contribution of a[i] * a[i] for all i. bn_sqr_words(tmp, a, n); bn_add_words(r, r, tmp, max); } // bn_sqr_recursive sets |r| to |a|^2, using |t| as scratch space. |r| has // length 2*|n2|, |a| has length |n2|, and |t| has length 4*|n2|. |n2| must be // a power of two. static void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, size_t n2, BN_ULONG *t) { // |n2| is a power of two. assert(n2 != 0 && (n2 & (n2 - 1)) == 0); if (n2 == 4) { bn_sqr_comba4(r, a); return; } if (n2 == 8) { bn_sqr_comba8(r, a); return; } if (n2 < BN_SQR_RECURSIVE_SIZE_NORMAL) { bn_sqr_normal(r, a, n2, t); return; } // Split |a| into a0,a1, each of size |n|. // Split |t| into t0,t1,t2,t3, each of size |n|, with the remaining 4*|n| used // for recursive calls. // Split |r| into r0,r1,r2,r3. We must contribute a0^2 to r0,r1, 2*a0*a1 to // r1,r2, and a1^2 to r2,r3. size_t n = n2 / 2; BN_ULONG *t_recursive = &t[n2 * 2]; // t0 = |a0 - a1|. bn_abs_sub_words(t, a, &a[n], n, &t[n]); // t2,t3 = t0^2 = |a0 - a1|^2 = a0^2 - 2*a0*a1 + a1^2 bn_sqr_recursive(&t[n2], t, n, t_recursive); // r0,r1 = a0^2 bn_sqr_recursive(r, a, n, t_recursive); // r2,r3 = a1^2 bn_sqr_recursive(&r[n2], &a[n], n, t_recursive); // t0,t1,c = r0,r1 + r2,r3 = a0^2 + a1^2 BN_ULONG c = bn_add_words(t, r, &r[n2], n2); // t2,t3,c = t0,t1,c - t2,t3 = 2*a0*a1 c -= bn_sub_words(&t[n2], t, &t[n2], n2); // We now have our three components. Add them together. // r1,r2,c = r1,r2 + t2,t3,c c += bn_add_words(&r[n], &r[n], &t[n2], n2); // Propagate the carry bit to the end. for (size_t i = n + n2; i < n2 + n2; i++) { BN_ULONG old = r[i]; r[i] = old + c; c = r[i] < old; } // The square should fit without carries. assert(c == 0); } int BN_mul_word(BIGNUM *bn, BN_ULONG w) { if (!bn->width) { return 1; } if (w == 0) { BN_zero(bn); return 1; } BN_ULONG ll = bn_mul_words(bn->d, bn->d, bn->width, w); if (ll) { if (!bn_wexpand(bn, bn->width + 1)) { return 0; } bn->d[bn->width++] = ll; } return 1; } int bn_sqr_consttime(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) { int al = a->width; if (al <= 0) { r->width = 0; r->neg = 0; return 1; } int ret = 0; BN_CTX_start(ctx); BIGNUM *rr = (a != r) ? r : BN_CTX_get(ctx); BIGNUM *tmp = BN_CTX_get(ctx); if (!rr || !tmp) { goto err; } int max = 2 * al; // Non-zero (from above) if (!bn_wexpand(rr, max)) { goto err; } if (al == 4) { bn_sqr_comba4(rr->d, a->d); } else if (al == 8) { bn_sqr_comba8(rr->d, a->d); } else { if (al < BN_SQR_RECURSIVE_SIZE_NORMAL) { BN_ULONG t[BN_SQR_RECURSIVE_SIZE_NORMAL * 2]; bn_sqr_normal(rr->d, a->d, al, t); } else { // If |al| is a power of two, we can use |bn_sqr_recursive|. if (al != 0 && (al & (al - 1)) == 0) { if (!bn_wexpand(tmp, al * 4)) { goto err; } bn_sqr_recursive(rr->d, a->d, al, tmp->d); } else { if (!bn_wexpand(tmp, max)) { goto err; } bn_sqr_normal(rr->d, a->d, al, tmp->d); } } } rr->neg = 0; rr->width = max; if (rr != r && !BN_copy(r, rr)) { goto err; } ret = 1; err: BN_CTX_end(ctx); return ret; } int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) { if (!bn_sqr_consttime(r, a, ctx)) { return 0; } bn_set_minimal_width(r); return 1; } void bn_sqr_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a) { if (num_r != 2 * num_a || num_a > BN_SMALL_MAX_WORDS) { abort(); } if (num_a == 4) { bn_sqr_comba4(r, a); } else if (num_a == 8) { bn_sqr_comba8(r, a); } else { BN_ULONG tmp[2 * BN_SMALL_MAX_WORDS]; bn_sqr_normal(r, a, num_a, tmp); OPENSSL_cleanse(tmp, 2 * num_a * sizeof(BN_ULONG)); } }