/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #ifndef OPENSSL_HEADER_CIPHER_INTERNAL_H #define OPENSSL_HEADER_CIPHER_INTERNAL_H #include #include #include #include #include "../../internal.h" #include "../modes/internal.h" #if defined(__cplusplus) extern "C" { #endif // EVP_CIPH_MODE_MASK contains the bits of |flags| that represent the mode. #define EVP_CIPH_MODE_MASK 0x3f // Set of EVP_AEAD->aead_id identifiers, zero is reserved as the "unknown" // value since it is the default for a structure. Implementations of the same // algorithms should use the same identifier. For example, machine-optimised // assembly versions should use the same identifier as their C counterparts. #define AEAD_UNKNOWN_ID 0 #define AEAD_AES_128_CTR_HMAC_SHA256_ID 1 #define AEAD_AES_256_CTR_HMAC_SHA256_ID 2 #define AEAD_AES_128_GCM_SIV_ID 3 #define AEAD_AES_256_GCM_SIV_ID 4 #define AEAD_CHACHA20_POLY1305_ID 5 #define AEAD_XCHACHA20_POLY1305_ID 6 #define AEAD_AES_128_CBC_SHA1_TLS_ID 7 #define AEAD_AES_128_CBC_SHA1_TLS_IMPLICIT_IV_ID 8 #define AEAD_AES_256_CBC_SHA1_TLS_ID 9 #define AEAD_AES_256_CBC_SHA1_TLS_IMPLICIT_IV_ID 10 #define AEAD_AES_128_CBC_SHA256_TLS_ID 11 #define AEAD_AES_128_CBC_SHA256_TLS_IMPLICIT_IV_ID 12 #define AEAD_DES_EDE3_CBC_SHA1_TLS_ID 13 #define AEAD_DES_EDE3_CBC_SHA1_TLS_IMPLICIT_IV_ID 14 #define AEAD_NULL_SHA1_TLS_ID 15 #define AEAD_AES_128_GCM_ID 16 #define AEAD_AES_192_GCM_ID 17 #define AEAD_AES_256_GCM_ID 18 #define AEAD_AES_128_GCM_RANDNONCE_ID 19 #define AEAD_AES_256_GCM_RANDNONCE_ID 20 #define AEAD_AES_128_GCM_TLS12_ID 21 #define AEAD_AES_256_GCM_TLS12_ID 22 #define AEAD_AES_128_GCM_TLS13_ID 23 #define AEAD_AES_256_GCM_TLS13_ID 24 #define AEAD_AES_128_CCM_BLUETOOTH_ID 25 #define AEAD_AES_128_CCM_BLUETOOTH_8_ID 26 #define AEAD_AES_128_CCM_MATTER_ID 27 #define AEAD_AES_256_CBC_SHA384_TLS_ID 28 #define AEAD_MAX_ID 28 // EVP_AEAD represents a specific AEAD algorithm. struct evp_aead_st { uint8_t key_len; uint8_t nonce_len; uint8_t overhead; uint8_t max_tag_len; uint16_t aead_id; int seal_scatter_supports_extra_in; // init initialises an |EVP_AEAD_CTX|. If this call returns zero then // |cleanup| will not be called for that context. int (*init)(EVP_AEAD_CTX *, const uint8_t *key, size_t key_len, size_t tag_len); int (*init_with_direction)(EVP_AEAD_CTX *, const uint8_t *key, size_t key_len, size_t tag_len, enum evp_aead_direction_t dir); void (*cleanup)(EVP_AEAD_CTX *); int (*open)(const EVP_AEAD_CTX *ctx, uint8_t *out, size_t *out_len, size_t max_out_len, const uint8_t *nonce, size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *ad, size_t ad_len); int (*seal_scatter)(const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag, size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce, size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in, size_t extra_in_len, const uint8_t *ad, size_t ad_len); int (*open_gather)(const EVP_AEAD_CTX *ctx, uint8_t *out, const uint8_t *nonce, size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *in_tag, size_t in_tag_len, const uint8_t *ad, size_t ad_len); int (*get_iv)(const EVP_AEAD_CTX *ctx, const uint8_t **out_iv, size_t *out_len); size_t (*tag_len)(const EVP_AEAD_CTX *ctx, size_t in_Len, size_t extra_in_len); int (*serialize_state)(const EVP_AEAD_CTX *ctx, CBB *cbb); int (*deserialize_state)(const EVP_AEAD_CTX *ctx, CBS *cbs); }; struct evp_cipher_st { // type contains a NID identifying the cipher. (e.g. NID_aes_128_gcm.) int nid; // block_size contains the block size, in bytes, of the cipher, or 1 for a // stream cipher. unsigned block_size; // key_len contains the key size, in bytes, for the cipher. If the cipher // takes a variable key size then this contains the default size. unsigned key_len; // iv_len contains the IV size, in bytes, or zero if inapplicable. unsigned iv_len; // ctx_size contains the size, in bytes, of the per-key context for this // cipher. unsigned ctx_size; // flags contains the OR of a number of flags. See |EVP_CIPH_*|. uint32_t flags; // app_data is a pointer to opaque, user data. void *app_data; int (*init)(EVP_CIPHER_CTX *ctx, const uint8_t *key, const uint8_t *iv, int enc); int (*cipher)(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, size_t inl); // cleanup, if non-NULL, releases memory associated with the context. It is // called if |EVP_CTRL_INIT| succeeds. Note that |init| may not have been // called at this point. void (*cleanup)(EVP_CIPHER_CTX *); int (*ctrl)(EVP_CIPHER_CTX *, int type, int arg, void *ptr); }; // aes_ctr_set_key initialises |*aes_key| using |key_bytes| bytes from |key|, // where |key_bytes| must either be 16, 24 or 32. If not NULL, |*out_block| is // set to a function that encrypts single blocks. If not NULL, |*gcm_key| is // initialised to do GHASH with the given key. It returns a function for // optimised CTR-mode, or NULL if CTR-mode should be built using |*out_block|. ctr128_f aes_ctr_set_key(AES_KEY *aes_key, GCM128_KEY *gcm_key, block128_f *out_block, const uint8_t *key, size_t key_bytes); // AES_cfb1_encrypt calls |CRYPTO_cfb128_1_encrypt| using the block // |AES_encrypt|. void AES_cfb1_encrypt(const uint8_t *in, uint8_t *out, size_t bits, const AES_KEY *key, uint8_t *ivec, int *num, int enc); // AES_cfb8_encrypt calls |CRYPTO_cfb128_8_encrypt| using the block // |AES_encrypt|. void AES_cfb8_encrypt(const uint8_t *in, uint8_t *out, size_t len, const AES_KEY *key, uint8_t *ivec, int *num, int enc); // EXPERIMENTAL functions for use in the TLS Transfer function. See // |SSL_to_bytes| for more details. // EVP_AEAD_CTX_serialize_state serializes the state of |ctx|, // and writes it to |cbb|. The serialized bytes contains only the subset of data // necessary to restore the state of an |EVP_AEAD_CTX| after initializing a new // instance using |EVP_AEAD_CTX_init|. Function returns 1 on success or zero for // an error. // // EvpAeadCtxStateSerializationVersion ::= INTEGER {v1 (1)} // // EvpAeadCtxState ::= SEQUENCE { // serializationVersion EvpAeadCtxStateSerializationVersion, // evpAeadCipherIdentifier INTEGER, // state OCTET STRING // } OPENSSL_EXPORT int EVP_AEAD_CTX_serialize_state(const EVP_AEAD_CTX *ctx, CBB *cbb); // EVP_AEAD_CTX_deserialize_state deserializes the state // contained in |cbs|, configures the |ctx| to match. The deserialized bytes // contains only the subset of data necessary to restore the state of an // |EVP_AEAD_CTX| after initializing a new instance using |EVP_AEAD_CTX_init|. // The function returns 1 on success or zero for an error. OPENSSL_EXPORT int EVP_AEAD_CTX_deserialize_state(const EVP_AEAD_CTX *ctx, CBS *cbs); OPENSSL_EXPORT uint16_t EVP_AEAD_CTX_get_aead_id(const EVP_AEAD_CTX *ctx); #if defined(__cplusplus) } // extern C #endif #endif // OPENSSL_HEADER_CIPHER_INTERNAL_H