/* * Copyright 2013-2016 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2012, Intel Corporation. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html * * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1) * (1) Intel Corporation, Israel Development Center, Haifa, Israel * (2) University of Haifa, Israel */ #include "rsaz_exp.h" #if defined(RSAZ_ENABLED) #include #include "internal.h" #include "../../internal.h" // rsaz_one is 1 in RSAZ's representation. alignas(64) static const BN_ULONG rsaz_one[40] = { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; // rsaz_two80 is 2^80 in RSAZ's representation. Note RSAZ uses base 2^29, so this is // 2^(29*2 + 22) = 2^80, not 2^(64*2 + 22). alignas(64) static const BN_ULONG rsaz_two80[40] = { 0, 0, 1 << 22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; void RSAZ_1024_mod_exp_avx2(BN_ULONG result_norm[16], const BN_ULONG base_norm[16], const BN_ULONG exponent[16], const BN_ULONG m_norm[16], const BN_ULONG RR[16], BN_ULONG k0, BN_ULONG storage[MOD_EXP_CTIME_STORAGE_LEN]) { OPENSSL_STATIC_ASSERT(MOD_EXP_CTIME_ALIGN % 64 == 0, MOD_EXP_CTIME_ALIGN_is_too_small) assert((uintptr_t)storage % 64 == 0); BN_ULONG *a_inv, *m, *result, *table_s = storage + 40 * 3, *R2 = table_s; // Note |R2| aliases |table_s|. if (((((uintptr_t)storage & 4095) + 320) >> 12) != 0) { result = storage; a_inv = storage + 40; m = storage + 40 * 2; // should not cross page } else { m = storage; // should not cross page result = storage + 40; a_inv = storage + 40 * 2; } rsaz_1024_norm2red_avx2(m, m_norm); rsaz_1024_norm2red_avx2(a_inv, base_norm); rsaz_1024_norm2red_avx2(R2, RR); // Convert |R2| from the usual radix, giving R = 2^1024, to RSAZ's radix, // giving R = 2^(36*29) = 2^1044. rsaz_1024_mul_avx2(R2, R2, R2, m, k0); // R2 = 2^2048 * 2^2048 / 2^1044 = 2^3052 rsaz_1024_mul_avx2(R2, R2, rsaz_two80, m, k0); // R2 = 2^3052 * 2^80 / 2^1044 = 2^2088 = (2^1044)^2 // table[0] = 1 // table[1] = a_inv^1 rsaz_1024_mul_avx2(result, R2, rsaz_one, m, k0); rsaz_1024_mul_avx2(a_inv, a_inv, R2, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 0); rsaz_1024_scatter5_avx2(table_s, a_inv, 1); // table[2] = a_inv^2 rsaz_1024_sqr_avx2(result, a_inv, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 2); // table[4] = a_inv^4 rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 4); // table[8] = a_inv^8 rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 8); // table[16] = a_inv^16 rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 16); for (int i = 3; i < 32; i += 2) { // table[i] = table[i-1] * a_inv = a_inv^i rsaz_1024_gather5_avx2(result, table_s, i - 1); rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, i); for (int j = 2 * i; j < 32; j *= 2) { // table[j] = table[j/2]^2 = a_inv^j rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, j); } } // Load the first window. const uint8_t *p_str = (const uint8_t *)exponent; int wvalue = p_str[127] >> 3; rsaz_1024_gather5_avx2(result, table_s, wvalue); int index = 1014; while (index > -1) { // Loop for the remaining 127 windows. rsaz_1024_sqr_avx2(result, result, m, k0, 5); uint16_t wvalue_16; memcpy(&wvalue_16, &p_str[index / 8], sizeof(wvalue_16)); wvalue = wvalue_16; wvalue = (wvalue >> (index % 8)) & 31; index -= 5; rsaz_1024_gather5_avx2(a_inv, table_s, wvalue); // Borrow |a_inv|. rsaz_1024_mul_avx2(result, result, a_inv, m, k0); } // Square four times. rsaz_1024_sqr_avx2(result, result, m, k0, 4); wvalue = p_str[0] & 15; rsaz_1024_gather5_avx2(a_inv, table_s, wvalue); // Borrow |a_inv|. rsaz_1024_mul_avx2(result, result, a_inv, m, k0); // Convert from Montgomery. rsaz_1024_mul_avx2(result, result, rsaz_one, m, k0); rsaz_1024_red2norm_avx2(result_norm, result); BN_ULONG scratch[16]; bn_reduce_once_in_place(result_norm, /*carry=*/0, m_norm, scratch, 16); OPENSSL_cleanse(storage, MOD_EXP_CTIME_STORAGE_LEN * sizeof(BN_ULONG)); } #endif // RSAZ_ENABLED