/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #ifndef OPENSSL_HEADER_EVP_INTERNAL_H #define OPENSSL_HEADER_EVP_INTERNAL_H #include #include #include #include #if defined(__cplusplus) extern "C" { #endif // EVP_MD_CTX_FLAG_KEEP_PKEY_CTX ensures |md_ctx->pctx| is not freed up in // |EVP_MD_CTX_cleanup|. Only intended for internal use when |*pctx| was set // externally with |EVP_MD_CTX_set_pkey_ctx|. #define EVP_MD_CTX_FLAG_KEEP_PKEY_CTX 0x0400 // EVP_MD_CTX_HMAC causes the |EVP_MD|'s |init| function not to // be called, the |update| member not to be copied from the |EVP_MD| in // |EVP_DigestInit_ex| and for |md_data| not to be initialised. // This is an implementation detail of |EVP_PKEY_HMAC|. #define EVP_MD_CTX_HMAC 0x0800 typedef struct evp_pkey_method_st EVP_PKEY_METHOD; struct evp_pkey_asn1_method_st { int pkey_id; uint8_t oid[11]; uint8_t oid_len; const char *pem_str; const char *info; // pub_decode decodes |params| and |key| as a SubjectPublicKeyInfo // and writes the result into |out|. It returns one on success and zero on // error. |params| is the AlgorithmIdentifier after the OBJECT IDENTIFIER // type field, and |key| is the contents of the subjectPublicKey with the // leading padding byte checked and removed. Although X.509 uses BIT STRINGs // to represent SubjectPublicKeyInfo, every key type defined encodes the key // as a byte string with the same conversion to BIT STRING. int (*pub_decode)(EVP_PKEY *out, CBS *params, CBS *key); // pub_encode encodes |key| as a SubjectPublicKeyInfo and appends the result // to |out|. It returns one on success and zero on error. int (*pub_encode)(CBB *out, const EVP_PKEY *key); int (*pub_cmp)(const EVP_PKEY *a, const EVP_PKEY *b); // priv_decode decodes |params| and |key| as a PrivateKeyInfo and writes the // result into |out|. It returns one on success and zero on error. |params| is // the AlgorithmIdentifier after the OBJECT IDENTIFIER type field, and |key| // is the contents of the OCTET STRING privateKey field. int (*priv_decode)(EVP_PKEY *out, CBS *params, CBS *key, CBS *pubkey); // priv_encode encodes |key| as a PrivateKeyInfo and appends the result to // |out|. It returns one on success and zero on error. int (*priv_encode)(CBB *out, const EVP_PKEY *key); // priv_encode_v2 encodes |key| as a OneAsymmetricKey (RFC 5958) and appends // the result to |out|. It returns one on success and zero on error. int (*priv_encode_v2)(CBB *out, const EVP_PKEY *key); int (*set_priv_raw)(EVP_PKEY *pkey, const uint8_t *privkey, size_t privkey_len, const uint8_t *pubkey, size_t pubkey_len); int (*set_pub_raw)(EVP_PKEY *pkey, const uint8_t *in, size_t len); int (*get_priv_raw)(const EVP_PKEY *pkey, uint8_t *out, size_t *out_len); int (*get_pub_raw)(const EVP_PKEY *pkey, uint8_t *out, size_t *out_len); // pkey_opaque returns 1 if the |pk| is opaque. Opaque keys are backed by // custom implementations which do not expose key material