/* ==================================================================== * Copyright (c) 2008 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== */ #include #include #include #include #include #include "../delocate.h" #include "../modes/internal.h" #include "../service_indicator/internal.h" #include "internal.h" #define EVP_AEAD_AES_CCM_MIN_TAG_LEN 4 #define EVP_AEAD_AES_CCM_MAX_TAG_LEN 16 #define CCM_MAX_NONCE_LEN 13 typedef struct ccm128_context { block128_f block; ctr128_f ctr; uint32_t M, L; } CCM128_CTX; typedef struct ccm128_state { alignas(16) uint8_t nonce[16]; alignas(16) uint8_t cmac[16]; } CCM128_STATE; typedef struct cipher_aes_ccm_ctx { union { uint64_t align; AES_KEY ks; } ks; // AES key schedule to use CCM128_CTX ccm; CCM128_STATE ccm_state; // Boolean flags uint8_t key_set; uint8_t iv_set; uint8_t tag_set; uint8_t len_set; uint8_t ccm_set; // L and M parameters from RFC3610 uint32_t L; // Number of octets in length field uint32_t M; // Number of octets in authentication field size_t message_len; uint8_t tag[EVP_AEAD_AES_CCM_MAX_TAG_LEN]; uint8_t nonce[CCM_MAX_NONCE_LEN]; } CIPHER_AES_CCM_CTX; // The "inner" CCM128_CTX struct within a CIPHER_AES_CCM_CTX #define CCM_INNER_CTX(ccm_ctx) (&ccm_ctx->ccm) // The CCM128 state struct within a CIPHER_AES_CCM_CTX #define CCM_INNER_STATE(ccm_ctx) (&ccm_ctx->ccm_state) // As per RFC3610, the nonce length in bytes is 15 - L. #define CCM_L_TO_NONCE_LEN(L) (15 - L) static int CRYPTO_ccm128_init(struct ccm128_context *ctx, block128_f block, ctr128_f ctr, unsigned M, unsigned L) { if (M < EVP_AEAD_AES_CCM_MIN_TAG_LEN || M > EVP_AEAD_AES_CCM_MAX_TAG_LEN || (M & 1) != 0 || L < 2 || L > 8) { return 0; } if (block) { ctx->block = block; } if (ctr) { ctx->ctr = ctr; } ctx->M = M; ctx->L = L; return 1; } static size_t CRYPTO_ccm128_max_input(const struct ccm128_context *ctx) { return ctx->L >= sizeof(size_t) ? SIZE_MAX : (((size_t)1) << (ctx->L * 8)) - 1; } static int ccm128_init_state(const struct ccm128_context *ctx, struct ccm128_state *state, const AES_KEY *key, const uint8_t *nonce, size_t nonce_len, const uint8_t *aad, size_t aad_len, size_t plaintext_len) { const block128_f block = ctx->block; const uint32_t M = ctx->M; const uint32_t L = ctx->L; // |L| determines the expected |nonce_len| and the limit for |plaintext_len|. if (plaintext_len > CRYPTO_ccm128_max_input(ctx) || nonce_len != CCM_L_TO_NONCE_LEN(L)) { return 0; } // Assemble the first block for computing the MAC. OPENSSL_memset(state, 0, sizeof(*state)); state->nonce[0] = (uint8_t)((L - 1) | ((M - 2) / 2) << 3); if (aad_len != 0) { state->nonce[0] |= 0x40; // Set AAD Flag } OPENSSL_memcpy(&state->nonce[1], nonce, nonce_len); // Explicitly cast plaintext_len up to 64-bits so that we don't shift out of // bounds on 32-bit machines when encoding the message length. uint64_t plaintext_len_64 = plaintext_len; for (uint32_t i = 0; i < L; i++) { state->nonce[15 - i] = (uint8_t)(plaintext_len_64 >> (8 * i)); } (*block)(state->nonce, state->cmac, key); size_t blocks = 1; if (aad_len != 0) { unsigned i; // Cast to u64 to avoid the compiler complaining about invalid shifts. uint64_t aad_len_u64 = aad_len; if (aad_len_u64 < 0x10000 - 0x100) { state->cmac[0] ^= (uint8_t)(aad_len_u64 >> 8); state->cmac[1] ^= (uint8_t)aad_len_u64; i = 2; } else if (aad_len_u64 <= 0xffffffff) { state->cmac[0] ^= 0xff; state->cmac[1] ^= 