/* Originally written by Bodo Moeller for the OpenSSL project. * ==================================================================== * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * * Portions of the attached software ("Contribution") are developed by * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. * * The Contribution is licensed pursuant to the OpenSSL open source * license provided above. * * The elliptic curve binary polynomial software is originally written by * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems * Laboratories. */ #include #include #include #include "internal.h" size_t ec_point_byte_len(const EC_GROUP *group, point_conversion_form_t form) { if (form != POINT_CONVERSION_COMPRESSED && form != POINT_CONVERSION_UNCOMPRESSED) { OPENSSL_PUT_ERROR(EC, EC_R_INVALID_FORM); return 0; } const size_t field_len = BN_num_bytes(&group->field.N); size_t output_len = 1 /* type byte */ + field_len; if (form == POINT_CONVERSION_UNCOMPRESSED) { // Uncompressed points have a second coordinate. output_len += field_len; } return output_len; } size_t ec_point_to_bytes(const EC_GROUP *group, const EC_AFFINE *point, point_conversion_form_t form, uint8_t *buf, size_t len) { size_t output_len = ec_point_byte_len(group, form); if (len < output_len) { OPENSSL_PUT_ERROR(EC, EC_R_BUFFER_TOO_SMALL); return 0; } size_t field_len; ec_felem_to_bytes(group, buf + 1, &field_len, &point->X); assert(field_len == BN_num_bytes(&group->field.N)); if (form == POINT_CONVERSION_UNCOMPRESSED) { ec_felem_to_bytes(group, buf + 1 + field_len, &field_len, &point->Y); assert(field_len == BN_num_bytes(&group->field.N)); buf[0] = form; } else { uint8_t y_buf[EC_MAX_BYTES]; ec_felem_to_bytes(group, y_buf, &field_len, &point->Y); buf[0] = form + (y_buf[field_len - 1] & 1); } return output_len; } int ec_point_from_uncompressed(const EC_GROUP *group, EC_AFFINE *out, const uint8_t *in, size_t len) { const size_t field_len = BN_num_bytes(&group->field.N); if (len != 1 + 2 * field_len || in[0] != POINT_CONVERSION_UNCOMPRESSED) { OPENSSL_PUT_ERROR(EC, EC_R_INVALID_ENCODING); return 0; } EC_FELEM x, y; if (!ec_felem_from_bytes(group, &x, in + 1, field_len) || !ec_felem_from_bytes(group, &y, in + 1 + field_len, field_len) || !ec_point_set_affine_coordinates(group, out, &x, &y)) { return 0; } return 1; } static int ec_GFp_simple_oct2point(const EC_GROUP *group, EC_POINT *point, const uint8_t *buf, size_t len, BN_CTX *ctx) { if (len == 0) { OPENSSL_PUT_ERROR(EC, EC_R_BUFFER_TOO_SMALL); return 0; } point_conversion_form_t form = buf[0]; if (form == POINT_CONVERSION_UNCOMPRESSED) { EC_AFFINE affine; if (!ec_point_from_uncompressed(group, &affine, buf, len)) { // In the event of an error, defend against the caller not checking the // return value by setting a known safe value. ec_set_to_safe_point(group, &point->raw); return 0; } ec_affine_to_jacobian(group, &point->raw, &affine); return 1; } const int y_bit = form & 1; const size_t field_len = BN_num_bytes(&group->field.N); form = form & ~1u; if (form != POINT_CONVERSION_COMPRESSED || len != 1 /* type byte */ + field_len) { OPENSSL_PUT_ERROR(EC, EC_R_INVALID_ENCODING); return 0; } // TODO(davidben): Integrate compressed coordinates with the lower-level EC // abstractions. This requires a way to compute square roots, which is tricky // for primes which are not 3 (mod 4), namely P-224 and custom curves. P-224's // prime is particularly inconvenient for compressed coordinates. See // https://cr.yp.to/papers/sqroot.pdf BN_CTX *new_ctx = NULL; if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) { return 