and parameters. int (*pkey_opaque)(const EVP_PKEY *pk); int (*pkey_size)(const EVP_PKEY *pk); int (*pkey_bits)(const EVP_PKEY *pk); int (*param_missing)(const EVP_PKEY *pk); int (*param_copy)(EVP_PKEY *to, const EVP_PKEY *from); int (*param_cmp)(const EVP_PKEY *a, const EVP_PKEY *b); void (*pkey_free)(EVP_PKEY *pkey); }; // EVP_PKEY_ASN1_METHOD struct evp_pkey_st { CRYPTO_refcount_t references; // type contains one of the EVP_PKEY_* values or NID_undef and determines // which element (if any) of the |pkey| union is valid. int type; union { void *ptr; RSA *rsa; DSA *dsa; DH *dh; EC_KEY *ec; KEM_KEY *kem_key; } pkey; // ameth contains a pointer to a method table that contains many ASN.1 // methods for the key type. const EVP_PKEY_ASN1_METHOD *ameth; } /* EVP_PKEY */; #define EVP_PKEY_OP_UNDEFINED 0 #define EVP_PKEY_OP_KEYGEN (1 << 2) #define EVP_PKEY_OP_SIGN (1 << 3) #define EVP_PKEY_OP_VERIFY (1 << 4) #define EVP_PKEY_OP_VERIFYRECOVER (1 << 5) #define EVP_PKEY_OP_ENCRYPT (1 << 6) #define EVP_PKEY_OP_DECRYPT (1 << 7) #define EVP_PKEY_OP_DERIVE (1 << 8) #define EVP_PKEY_OP_PARAMGEN (1 << 9) #define EVP_PKEY_OP_TYPE_SIG \ (EVP_PKEY_OP_SIGN | EVP_PKEY_OP_VERIFY | EVP_PKEY_OP_VERIFYRECOVER) #define EVP_PKEY_OP_TYPE_CRYPT (EVP_PKEY_OP_ENCRYPT | EVP_PKEY_OP_DECRYPT) #define EVP_PKEY_OP_TYPE_NOGEN \ (EVP_PKEY_OP_SIG | EVP_PKEY_OP_CRYPT | EVP_PKEY_OP_DERIVE) #define EVP_PKEY_OP_TYPE_GEN (EVP_PKEY_OP_KEYGEN | EVP_PKEY_OP_PARAMGEN) // EVP_PKEY_CTX_ctrl performs |cmd| on |ctx|. The |keytype| and |optype| // arguments can be -1 to specify that any type and operation are acceptable, // otherwise |keytype| must match the type of |ctx| and the bits of |optype| // must intersect the operation flags set on |ctx|. // // The |p1| and |p2| arguments depend on the value of |cmd|. // // It returns one on success and zero on error. OPENSSL_EXPORT int EVP_PKEY_CTX_ctrl(EVP_PKEY_CTX *ctx, int keytype, int optype, int cmd, int p1, void *p2); // EVP_PKEY_CTX_md sets the message digest type for a specific operation. // This function is deprecated and should not be used in new code. // // |ctx| is the context to operate on. // |optype| is the operation type (e.g., EVP_PKEY_OP_TYPE_SIG, EVP_PKEY_OP_KEYGEN). // |cmd| is the specific command (e.g., EVP_PKEY_CTRL_MD). // |md| is the name of the message digest algorithm to use. // // It returns 1 for success and 0 or a negative value for failure. OPENSSL_EXPORT int EVP_PKEY_CTX_md(EVP_PKEY_CTX *ctx, int optype, int cmd, const char *md); // EVP_RSA_PKEY_CTX_ctrl is a wrapper of |EVP_PKEY_CTX_ctrl|. // Before calling |EVP_PKEY_CTX_ctrl|, a check is added to make sure // the |ctx->pmeth->pkey_id| is either |EVP_PKEY_RSA| or |EVP_PKEY_RSA_PSS|. int EVP_RSA_PKEY_CTX_ctrl(EVP_PKEY_CTX *ctx, int optype, int cmd, int p1, void *p2); #define EVP_PKEY_CTRL_MD 1 #define EVP_PKEY_CTRL_GET_MD 2 // EVP_PKEY_CTRL_PEER_KEY is called with different values of |p1|: // 