/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include #include #include "../../internal.h" #include "../digest/md32_common.h" uint8_t *MD4(const uint8_t *data, size_t len, uint8_t out[MD4_DIGEST_LENGTH]) { MD4_CTX ctx; MD4_Init(&ctx); MD4_Update(&ctx, data, len); MD4_Final(out, &ctx); return out; } // Implemented from RFC 1186 The MD4 Message-Digest Algorithm. int MD4_Init(MD4_CTX *md4) { OPENSSL_memset(md4, 0, sizeof(MD4_CTX)); md4->h[0] = 0x67452301UL; md4->h[1] = 0xefcdab89UL; md4->h[2] = 0x98badcfeUL; md4->h[3] = 0x10325476UL; return 1; } void md4_block_data_order(uint32_t *state, const uint8_t *data, size_t num); void MD4_Transform(MD4_CTX *c, const uint8_t data[MD4_CBLOCK]) { md4_block_data_order(c->h, data, 1); } int MD4_Update(MD4_CTX *c, const void *data, size_t len) { crypto_md32_update(&md4_block_data_order, c->h, c->data, MD4_CBLOCK, &c->num, &c->Nh, &c->Nl, data, len); return 1; } int MD4_Final(uint8_t out[MD4_DIGEST_LENGTH], MD4_CTX *c) { crypto_md32_final(&md4_block_data_order, c->h, c->data, MD4_CBLOCK, &c->num, c->Nh, c->Nl, /*is_big_endian=*/0); CRYPTO_store_u32_le(out, c->h[0]); CRYPTO_store_u32_le(out + 4, c->h[1]); CRYPTO_store_u32_le(out + 8, c->h[2]); CRYPTO_store_u32_le(out + 12, c->h[3]); return 1; } // As pointed out by Wei Dai , the above can be // simplified to the code below. Wei attributes these optimizations // to Peter Gutmann's SHS code, and he attributes it to Rich Schroeppel. #define F(b, c, d) ((((c) ^ (d)) & (b)) ^ (d)) #define G(b, c, d) (((b) & (c)) | ((b) & (d)) | ((c) & (d))) #define H(b, c, d) ((b) ^ (c) ^ (d)) #define R0(a, b, c, d, k, s, t) \ do { \ (a) += ((k) + (t) + F((b), (c), (d))); \ (a) = CRYPTO_rotl_u32(a, s); \ } while (0) #define R1(a, b, c, d, k, s, t) \ do { \ (a) += ((k) + (t) + G((b), (c), (d))); \ (a) = CRYPTO_rotl_u32(a, s); \ } while (0) #define R2(a, b, c, d, k, s, t) \ do { \ (a) += ((k) + (t) + H((b), (c), (d))); \ (a) = CRYPTO_rotl_u32(a, s); \ } while (0) void md4_block_data_order(uint32_t *state, const uint8_t *data, size_t num) { uint32_t A, B, C, D; uint32_t X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15; A = state[0]; B = state[1]; C = state[2]; D = state[3]; for (; num--;) { X0 = CRYPTO_load_u32_le(data); data += 4; X1 = CRYPTO_load_u32_le(data); data += 4; // Round 0 R0(A, B, C, D, X0, 3, 0); X2 = CRYPTO_load_u32_le(data); data += 4; R0(D, A, B, C, X1, 7, 0); X3 = CRYPTO_load_u32_le(data); data += 4; R0(C, D, A, B, X2, 11, 0); X4 = CRYPTO_load_u32_le(data); data += 4; R0(B, C, D, A, X3, 19, 0); X5 = CRYPTO_load_u32_le(data); data += 4; R0(A, B, C, D, X4, 3, 0); X6 = CRYPTO_load_u32_le(data); data += 4; R0(D, A, B, C, X5, 7, 0); X7 = CRYPTO_load_u32_le(data); data += 4; R0(C, D, A, B, X6, 11, 0); X8 = CRYPTO_load_u32_le(data); data += 4; R0(B, C, D, A, X7, 19, 0); X9 = CRYPTO_load_u32_le(data); data += 4; R0(A, B, C, D, X8, 3, 0); X10 = CRYPTO_load_u32_le(data); data += 4; R0(D, A, B, C, X9, 7, 0); X11 = CRYPTO_load_u32_le(data); data += 4; R0(C, D, A, B, X10, 11, 0); X12 = CRYPTO_load_u32_le(data); data += 4; R0(B, C, D, A, X11, 19, 0); X13 = CRYPTO_load_u32_le(data); data += 4; R0(A, B, C, D, X12, 3, 0); X14 = CRYPTO_load_u32_le(data); data += 4; R0(D, A, B, C, X13, 7, 0); X15 = CRYPTO_load_u32_le(data); data += 4; R0(C, D, A, B, X14, 11, 0); R0(B, C, D, A, X15, 19, 0); // Round 1 R1(A, B, C, D, X0, 3, 0x5A827999L); R1(D, A, B, C, X4, 5, 0x5A827999L); R1(C, D, A, B, X8, 9, 0x5A827999L); R1(B, C, D, A, X12, 13, 0x5A827999L); R1(A, B, C, D, X1, 3, 0x5A827999L); R1(D, A, B, C, X5, 5, 0x5A827999L); R1(C, D, A, B, X9, 9, 0x5A827999L); R1(B, C, D, A, X13, 13, 0x5A827999L); R1(A, B, C, D, X2, 3, 0x5A827999L); R1(D, A, B, C, X6, 5, 0x5A827999L); R1(C, D, A, B, X10, 9, 0x5A827999L); R1(B, C, D, A, X14, 13, 0x5A827999L); R1(A, B, C, D, X3, 3, 0x5A827999L); R1(D, A, B, C, X7, 5, 0x5A827999L); R1(C, D, A, B, X11, 9, 0x5A827999L); R1(B, C, D, A, X15, 13, 0x5A827999L); // Round 2 R2(A, B, C, D, X0, 3, 0x6ED9EBA1L); R2(D, A, B, C, X8, 9, 0x6ED9EBA1L); R2(C, D, A, B, X4, 11, 0x6ED9EBA1L); R2(B, C, D, A, X12, 15, 0x6ED9EBA1L); R2(A, B, C, D, X2, 3, 0x6ED9EBA1L); R2(D, A, B, C, X10, 9, 0x6ED9EBA1L); R2(C, D, A, B, X6, 11, 0x6ED9EBA1L); R2(B, C, D, A, X14, 15, 0x6ED9EBA1L); R2(A, B, C, D, X1, 3, 0x6ED9EBA1L); R2(D, A, B, C, X9, 9, 0x6ED9EBA1L); R2(C, D, A, B, X5, 11, 0x6ED9EBA1L); R2(B, C, D, A, X13, 15, 0x6ED9EBA1L); R2(A, B, C, D, X3, 3, 0x6ED9EBA1L); R2(D, A, B, C, X11, 9, 0x6ED9EBA1L); R2(C, D, A, B, X7, 11, 0x6ED9EBA1L); R2(B, C, D, A, X15, 15, 0x6ED9EBA1L); A = state[0] += A; B = state[1] += B; C = state[2] += C; D = state[3] += D; } } #undef F #undef G #undef H #undef R0 #undef R1 #undef R2