0; } } int ret = 0; BN_CTX_start(ctx); BIGNUM *x = BN_CTX_get(ctx); if (x == NULL || !BN_bin2bn(buf + 1, field_len, x)) { goto err; } if (BN_ucmp(x, &group->field.N) >= 0) { OPENSSL_PUT_ERROR(EC, EC_R_INVALID_ENCODING); goto err; } if (!EC_POINT_set_compressed_coordinates_GFp(group, point, x, y_bit, ctx)) { goto err; } ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; } int EC_POINT_oct2point(const EC_GROUP *group, EC_POINT *point, const uint8_t *buf, size_t len, BN_CTX *ctx) { if (EC_GROUP_cmp(group, point->group, NULL) != 0) { OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); return 0; } return ec_GFp_simple_oct2point(group, point, buf, len, ctx); } size_t EC_POINT_point2oct(const EC_GROUP *group, const EC_POINT *point, point_conversion_form_t form, uint8_t *buf, size_t len, BN_CTX *ctx) { if (EC_GROUP_cmp(group, point->group, NULL) != 0) { OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); return 0; } if (buf == NULL) { // When |buf| is NULL, just return the number of bytes that would be // written, without doing an expensive Jacobian-to-affine conversion. if (ec_GFp_simple_is_at_infinity(group, &point->raw)) { OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY); return 0; } return ec_point_byte_len(group, form); } EC_AFFINE affine; if (!ec_jacobian_to_affine(group, &affine, &point->raw)) { return 0; } return ec_point_to_bytes(group, &affine, form, buf, len); } int EC_POINT_set_compressed_coordinates_GFp(const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, int y_bit, BN_CTX *ctx) { if (EC_GROUP_cmp(group, point->group, NULL) != 0) { OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); return 0; } const BIGNUM *field = &group->field.N; if (BN_is_negative(x) || BN_cmp(x, field) >= 0) { OPENSSL_PUT_ERROR(EC, EC_R_INVALID_COMPRESSED_POINT); return 0; } BN_CTX *new_ctx = NULL; int ret = 0; ERR_clear_error(); if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) { return 0; } } y_bit = (y_bit != 0); BN_CTX_start(ctx); BIGNUM *tmp1 = BN_CTX_get(ctx); BIGNUM *tmp2 = BN_CTX_get(ctx); BIGNUM *a = BN_CTX_get(ctx); BIGNUM *b = BN_CTX_get(ctx); BIGNUM *y = BN_CTX_get(ctx); if (y == NULL || !EC_GROUP_get_curve_GFp(group, NULL, a, b, ctx)) { goto err; } // Recover y. We have a Weierstrass equation // y^2 = x^3 + a*x + b, // so y is one of the square roots of x^3 + a*x + b. // tmp1 := x^3 if (!BN_mod_sqr(tmp2, x, field, ctx) || !BN_mod_mul(tmp1, tmp2, x, field, ctx)) { goto err; } // tmp1 := tmp1 + a*x if (group->a_is_minus3) { if (!bn_mod_lshift1_consttime(tmp2, x, field, ctx) || !bn_mod_add_consttime(tmp2, tmp2, x, field, ctx) || !bn_mod_sub_consttime(tmp1, tmp1, tmp2, field, ctx)) { goto err; } } else { if (!BN_mod_mul(tmp2, a, x, field, ctx) || !bn_mod_add_consttime(tmp1, tmp1, tmp2, field, ctx)) { goto err; } } // tmp1 := tmp1 + b if (!bn_mod_add_consttime(tmp1, tmp1, b, field, ctx)) { goto err; } if (!BN_mod_sqrt(y, tmp1, field, ctx)) { uint32_t err = ERR_peek_last_error(); if (ERR_GET_LIB(err) == ERR_LIB_BN && ERR_GET_REASON(err) == BN_R_NOT_A_SQUARE) { ERR_clear_error(); OPENSSL_PUT_ERROR(EC, EC_R_INVALID_COMPRESSED_POINT); } else { OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB); } goto err; } if (y_bit != BN_is_odd(y)) { if (BN_is_zero(y)) { OPENSSL_PUT_ERROR(EC, EC_R_INVALID_COMPRESSION_BIT); goto err; } if (!BN_usub(y, field, y)) { goto err; } } if (y_bit != BN_is_odd(y)) { OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); goto err; } if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) { goto err; } ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; }