0: Is called from |EVP_PKEY_derive_set_peer| and |p2| contains a peer key. // If the return value is <= 0, the key is rejected. // 1: Is called at the end of |EVP_PKEY_derive_set_peer| and |p2| contains a // peer key. If the return value is <= 0, the key is rejected. // 2: Is called with |p2| == NULL to test whether the peer's key was used. // (EC)DH always return one in this case. // 3: Is called with |p2| == NULL to set whether the peer's key was used. // (EC)DH always return one in this case. This was only used for GOST. #define EVP_PKEY_CTRL_PEER_KEY 3 // EVP_PKEY_ALG_CTRL is the base value from which key-type specific ctrl // commands are numbered. #define EVP_PKEY_ALG_CTRL 0x1000 #define EVP_PKEY_CTRL_RSA_PADDING (EVP_PKEY_ALG_CTRL + 1) #define EVP_PKEY_CTRL_GET_RSA_PADDING (EVP_PKEY_ALG_CTRL + 2) #define EVP_PKEY_CTRL_RSA_PSS_SALTLEN (EVP_PKEY_ALG_CTRL + 3) #define EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN (EVP_PKEY_ALG_CTRL + 4) #define EVP_PKEY_CTRL_RSA_KEYGEN_BITS (EVP_PKEY_ALG_CTRL + 5) #define EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP (EVP_PKEY_ALG_CTRL + 6) #define EVP_PKEY_CTRL_RSA_OAEP_MD (EVP_PKEY_ALG_CTRL + 7) #define EVP_PKEY_CTRL_GET_RSA_OAEP_MD (EVP_PKEY_ALG_CTRL + 8) #define EVP_PKEY_CTRL_RSA_MGF1_MD (EVP_PKEY_ALG_CTRL + 9) #define EVP_PKEY_CTRL_GET_RSA_MGF1_MD (EVP_PKEY_ALG_CTRL + 10) #define EVP_PKEY_CTRL_RSA_OAEP_LABEL (EVP_PKEY_ALG_CTRL + 11) #define EVP_PKEY_CTRL_GET_RSA_OAEP_LABEL (EVP_PKEY_ALG_CTRL + 12) #define EVP_PKEY_CTRL_EC_PARAMGEN_CURVE_NID (EVP_PKEY_ALG_CTRL + 13) #define EVP_PKEY_CTRL_HKDF_MODE (EVP_PKEY_ALG_CTRL + 14) #define EVP_PKEY_CTRL_HKDF_MD (EVP_PKEY_ALG_CTRL + 15) #define EVP_PKEY_CTRL_HKDF_KEY (EVP_PKEY_ALG_CTRL + 16) #define EVP_PKEY_CTRL_HKDF_SALT (EVP_PKEY_ALG_CTRL + 17) #define EVP_PKEY_CTRL_HKDF_INFO (EVP_PKEY_ALG_CTRL + 18) #define EVP_PKEY_CTRL_DH_PAD (EVP_PKEY_ALG_CTRL + 19) struct evp_pkey_ctx_st { // Method associated with this operation const EVP_PKEY_METHOD *pmeth; // Engine that implements this method or NULL if builtin ENGINE *engine; // Key: may be NULL EVP_PKEY *pkey; // Peer key for key agreement, may be NULL EVP_PKEY *peerkey; // operation contains one of the |EVP_PKEY_OP_*| values. int operation; // Algorithm specific data void *data; }; // EVP_PKEY_CTX struct evp_pkey_method_st { int pkey_id; int (*init)(EVP_PKEY_CTX *ctx); int (*copy)(EVP_PKEY_CTX *dst, EVP_PKEY_CTX *src); void (*cleanup)(EVP_PKEY_CTX *ctx); int (*keygen)(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey); int (*sign_init)(EVP_PKEY_CTX *ctx); int (*sign)(EVP_PKEY_CTX *ctx, uint8_t *sig, size_t *siglen, const uint8_t *tbs, size_t tbslen); int (*sign_message)(EVP_PKEY_CTX *ctx, uint8_t *sig, size_t *siglen, const uint8_t *tbs, size_t tbslen); int (*verify_init)(EVP_PKEY_CTX *ctx); int (*verify)(EVP_PKEY_CTX *ctx, const uint8_t *sig, size_t siglen, const uint8_t *tbs, size_t tbslen); int (*verify_message)(EVP_PKEY_CTX *ctx, const uint8_t *sig, size_t siglen, const uint8_t *tbs, size_t tbslen); int (*verify_recover)(EVP_PKEY_CTX *ctx, uint8_t *out, size_t *out_len, const uint8_t *sig, size_t sig_len); int (*encrypt)(EVP_PKEY_CTX *ctx, uint8_t *out, size_t *outlen, const uint8_t *in, size_t inlen); int (*decrypt)(EVP_PKEY_CTX *ctx, uint8_t *out, size_t *outlen, const uint8_t *in, size_t inlen); int (*derive)(EVP_PKEY_CTX *ctx, uint8_t *key, size_t *keylen); int (*paramgen)(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey); int (*ctrl)(EVP_PKEY_CTX *ctx, int type, int p1, void *p2); int (*ctrl_str) (EVP_PKEY_CTX *ctx, const char *type, const char *value); // Encapsulate, encapsulate_deterministic, keygen_deterministic, and // decapsulate are operations defined for a Key Encapsulation Mechanism (KEM). int (*keygen_deterministic)(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey, const uint8_t *seed, size_t *seed_len); int (*encapsulate_deterministic)(EVP_PKEY_CTX *ctx, uint8_t *ciphertext, size_t *ciphertext_len, uint8_t *shared_secret, size_t *shared_secret_len, const uint8_t *seed, size_t *seed_len); int (*encapsulate)(EVP_PKEY_CTX *ctx, uint8_t *ciphertext, size_t *ciphertext_len, uint8_t *shared_secret, size_t *shared_secret_len); int (*decapsulate)(EVP_PKEY_CTX *ctx, uint8_t *shared_secret, size_t *shared_secret_len, const uint8_t *ciphertext, size_t ciphertext_len); }; // EVP_PKEY_METHOD // used_for_hmac indicates if |ctx| is used specifically for the |EVP_PKEY_HMAC| // operation. int used_for_hmac(EVP_MD_CTX *ctx); typedef struct { const EVP_MD *md; // MD for HMAC use. HMAC_CTX ctx; } HMAC_PKEY_CTX; typedef struct { uint8_t *key; size_t key_len; } HMAC_KEY; // HMAC_KEY_new allocates and zeroizes a |HMAC_KEY| for internal use. HMAC_KEY *HMAC_KEY_new(void); typedef struct { // key is the concatenation of the private seed and public key. It is stored // as a single 64-bit array to allow passing to |ED25519_sign|. If // |has_private| is false, the first 32 bytes are uninitialized and the public // key is in the last 32 bytes. uint8_t key[64]; char has_private; } ED25519_KEY; #define ED25519_PUBLIC_KEY_OFFSET 32 #define FIPS_EVP_PKEY_METHODS 7 #ifdef ENABLE_DILITHIUM #define NON_FIPS_EVP_PKEY_METHODS 3 #define ASN1_EVP_PKEY_METHODS 9 #else #define NON_FIPS_EVP_PKEY_METHODS 2 #define ASN1_EVP_PKEY_METHODS 8 #endif struct fips_evp_pkey_methods { const EVP_PKEY_METHOD * methods[FIPS_EVP_PKEY_METHODS]; }; const EVP_PKEY_METHOD *EVP_PKEY_rsa_pkey_meth(void); const EVP_PKEY_METHOD *EVP_PKEY_rsa_pss_pkey_meth(void); const EVP_PKEY_METHOD *EVP_PKEY_ec_pkey_meth(void); const EVP_PKEY_METHOD *EVP_PKEY_hkdf_pkey_meth(void); const EVP_PKEY_METHOD *EVP_PKEY_hmac_pkey_meth(void); const EVP_PKEY_METHOD *EVP_PKEY_ed25519_pkey_meth(void); const EVP_PKEY_METHOD *EVP_PKEY_kem_pkey_meth(void); #if defined(__cplusplus) } // extern C #endif #endif // OPENSSL_HEADER_EVP_INTERNAL_H