0xfe; state->cmac[2] ^= (uint8_t)(aad_len_u64 >> 24); state->cmac[3] ^= (uint8_t)(aad_len_u64 >> 16); state->cmac[4] ^= (uint8_t)(aad_len_u64 >> 8); state->cmac[5] ^= (uint8_t)aad_len_u64; i = 6; } else { state->cmac[0] ^= 0xff; state->cmac[1] ^= 0xff; state->cmac[2] ^= (uint8_t)(aad_len_u64 >> 56); state->cmac[3] ^= (uint8_t)(aad_len_u64 >> 48); state->cmac[4] ^= (uint8_t)(aad_len_u64 >> 40); state->cmac[5] ^= (uint8_t)(aad_len_u64 >> 32); state->cmac[6] ^= (uint8_t)(aad_len_u64 >> 24); state->cmac[7] ^= (uint8_t)(aad_len_u64 >> 16); state->cmac[8] ^= (uint8_t)(aad_len_u64 >> 8); state->cmac[9] ^= (uint8_t)aad_len_u64; i = 10; } do { for (; i < 16 && aad_len != 0; i++) { state->cmac[i] ^= *aad; aad++; aad_len--; } (*block)(state->cmac, state->cmac, key); blocks++; i = 0; } while (aad_len != 0); } // Per RFC 3610, section 2.6, the total number of block cipher operations done // must not exceed 2^61. There are two block cipher operations remaining per // message block, plus one block at the end to encrypt the MAC. size_t remaining_blocks = 2 * ((plaintext_len + 15) / 16) + 1; if (plaintext_len + 15 < plaintext_len || remaining_blocks + blocks < blocks || (uint64_t) remaining_blocks + blocks > UINT64_C(1) << 61) { return 0; } // Assemble the first block for encrypting and decrypting. The bottom |L| // bytes are replaced with a counter and all bit the encoding of |L| is // cleared in the first byte. state->nonce[0] &= 7; return 1; } static int ccm128_encrypt(const struct ccm128_context *ctx, struct ccm128_state *state, const AES_KEY *key, uint8_t *out, const uint8_t *in, size_t len) { // The counter for encryption begins at one. for (unsigned i = 0; i < ctx->L; i++) { state->nonce[15 - i] = 0; } state->nonce[15] = 1; uint8_t partial_buf[16]; unsigned num = 0; if (ctx->ctr != NULL) { CRYPTO_ctr128_encrypt_ctr32(in, out, len, key, state->nonce, partial_buf, &num, ctx->ctr); } else { CRYPTO_ctr128_encrypt(in, out, len, key, state->nonce, partial_buf, &num, ctx->block); } return 1; } static int ccm128_compute_mac(const struct ccm128_context *ctx, struct ccm128_state *state, const AES_KEY *key, uint8_t *out_tag, size_t tag_len, const uint8_t *in, size_t len) { block128_f block = ctx->block; if (tag_len != ctx->M) { return 0; } // Incorporate |in| into the MAC. while (len >= 16) { CRYPTO_xor16(state->cmac, state->cmac, in); (*block)(state->cmac, state->cmac, key); in += 16; len -= 16; } if (len > 0) { for (size_t i = 0; i < len; i++) { state->cmac[i] ^= in[i]; } (*block)(state->cmac, state->cmac, key); } // Encrypt the MAC with counter zero. for (unsigned i = 0; i < ctx->L; i++) { state->nonce[15 - i] = 0; } alignas(16) uint8_t tmp[16]; (*block)(state->nonce, tmp, key); CRYPTO_xor16(state->cmac, state->cmac, tmp); OPENSSL_memcpy(out_tag, state->cmac, tag_len); return 1; } static int CRYPTO_ccm128_encrypt(const struct ccm128_context *ctx, const AES_KEY *key, uint8_t *out, uint8_t *out_tag, size_t tag_len, const uint8_t *nonce, size_t nonce_len, const uint8_t *in, size_t len, const uint8_t *aad, size_t aad_len) { struct ccm128_state state; return ccm128_init_state(ctx, &state, key, nonce, nonce_len, aad, aad_len, len) && ccm128_compute_mac(ctx, &state, key, out_tag, tag_len, in, len) && ccm128_encrypt(ctx, &state, key, out, in, len); } static int CRYPTO_ccm128_decrypt(const struct ccm128_context *ctx, const AES_KEY *key, uint8_t *out, uint8_t *out_tag, size_t tag_len, const uint8_t *nonce, size_t nonce_len, const uint8_t *in, size_t len, const uint8_t *aad, size_t aad_len) { struct ccm128_state state; return ccm128_init_state(ctx, &state, key, nonce, nonce_len, aad, aad_len, len) && ccm128_encrypt(ctx, &state, key, out, in, len) && ccm128_compute_mac(ctx, &state, key, out_tag, tag_len, out, len); } struct aead_aes_ccm_ctx { union { double align; AES_KEY ks; } ks; struct ccm128_context ccm; }; OPENSSL_STATIC_ASSERT(sizeof(((EVP_AEAD_CTX *)NULL)->state) >= sizeof(struct aead_aes_ccm_ctx), AEAD_state_is_too_small) OPENSSL_STATIC_ASSERT(alignof(union evp_aead_ctx_st_state) >= alignof(struct aead_aes_ccm_ctx), AEAD_state_has_insufficient_alignment) static int aead_aes_ccm_init(EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len, unsigned M, unsigned L) { assert(M == EVP_AEAD_max_overhead(ctx->aead)); assert(M == EVP_AEAD_max_tag_len(ctx->aead)); assert(CCM_L_TO_NONCE_LEN(L) == EVP_AEAD_nonce_length(ctx->aead)); if (key_len != EVP_AEAD_key_length(ctx->aead)) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH); return 0; // EVP_AEAD_CTX_init should catch this. } if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) { tag_len = M; } if (tag_len != M) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE); return 0; } struct aead_aes_ccm_ctx *ccm_ctx = (struct aead_aes_ccm_ctx *)&ctx->state; block128_f block; ctr128_f ctr = aes_ctr_set_key(&ccm_ctx->ks.ks, NULL, &block, key, key_len); ctx->tag_len = tag_len; if (!CRYPTO_ccm128_init(&ccm_ctx->ccm, block, ctr, M, L)) { OPENSSL_PUT_ERROR(CIPHER, ERR_R_INTERNAL_ERROR); return 0; } return 1; } static void aead_aes_ccm_cleanup(EVP_AEAD_CTX *ctx) {} static int aead_aes_ccm_seal_scatter( const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag, size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce, size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in, size_t extra_in_len, const uint8_t *ad, size_t ad_len) { const struct aead_aes_ccm_ctx *ccm_ctx = (struct aead_aes_ccm_ctx *)&ctx->state; if (in_len > CRYPTO_ccm128_max_input(&ccm_ctx->ccm)) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); return 0; } if (max_out_tag_len < ctx->tag_len) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); return 0; } if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); return 0; } if (!CRYPTO_ccm128_encrypt(&ccm_ctx->ccm, &ccm_ctx->ks.ks, out, out_tag, ctx->tag_len, nonce, nonce_len, in, in_len, ad, ad_len)) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); return 0; } *out_tag_len = ctx->tag_len; AEAD_CCM_verify_service_indicator(ctx); return 1; } static int aead_aes_ccm_open_gather(const EVP_AEAD_CTX *ctx, uint8_t *out, const uint8_t *nonce, size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *in_tag, size_t in_tag_len, const uint8_t *ad, size_t ad_len) { const struct aead_aes_ccm_ctx *ccm_ctx = (struct aead_aes_ccm_ctx *)&ctx->state; if (in_len > CRYPTO_ccm128_max_input(&ccm_ctx->ccm)) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); return 0; } if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); return 0; } if (in_tag_len != ctx->tag_len) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); return 0; } uint8_t tag[EVP_AEAD_AES_CCM_MAX_TAG_LEN]; assert(ctx->tag_len <= EVP_AEAD_AES_CCM_MAX_TAG_LEN); if (!CRYPTO_ccm128_decrypt(&ccm_ctx->ccm, &ccm_ctx->ks.ks, out, tag, ctx->tag_len, nonce, nonce_len, in, in_len, ad, ad_len)) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); return 0; } if (CRYPTO_memcmp(tag, in_tag, ctx->tag_len) != 0) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); return 0; } AEAD_CCM_verify_service_indicator(ctx); return 1; } static int aead_aes_ccm_bluetooth_init(EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len) { return aead_aes_ccm_init(ctx, key, key_len, tag_len, 4, 2); } DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_ccm_bluetooth) { memset(out, 0, sizeof(EVP_AEAD)); out->key_len = 16; out->nonce_len = 13; out->overhead = 4; out->max_tag_len = 4; out->aead_id = AEAD_AES_128_CCM_BLUETOOTH_ID; out->seal_scatter_supports_extra_in = 0; out->init = aead_aes_ccm_bluetooth_init; out->cleanup = aead_aes_ccm_cleanup; out->seal_scatter = aead_aes_ccm_seal_scatter; out->open_gather = aead_aes_ccm_open_gather; } static int aead_aes_ccm_bluetooth_8_init(EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len) { return aead_aes_ccm_init(ctx, key, key_len, tag_len, 8, 2); } DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_ccm_bluetooth_8) { memset(out, 0, sizeof(EVP_AEAD)); out->key_len = 16; out->nonce_len = 13; out->overhead = 8; out->max_tag_len = 8; out->aead_id = AEAD_AES_128_CCM_BLUETOOTH_8_ID; out->seal_scatter_supports_extra_in = 0; out->init = aead_aes_ccm_bluetooth_8_init; out->cleanup = aead_aes_ccm_cleanup; out->seal_scatter = aead_aes_ccm_seal_scatter; out->open_gather = aead_aes_ccm_open_gather; } static int aead_aes_ccm_matter_init(EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len) { return aead_aes_ccm_init(ctx, key, key_len, tag_len, 16, 2); } DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_ccm_matter) { memset(out, 0, sizeof(EVP_AEAD)); out->key_len = 16; out->nonce_len = 13; out->overhead = 16; out->aead_id = AEAD_AES_128_CCM_MATTER_ID; out->max_tag_len = 16; out->init = aead_aes_ccm_matter_init; out->cleanup = aead_aes_ccm_cleanup; out->seal_scatter = aead_aes_ccm_seal_scatter; out->open_gather = aead_aes_ccm_open_gather; } #if defined(OPENSSL_32_BIT) #define CIPHER_AES_CCM_CTX_PADDING (4 + 8) #else #define CIPHER_AES_CCM_CTX_PADDING 8 #endif // This is the same handling as EVP_AES_GCM_CTX which is also a context // that is 16-byte aligned. // TODO: possibly refactor the code instead of repeating it from e_aes.c static CIPHER_AES_CCM_CTX *aes_ccm_from_cipher_ctx(EVP_CIPHER_CTX *ctx) { OPENSSL_STATIC_ASSERT( alignof(CIPHER_AES_CCM_CTX) <= 16, EVP_AES_CCM_CTX_needs_more_alignment_than_this_function_provides) // |malloc| guarantees up to 4-byte alignment on 32-bit and 8-byte alignment // on 64-bit systems, so we need to adjust to reach 16-byte alignment. assert(ctx->cipher->ctx_size == sizeof(CIPHER_AES_CCM_CTX) + CIPHER_AES_CCM_CTX_PADDING); char *ptr = ctx->cipher_data; #if defined(OPENSSL_32_BIT) assert((uintptr_t)ptr % 4 == 0); ptr += (uintptr_t)ptr & 4; #endif assert((uintptr_t)ptr % 8 == 0); ptr += (uintptr_t)ptr & 8; return (CIPHER_AES_CCM_CTX *)ptr; } static int cipher_aes_ccm_init(EVP_CIPHER_CTX *ctx, const uint8_t *key, const uint8_t *iv, int enc) { CIPHER_AES_CCM_CTX *cipher_ctx = aes_ccm_from_cipher_ctx(ctx); if (!iv && !key) { return 1; } if (key) { block128_f block; ctr128_f ctr = aes_ctr_set_key(&cipher_ctx->ks.ks, NULL, &block, key, ctx->key_len); if (!CRYPTO_ccm128_init(&cipher_ctx->ccm, block, ctr, cipher_ctx->M, cipher_ctx->L)) { return 0; } cipher_ctx->key_set = 1; } if (iv) { if (!CRYPTO_ccm128_init(&cipher_ctx->ccm, NULL, NULL, cipher_ctx->M, cipher_ctx->L)) { return 0; } OPENSSL_memcpy(cipher_ctx->nonce, iv, CCM_L_TO_NONCE_LEN(cipher_ctx->L)); cipher_ctx->iv_set = 1; } return 1; } static int cipher_aes_ccm_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, size_t len) { CIPHER_AES_CCM_CTX *cipher_ctx = aes_ccm_from_cipher_ctx(ctx); CCM128_CTX *ccm_ctx = CCM_INNER_CTX(cipher_ctx); CCM128_STATE *ccm_state = CCM_INNER_STATE(cipher_ctx); // Implicit EVP_*Final call. CCM does all the work in EVP_*Update // n.b. |out| is non-NULL and |in| is NULL despite being a no-op. if (in == NULL && out != NULL) { return 0; } if (!cipher_ctx->iv_set || !cipher_ctx->key_set) { return -1; } if (!out) { if (!in) { // If |out| and |in| are both NULL, |len| is the total length of the // message which we need to include that in the 0th block of the CBC-MAC. cipher_ctx->message_len = len; cipher_ctx->len_set = 1; return len; } else { // If only |out| is NULL then this is the AAD. // The message length must be set apriori. if (!cipher_ctx->len_set && len) { return -1; } // We now have everything we need to initialize the CBC-MAC state if (ccm128_init_state(ccm_ctx, ccm_state, &cipher_ctx->ks.ks, cipher_ctx->nonce, CCM_L_TO_NONCE_LEN(cipher_ctx->L), in, len, cipher_ctx->message_len)) { cipher_ctx->ccm_set = 1; return len; } else { return -1; } } } // The tag must be set before decrypting any data. if (!EVP_CIPHER_CTX_encrypting(ctx) && !cipher_ctx->tag_set) { return -1; } if (!cipher_ctx->len_set) { return -1; } if (!cipher_ctx->ccm_set) { // Initialize the ccm_state if this did not happen during the AAD update. if (!ccm128_init_state(ccm_ctx, ccm_state, &cipher_ctx->ks.ks, cipher_ctx->nonce, CCM_L_TO_NONCE_LEN(cipher_ctx->L), NULL, 0, cipher_ctx->message_len)) { return -1; } cipher_ctx->ccm_set = 1; } if (EVP_CIPHER_CTX_encrypting(ctx)) { // Encryption path. Compute CBC-MAC on plaintext and then encrypt. if (!ccm128_compute_mac(ccm_ctx, ccm_state, &cipher_ctx->ks.ks, cipher_ctx->tag, cipher_ctx->M, in, len)) { return -1; } if (!ccm128_encrypt(ccm_ctx, ccm_state, &cipher_ctx->ks.ks, out, in, len)) { return -1; } cipher_ctx->tag_set = 1; } else { // Decryption path. Compute the plaintext then compute its CBC-MAC. // n.b. The method says encrypt, but it works both ways. if (!ccm128_encrypt(ccm_ctx, ccm_state, &cipher_ctx->ks.ks, out, in, len)) { return -1; } uint8_t computed_tag[EVP_AEAD_AES_CCM_MAX_TAG_LEN] = {0}; if (!ccm128_compute_mac(ccm_ctx, ccm_state, &cipher_ctx->ks.ks, computed_tag, cipher_ctx->M, out, len)) { OPENSSL_cleanse(out, len); return -1; } // Validate the tag and invalidate the output if it doesn't match. if (OPENSSL_memcmp(cipher_ctx->tag, computed_tag, cipher_ctx->M)) { OPENSSL_cleanse(out, len); return -1; } cipher_ctx->iv_set = 0; cipher_ctx->tag_set = 0; cipher_ctx->len_set = 0; cipher_ctx->ccm_set = 0; } return (int) len; } static int cipher_aes_ccm_ctrl_set_L(CIPHER_AES_CCM_CTX *ctx, int L) { if (L < 2 || L > 8) { return 0; } ctx->L = L; return 1; } static int cipher_aes_ccm_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr) { CIPHER_AES_CCM_CTX *cipher_ctx = aes_ccm_from_cipher_ctx(ctx); switch (type) { case EVP_CTRL_INIT: OPENSSL_cleanse(cipher_ctx, sizeof(CIPHER_AES_CCM_CTX)); cipher_ctx->key_set = 0; cipher_ctx->iv_set = 0; cipher_ctx->tag_set = 0; cipher_ctx->len_set = 0; cipher_ctx->ccm_set = 0; cipher_ctx->L = 8; cipher_ctx->M = 14; cipher_ctx->message_len = 0; return 1; case EVP_CTRL_GET_IVLEN: *(uint32_t *)ptr = CCM_L_TO_NONCE_LEN(cipher_ctx->L); return 1; case EVP_CTRL_AEAD_SET_IVLEN: // The nonce (IV) length is 15-L, compute L here and set it below to "set" // the IV length. return cipher_aes_ccm_ctrl_set_L(cipher_ctx, 15 - arg); case EVP_CTRL_CCM_SET_L: return cipher_aes_ccm_ctrl_set_L(cipher_ctx, arg); case EVP_CTRL_AEAD_SET_TAG: // |arg| is the tag length in bytes. if ((arg & 1) || arg < EVP_AEAD_AES_CCM_MIN_TAG_LEN || arg > EVP_AEAD_AES_CCM_MAX_TAG_LEN) { return 0; } // If encrypting, we don't expect incoming tag data if (ctx->encrypt && ptr) { return 0; } if (ptr) { // Set the tag for validation when decrypting. OPENSSL_memcpy(cipher_ctx->tag, ptr, arg); cipher_ctx->tag_set = 1; } // Set the value of M (i.e. the tag length) when encrypting. cipher_ctx->M = arg; return 1; case EVP_CTRL_AEAD_GET_TAG: if (!ctx->encrypt || !cipher_ctx->tag_set) { return 0; } if ((size_t) arg != cipher_ctx->M) { return 0; } OPENSSL_memcpy(ptr, cipher_ctx->tag, cipher_ctx->M); cipher_ctx->tag_set = 0; cipher_ctx->iv_set = 0; cipher_ctx->len_set = 0; cipher_ctx->ccm_set = 0; return 1; case EVP_CTRL_COPY: { EVP_CIPHER_CTX *out = ptr; CIPHER_AES_CCM_CTX *cipher_ctx_out = aes_ccm_from_cipher_ctx(out); // |EVP_CIPHER_CTX_copy| copies this generically, but we must redo it in // case |out->cipher_data| and |in->cipher_data| are differently aligned. OPENSSL_memcpy(cipher_ctx_out, cipher_ctx, sizeof(CIPHER_AES_CCM_CTX)); return 1; } default: return -1; } } DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_128_ccm) { memset(out, 0, sizeof(EVP_CIPHER)); out->nid = NID_aes_128_ccm; out->block_size = 1; // stream cipher out->key_len = 16; out->iv_len = 13; out->ctx_size = sizeof(CIPHER_AES_CCM_CTX) + CIPHER_AES_CCM_CTX_PADDING; out->flags = EVP_CIPH_CCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_CUSTOM_COPY | EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER; out->init = cipher_aes_ccm_init; out->cipher = cipher_aes_ccm_cipher; out->cleanup = NULL; out->ctrl = cipher_aes_ccm_ctrl; } DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_192_ccm) { memset(out, 0, sizeof(EVP_CIPHER)); out->nid = NID_aes_128_ccm; out->block_size = 1; // stream cipher out->key_len = 24; out->iv_len = 13; out->ctx_size = sizeof(CIPHER_AES_CCM_CTX) + CIPHER_AES_CCM_CTX_PADDING; out->flags = EVP_CIPH_CCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_CUSTOM_COPY | EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER; out->init = cipher_aes_ccm_init; out->cipher = cipher_aes_ccm_cipher; out->cleanup = NULL; out->ctrl = cipher_aes_ccm_ctrl; } DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_256_ccm) { memset(out, 0, sizeof(EVP_CIPHER)); out->nid = NID_aes_128_ccm; out->block_size = 1; // stream cipher out->key_len = 32; out->iv_len = 13; out->ctx_size = sizeof(CIPHER_AES_CCM_CTX) + CIPHER_AES_CCM_CTX_PADDING; out->flags = EVP_CIPH_CCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_CUSTOM_COPY | EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER; out->init = cipher_aes_ccm_init; out->cipher = cipher_aes_ccm_cipher; out->cleanup = NULL; out->ctrl = cipher_aes_ccm_ctrl; }