/* Copyright (c) 2018, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include "internal.h" #include "../bn/internal.h" #include "../../internal.h" void ec_GFp_mont_mul(const EC_GROUP *group, EC_JACOBIAN *r, const EC_JACOBIAN *p, const EC_SCALAR *scalar) { // This is a generic implementation for uncommon curves that not do not // warrant a tuned one. It uses unsigned digits so that the doubling case in // |ec_GFp_mont_add| is always unreachable, erring on safety and simplicity. // Compute a table of the first 32 multiples of |p| (including infinity). EC_JACOBIAN precomp[32]; ec_GFp_simple_point_set_to_infinity(group, &precomp[0]); ec_GFp_simple_point_copy(&precomp[1], p); for (size_t j = 2; j < OPENSSL_ARRAY_SIZE(precomp); j++) { if (j & 1) { ec_GFp_mont_add(group, &precomp[j], &precomp[1], &precomp[j - 1]); } else { ec_GFp_mont_dbl(group, &precomp[j], &precomp[j / 2]); } } // Divide bits in |scalar| into windows. unsigned bits = EC_GROUP_order_bits(group); int r_is_at_infinity = 1; for (unsigned i = bits - 1; i < bits; i--) { if (!r_is_at_infinity) { ec_GFp_mont_dbl(group, r, r); } if (i % 5 == 0) { // Compute the next window value. const size_t width = group->order.N.width; uint8_t window = bn_is_bit_set_words(scalar->words, width, i + 4) << 4; window |= bn_is_bit_set_words(scalar->words, width, i + 3) << 3; window |= bn_is_bit_set_words(scalar->words, width, i + 2) << 2; window |= bn_is_bit_set_words(scalar->words, width, i + 1) << 1; window |= bn_is_bit_set_words(scalar->words, width, i); // Select the entry in constant-time. EC_JACOBIAN tmp; OPENSSL_memset(&tmp, 0, sizeof(EC_JACOBIAN)); for (size_t j = 0; j < OPENSSL_ARRAY_SIZE(precomp); j++) { BN_ULONG mask = constant_time_eq_w(j, window); ec_point_select(group, &tmp, mask, &precomp[j], &tmp); } if (r_is_at_infinity) { ec_GFp_simple_point_copy(r, &tmp); r_is_at_infinity = 0; } else { ec_GFp_mont_add(group, r, r, &tmp); } } } if (r_is_at_infinity) { ec_GFp_simple_point_set_to_infinity(group, r); } } void ec_GFp_mont_mul_base(const EC_GROUP *group, EC_JACOBIAN *r, const EC_SCALAR *scalar) { ec_GFp_mont_mul(group, r, &group->generator.raw, scalar); } static void ec_GFp_mont_batch_precomp(const EC_GROUP *group, EC_JACOBIAN *out, size_t num, const EC_JACOBIAN *p) { assert(num > 1); ec_GFp_simple_point_set_to_infinity(group, &out[0]); ec_GFp_simple_point_copy(&out[1], p); for (size_t j = 2; j < num; j++) { if (j & 1) { ec_GFp_mont_add(group, &out[j], &out[1], &out[j - 1]); } else { ec_GFp_mont_dbl(group, &out[j], &out[j / 2]); } } } static void ec_GFp_mont_batch_get_window(const EC_GROUP *group, EC_JACOBIAN *out, const EC_JACOBIAN precomp[17], const EC_SCALAR *scalar, unsigned i) { const size_t width = group->order.N.width; uint8_t window = bn_is_bit_set_words(scalar->words, width, i + 4) << 5; window |= bn_is_bit_set_words(scalar->words, width, i + 3) << 4; window |= bn_is_bit_set_words(scalar->words, width, i + 2) << 3; window |= bn_is_bit_set_words(scalar->words, width, i + 1) << 2; window |= bn_is_bit_set_words(scalar->words, width, i) << 1; if (i > 0) { window |= bn_is_bit_set_words(scalar->words, width, i - 1); } crypto_word_t sign, digit; ec_GFp_nistp_recode_scalar_bits(&sign, &digit, window); // Select the entry in constant-time. OPENSSL_memset(out, 0, sizeof(EC_JACOBIAN)); for (size_t j = 0; j < 17; j++) { BN_ULONG mask = constant_time_eq_w(j, digit); ec_point_select(group, out, mask, &precomp[j], out); } // Negate if necessary. EC_FELEM neg_Y; // Initialize |out| to avoid "may be used uninitialized" warning below. // https://github.com/aws/aws-lc/issues/1185 OPENSSL_memset(&neg_Y, 0, sizeof(EC_FELEM)); ec_felem_neg(group, &neg_Y, &out->Y); crypto_word_t sign_mask = sign; sign_mask = 0u - sign_mask; ec_felem_select(group, &out->Y, sign_mask, &neg_Y, &out->Y); } void ec_GFp_mont_mul_batch(const EC_GROUP *group, EC_JACOBIAN *r, const EC_JACOBIAN *p0, const EC_SCALAR *scalar0, const EC_JACOBIAN *p1, const EC_SCALAR *scalar1, const EC_JACOBIAN *p2, const EC_SCALAR *scalar2) { EC_JACOBIAN precomp[3][17]; ec_GFp_mont_batch_precomp(group, precomp[0], 17, p0); ec_GFp_mont_batch_precomp(group, precomp[1], 17, p1); if (p2 != NULL) { ec_GFp_mont_batch_precomp(group, precomp[2], 17, p2); } // Divide bits in |scalar| into windows. unsigned bits = EC_GROUP_order_bits(group); int r_is_at_infinity = 1; for (unsigned i = bits; i <= bits; i--) { if (!r_is_at_infinity) { ec_GFp_mont_dbl(group, r, r); } if (i % 5 == 0) { EC_JACOBIAN tmp; ec_GFp_mont_batch_get_window(group, &tmp, precomp[0], scalar0, i); if (r_is_at_infinity) { ec_GFp_simple_point_copy(r, &tmp); r_is_at_infinity = 0; } else { ec_GFp_mont_add(group, r, r, &tmp); } ec_GFp_mont_batch_get_window(group, &tmp, precomp[1], scalar1, i); ec_GFp_mont_add(group, r, r, &tmp); if (p2 != NULL) { ec_GFp_mont_batch_get_window(group, &tmp, precomp[2], scalar2, i); ec_GFp_mont_add(group, r, r, &tmp); } } } if (r_is_at_infinity) { ec_GFp_simple_point_set_to_infinity(group, r); } } static unsigned ec_GFp_mont_comb_stride(const EC_GROUP *group) { return (EC_GROUP_get_degree(group) + EC_MONT_PRECOMP_COMB_SIZE - 1) / EC_MONT_PRECOMP_COMB_SIZE; } int ec_GFp_mont_init_precomp(const EC_GROUP *group, EC_PRECOMP *out, const EC_JACOBIAN *p) { // comb[i - 1] stores the ith element of the comb. That is, if i is // b4 * 2^4 + b3 * 2^3 + ... + b0 * 2^0, it stores k * |p|, where k is // b4 * 2^(4*stride) + b3 * 2^(3*stride) + ... + b0 * 2^(0*stride). stride // here is |ec_GFp_mont_comb_stride|. We store at index i - 1 because the 0th // comb entry is always infinity. EC_JACOBIAN comb[(1 << EC_MONT_PRECOMP_COMB_SIZE) - 1]; unsigned stride = ec_GFp_mont_comb_stride(group); // We compute the comb sequentially by the highest set bit. Initially, all // entries up to 2^0 are filled. comb[(1 << 0) - 1] = *p; for (unsigned i = 1; i < EC_MONT_PRECOMP_COMB_SIZE; i++) { // Compute entry 2^i by doubling the entry for 2^(i-1) |stride| times. unsigned bit = 1 << i; ec_GFp_mont_dbl(group, &comb[bit - 1], &comb[bit / 2 - 1]); for (unsigned j = 1; j < stride; j++) { ec_GFp_mont_dbl(group, &comb[bit - 1], &comb[bit - 1]); } // Compute entries from 2^i + 1 to 2^i + (2^i - 1) by adding entry 2^i to // a previous entry. for (unsigned j = 1; j < bit; j++) { ec_GFp_mont_add(group, &comb[bit + j - 1], &comb[bit - 1], &comb[j - 1]); } } // Store the comb in affine coordinates to shrink the table. (This reduces // cache pressure and makes the constant-time selects faster.) OPENSSL_STATIC_ASSERT( OPENSSL_ARRAY_SIZE(comb) == OPENSSL_ARRAY_SIZE(out->comb), comb_sizes_did_not_match) return ec_jacobian_to_affine_batch(group, out->comb, comb, OPENSSL_ARRAY_SIZE(comb)); } static void ec_GFp_mont_get_comb_window(const EC_GROUP *group, EC_JACOBIAN *out, const EC_PRECOMP *precomp, const EC_SCALAR *scalar, unsigned i) { const size_t width = group->order.N.width; unsigned stride = ec_GFp_mont_comb_stride(group); // Select the bits corresponding to the comb shifted up by |i|. unsigned window = 0; for (unsigned j = 0; j < EC_MONT_PRECOMP_COMB_SIZE; j++) { window |= bn_is_bit_set_words(scalar->words, width, j * stride + i) << j; } // Select precomp->comb[window - 1]. If |window| is zero, |match| will always // be zero, which will leave |out| at infinity. OPENSSL_memset(out, 0, sizeof(EC_JACOBIAN)); for (unsigned j = 0; j < OPENSSL_ARRAY_SIZE(precomp->comb); j++) { BN_ULONG match = constant_time_eq_w(window, j + 1); ec_felem_select(group, &out->X, match, &precomp->comb[j].X, &out->X); ec_felem_select(group, &out->Y, match, &precomp->comb[j].Y, &out->Y); } BN_ULONG is_infinity = constant_time_is_zero_w(window); ec_felem_select(group, &out->Z, is_infinity, &out->Z, ec_felem_one(group)); } void ec_GFp_mont_mul_precomp(const EC_GROUP *group, EC_JACOBIAN *r, const EC_PRECOMP *p0, const EC_SCALAR *scalar0, const EC_PRECOMP *p1, const EC_SCALAR *scalar1, const EC_PRECOMP *p2, const EC_SCALAR *scalar2) { unsigned stride = ec_GFp_mont_comb_stride(group); int r_is_at_infinity = 1; for (unsigned i = stride - 1; i < stride; i--) { if (!r_is_at_infinity) { ec_GFp_mont_dbl(group, r, r); } EC_JACOBIAN tmp; ec_GFp_mont_get_comb_window(group, &tmp, p0, scalar0, i); if (r_is_at_infinity) { ec_GFp_simple_point_copy(r, &tmp); r_is_at_infinity = 0; } else { ec_GFp_mont_add(group, r, r, &tmp); } if (p1 != NULL) { ec_GFp_mont_get_comb_window(group, &tmp, p1, scalar1, i); ec_GFp_mont_add(group, r, r, &tmp); } if (p2 != NULL) { ec_GFp_mont_get_comb_window(group, &tmp, p2, scalar2, i); ec_GFp_mont_add(group, r, r, &tmp); } } if (r_is_at_infinity) { ec_GFp_simple_point_set_to_infinity(group, r); } }