/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include #include #include "../../internal.h" #include "../digest/md32_common.h" #include "internal.h" uint8_t *MD5(const uint8_t *data, size_t len, uint8_t out[MD5_DIGEST_LENGTH]) { MD5_CTX ctx; MD5_Init(&ctx); MD5_Update(&ctx, data, len); MD5_Final(out, &ctx); return out; } int MD5_Init(MD5_CTX *md5) { OPENSSL_memset(md5, 0, sizeof(MD5_CTX)); md5->h[0] = 0x67452301UL; md5->h[1] = 0xefcdab89UL; md5->h[2] = 0x98badcfeUL; md5->h[3] = 0x10325476UL; return 1; } int MD5_Init_from_state(MD5_CTX *md5, const uint8_t h[MD5_CHAINING_LENGTH], uint64_t n) { if (n % ((uint64_t)MD5_CBLOCK * 8) != 0) { // n is not a multiple of the block size in bits, so it fails return 0; } OPENSSL_memset(md5, 0, sizeof(MD5_CTX)); const size_t out_words = MD5_CHAINING_LENGTH / 4; for (size_t i = 0; i < out_words; i++) { md5->h[i] = CRYPTO_load_u32_be(h); h += 4; } md5->Nh = n >> 32; md5->Nl = n & 0xffffffff; return 1; } #if defined(MD5_ASM) #define md5_block_data_order md5_block_asm_data_order #else static void md5_block_data_order(uint32_t *state, const uint8_t *data, size_t num); #endif void MD5_Transform(MD5_CTX *c, const uint8_t data[MD5_CBLOCK]) { md5_block_data_order(c->h, data, 1); } int MD5_Update(MD5_CTX *c, const void *data, size_t len) { crypto_md32_update(&md5_block_data_order, c->h, c->data, MD5_CBLOCK, &c->num, &c->Nh, &c->Nl, data, len); return 1; } int MD5_Final(uint8_t out[MD5_DIGEST_LENGTH], MD5_CTX *c) { crypto_md32_final(&md5_block_data_order, c->h, c->data, MD5_CBLOCK, &c->num, c->Nh, c->Nl, /*is_big_endian=*/0); CRYPTO_store_u32_le(out, c->h[0]); CRYPTO_store_u32_le(out + 4, c->h[1]); CRYPTO_store_u32_le(out + 8, c->h[2]); CRYPTO_store_u32_le(out + 12, c->h[3]); return 1; } int MD5_get_state(MD5_CTX *ctx, uint8_t out_h[MD5_CHAINING_LENGTH], uint64_t *out_n) { if (ctx->Nl % ((uint64_t)MD5_CBLOCK * 8) != 0) { // ctx->Nl is not a multiple of the block size in bits, so it fails return 0; } const size_t out_words = MD5_CHAINING_LENGTH / 4; for (size_t i = 0; i < out_words; i++) { CRYPTO_store_u32_be(out_h, ctx->h[i]); out_h += 4; } *out_n = (((uint64_t)ctx->Nh) << 32) + ctx->Nl; return 1; } // As pointed out by Wei Dai , the above can be // simplified to the code below. Wei attributes these optimizations // to Peter Gutmann's SHS code, and he attributes it to Rich Schroeppel. #define F(b, c, d) ((((c) ^ (d)) & (b)) ^ (d)) #define G(b, c, d) ((((b) ^ (c)) & (d)) ^ (c)) #define H(b, c, d) ((b) ^ (c) ^ (d)) #define I(b, c, d) (((~(d)) | (b)) ^ (c)) #define R0(a, b, c, d, k, s, t) \ do { \ (a) += ((k) + (t) + F((b), (c), (d))); \ (a) = CRYPTO_rotl_u32(a, s); \ (a) += (b); \ } while (0) #define R1(a, b, c, d, k, s, t) \ do { \ (a) += ((k) + (t) + G((b), (c), (d))); \ (a) = CRYPTO_rotl_u32(a, s); \ (a) += (b); \ } while (0) #define R2(a, b, c, d, k, s, t) \ do { \ (a) += ((k) + (t) + H((b), (c), (d))); \ (a) = CRYPTO_rotl_u32(a, s); \ (a) += (b); \ } while (0) #define R3(a, b, c, d, k, s, t) \ do { \ (a) += ((k) + (t) + I((b), (c), (d))); \ (a) = CRYPTO_rotl_u32(a, s); \ (a) += (b); \ } while (0) #ifndef MD5_ASM #ifdef X #undef X #endif static void md5_block_data_order(uint32_t *state, const uint8_t *data, size_t num) { uint32_t A, B, C, D; uint32_t XX0, XX1, XX2, XX3, XX4, XX5, XX6, XX7, XX8, XX9, XX10, XX11, XX12, XX13, XX14, XX15; #define X(i) XX##i A = state[0]; B = state[1]; C = state[2]; D = state[3]; for (; num--;) { X(0) = CRYPTO_load_u32_le(data); data += 4; X(1) = CRYPTO_load_u32_le(data); data += 4; // Round 0 R0(A, B, C, D, X(0), 7, 0xd76aa478L); X(2) = CRYPTO_load_u32_le(data); data += 4; R0(D, A, B, C, X(1), 12, 0xe8c7b756L); X(3) = CRYPTO_load_u32_le(data); data += 4; R0(C, D, A, B, X(2), 17, 0x242070dbL); X(4) = CRYPTO_load_u32_le(data); data += 4; R0(B, C, D, A, X(3), 22, 0xc1bdceeeL); X(5) = CRYPTO_load_u32_le(data); data += 4; R0(A, B, C, D, X(4), 7, 0xf57c0fafL); X(6) = CRYPTO_load_u32_le(data); data += 4; R0(D, A, B, C, X(5), 12, 0x4787c62aL); X(7) = CRYPTO_load_u32_le(data); data += 4; R0(C, D, A, B, X(6), 17, 0xa8304613L); X(8) = CRYPTO_load_u32_le(data); data += 4; R0(B, C, D, A, X(7), 22, 0xfd469501L); X(9) = CRYPTO_load_u32_le(data); data += 4; R0(A, B, C, D, X(8), 7, 0x698098d8L); X(10) = CRYPTO_load_u32_le(data); data += 4; R0(D, A, B, C, X(9), 12, 0x8b44f7afL); X(11) = CRYPTO_load_u32_le(data); data += 4; R0(C, D, A, B, X(10), 17, 0xffff5bb1L); X(12) = CRYPTO_load_u32_le(data); data += 4; R0(B, C, D, A, X(11), 22, 0x895cd7beL); X(13) = CRYPTO_load_u32_le(data); data += 4; R0(A, B, C, D, X(12), 7, 0x6b901122L); X(14) = CRYPTO_load_u32_le(data); data += 4; R0(D, A, B, C, X(13), 12, 0xfd987193L); X(15) = CRYPTO_load_u32_le(data); data += 4; R0(C, D, A, B, X(14), 17, 0xa679438eL); R0(B, C, D, A, X(15), 22, 0x49b40821L); // Round 1 R1(A, B, C, D, X(1), 5, 0xf61e2562L); R1(D, A, B, C, X(6), 9, 0xc040b340L); R1(C, D, A, B, X(11), 14, 0x265e5a51L); R1(B, C, D, A, X(0), 20, 0xe9b6c7aaL); R1(A, B, C, D, X(5), 5, 0xd62f105dL); R1(D, A, B, C, X(10), 9, 0x02441453L); R1(C, D, A, B, X(15), 14, 0xd8a1e681L); R1(B, C, D, A, X(4), 20, 0xe7d3fbc8L); R1(A, B, C, D, X(9), 5, 0x21e1cde6L); R1(D, A, B, C, X(14), 9, 0xc33707d6L); R1(C, D, A, B, X(3), 14, 0xf4d50d87L); R1(B, C, D, A, X(8), 20, 0x455a14edL); R1(A, B, C, D, X(13), 5, 0xa9e3e905L); R1(D, A, B, C, X(2), 9, 0xfcefa3f8L); R1(C, D, A, B, X(7), 14, 0x676f02d9L); R1(B, C, D, A, X(12), 20, 0x8d2a4c8aL); // Round 2 R2(A, B, C, D, X(5), 4, 0xfffa3942L); R2(D, A, B, C, X(8), 11, 0x8771f681L); R2(C, D, A, B, X(11), 16, 0x6d9d6122L); R2(B, C, D, A, X(14), 23, 0xfde5380cL); R2(A, B, C, D, X(1), 4, 0xa4beea44L); R2(D, A, B, C, X(4), 11, 0x4bdecfa9L); R2(C, D, A, B, X(7), 16, 0xf6bb4b60L); R2(B, C, D, A, X(10), 23, 0xbebfbc70L); R2(A, B, C, D, X(13), 4, 0x289b7ec6L); R2(D, A, B, C, X(0), 11, 0xeaa127faL); R2(C, D, A, B, X(3), 16, 0xd4ef3085L); R2(B, C, D, A, X(6), 23, 0x04881d05L); R2(A, B, C, D, X(9), 4, 0xd9d4d039L); R2(D, A, B, C, X(12), 11, 0xe6db99e5L); R2(C, D, A, B, X(15), 16, 0x1fa27cf8L); R2(B, C, D, A, X(2), 23, 0xc4ac5665L); // Round 3 R3(A, B, C, D, X(0), 6, 0xf4292244L); R3(D, A, B, C, X(7), 10, 0x432aff97L); R3(C, D, A, B, X(14), 15, 0xab9423a7L); R3(B, C, D, A, X(5), 21, 0xfc93a039L); R3(A, B, C, D, X(12), 6, 0x655b59c3L); R3(D, A, B, C, X(3), 10, 0x8f0ccc92L); R3(C, D, A, B, X(10), 15, 0xffeff47dL); R3(B, C, D, A, X(1), 21, 0x85845dd1L); R3(A, B, C, D, X(8), 6, 0x6fa87e4fL); R3(D, A, B, C, X(15), 10, 0xfe2ce6e0L); R3(C, D, A, B, X(6), 15, 0xa3014314L); R3(B, C, D, A, X(13), 21, 0x4e0811a1L); R3(A, B, C, D, X(4), 6, 0xf7537e82L); R3(D, A, B, C, X(11), 10, 0xbd3af235L); R3(C, D, A, B, X(2), 15, 0x2ad7d2bbL); R3(B, C, D, A, X(9), 21, 0xeb86d391L); A = state[0] += A; B = state[1] += B; C = state[2] += C; D = state[3] += D; } } #undef X #endif #undef F #undef G #undef H #undef I #undef R0 #undef R1 #undef R2 #undef R3