/* Copyright (c) 2019, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include "../../internal.h" #include "internal.h" #if !defined(BORINGSSL_HAS_UINT128) && defined(OPENSSL_SSE2) #include #endif // This file contains a constant-time implementation of GHASH based on the notes // in https://bearssl.org/constanttime.html#ghash-for-gcm and the reduction // algorithm described in // https://crypto.stanford.edu/RealWorldCrypto/slides/gueron.pdf. // // Unlike the BearSSL notes, we use uint128_t in the 64-bit implementation. Our // primary compilers (clang, clang-cl, and gcc) all support it. MSVC will run // the 32-bit implementation, but we can use its intrinsics if necessary. #if defined(BORINGSSL_HAS_UINT128) static void gcm_mul64_nohw(uint64_t *out_lo, uint64_t *out_hi, uint64_t a, uint64_t b) { // One term every four bits means the largest term is 64/4 = 16, which barely // overflows into the next term. Using one term every five bits would cost 25 // multiplications instead of 16. It is faster to mask off the bottom four // bits of |a|, giving a largest term of 60/4 = 15, and apply the bottom bits // separately. uint64_t a0 = a & UINT64_C(0x1111111111111110); uint64_t a1 = a & UINT64_C(0x2222222222222220); uint64_t a2 = a & UINT64_C(0x4444444444444440); uint64_t a3 = a & UINT64_C(0x8888888888888880); uint64_t b0 = b & UINT64_C(0x1111111111111111); uint64_t b1 = b & UINT64_C(0x2222222222222222); uint64_t b2 = b & UINT64_C(0x4444444444444444); uint64_t b3 = b & UINT64_C(0x8888888888888888); uint128_t c0 = (a0 * (uint128_t)b0) ^ (a1 * (uint128_t)b3) ^ (a2 * (uint128_t)b2) ^ (a3 * (uint128_t)b1); uint128_t c1 = (a0 * (uint128_t)b1) ^ (a1 * (uint128_t)b0) ^ (a2 * (uint128_t)b3) ^ (a3 * (uint128_t)b2); uint128_t c2 = (a0 * (uint128_t)b2) ^ (a1 * (uint128_t)b1) ^ (a2 * (uint128_t)b0) ^ (a3 * (uint128_t)b3); uint128_t c3 = (a0 * (uint128_t)b3) ^ (a1 * (uint128_t)b2) ^ (a2 * (uint128_t)b1) ^ (a3 * (uint128_t)b0); // Multiply the bottom four bits of |a| with |b|. uint64_t a0_mask = UINT64_C(0) - (a & 1); uint64_t a1_mask = UINT64_C(0) - ((a >> 1) & 1); uint64_t a2_mask = UINT64_C(0) - ((a >> 2) & 1); uint64_t a3_mask = UINT64_C(0) - ((a >> 3) & 1); uint128_t extra = (a0_mask & b) ^ ((uint128_t)(a1_mask & b) << 1) ^ ((uint128_t)(a2_mask & b) << 2) ^ ((uint128_t)(a3_mask & b) << 3); *out_lo = (((uint64_t)c0) & UINT64_C(0x1111111111111111)) ^ (((uint64_t)c1) & UINT64_C(0x2222222222222222)) ^ (((uint64_t)c2) & UINT64_C(0x4444444444444444)) ^ (((uint64_t)c3) & UINT64_C(0x8888888888888888)) ^ ((uint64_t)extra); *out_hi = (((uint64_t)(c0 >> 64)) & UINT64_C(0x1111111111111111)) ^ (((uint64_t)(c1 >> 64)) & UINT64_C(0x2222222222222222)) ^ (((uint64_t)(c2 >> 64)) & UINT64_C(0x4444444444444444)) ^ (((uint64_t)(c3 >> 64)) & UINT64_C(0x8888888888888888)) ^ ((uint64_t)(extra >> 64)); } #elif defined(OPENSSL_SSE2) static __m128i gcm_mul32_nohw(uint32_t a, uint32_t b) { // One term every four bits means the largest term is 32/4 = 8, which does not // overflow into the next term. __m128i aa = _mm_setr_epi32(a, 0, a, 0); __m128i bb = _mm_setr_epi32(b, 0, b, 0); __m128i a0a0 = _mm_and_si128(aa, _mm_setr_epi32(0x11111111, 0, 0x11111111, 0)); __m128i a2a2 = _mm_and_si128(aa, _mm_setr_epi32(0x44444444, 0, 0x44444444, 0)); __m128i b0b1 = _mm_and_si128(bb, _mm_setr_epi32(0x11111111, 0, 0x22222222, 0)); __m128i b2b3 = _mm_and_si128(bb, _mm_setr_epi32(0x44444444, 0, 0x88888888, 0)); __m128i c0c1 = _mm_xor_si128(_mm_mul_epu32(a0a0, b0b1), _mm_mul_epu32(a2a2, b2b3)); __m128i c2c3 = _mm_xor_si128(_mm_mul_epu32(a2a2, b0b1), _mm_mul_epu32(a0a0, b2b3)); __m128i a1a1 = _mm_and_si128(aa, _mm_setr_epi32(0x22222222, 0, 0x22222222, 0)); __m128i a3a3 = _mm_and_si128(aa, _mm_setr_epi32(0x88888888, 0, 0x88888888, 0)); __m128i b3b0 = _mm_and_si128(bb, _mm_setr_epi32(0x88888888, 0, 0x11111111, 0)); __m128i b1b2 = _mm_and_si128(bb, _mm_setr_epi32(0x22222222, 0, 0x44444444, 0)); c0c1 = _mm_xor_si128(c0c1, _mm_mul_epu32(a1a1, b3b0)); c0c1 = _mm_xor_si128(c0c1, _mm_mul_epu32(a3a3, b1b2)); c2c3 = _mm_xor_si128(c2c3, _mm_mul_epu32(a3a3, b3b0)); c2c3 = _mm_xor_si128(c2c3, _mm_mul_epu32(a1a1, b1b2)); c0c1 = _mm_and_si128( c0c1, _mm_setr_epi32(0x11111111, 0x11111111, 0x22222222, 0x22222222)); c2c3 = _mm_and_si128( c2c3, _mm_setr_epi32(0x44444444, 0x44444444, 0x88888888, 0x88888888)); c0c1 = _mm_xor_si128(c0c1, c2c3); // c0 ^= c1 c0c1 = _mm_xor_si128(c0c1, _mm_srli_si128(c0c1, 8)); return c0c1; } static void gcm_mul64_nohw(uint64_t *out_lo, uint64_t *out_hi, uint64_t a, uint64_t b) { uint32_t a0 = a & 0xffffffff; uint32_t a1 = a >> 32; uint32_t b0 = b & 0xffffffff; uint32_t b1 = b >> 32; // Karatsuba multiplication. __m128i lo = gcm_mul32_nohw(a0, b0); __m128i hi = gcm_mul32_nohw(a1, b1); __m128i mid = gcm_mul32_nohw(a0 ^ a1, b0 ^ b1); mid = _mm_xor_si128(mid, lo); mid = _mm_xor_si128(mid, hi); __m128i ret = _mm_unpacklo_epi64(lo, hi); mid = _mm_slli_si128(mid, 4); mid = _mm_and_si128(mid, _mm_setr_epi32(0, 0xffffffff, 0xffffffff, 0)); ret = _mm_xor_si128(ret, mid); memcpy(out_lo, &ret, 8); memcpy(out_hi, ((char*)&ret) + 8, 8); } #else // !BORINGSSL_HAS_UINT128 && !OPENSSL_SSE2 static uint64_t gcm_mul32_nohw(uint32_t a, uint32_t b) { // One term every four bits means the largest term is 32/4 = 8, which does not // overflow into the next term. uint32_t a0 = a & 0x11111111; uint32_t a1 = a & 0x22222222; uint32_t a2 = a & 0x44444444; uint32_t a3 = a & 0x88888888; uint32_t b0 = b & 0x11111111; uint32_t b1 = b & 0x22222222; uint32_t b2 = b & 0x44444444; uint32_t b3 = b & 0x88888888; uint64_t c0 = (a0 * (uint64_t)b0) ^ (a1 * (uint64_t)b3) ^ (a2 * (uint64_t)b2) ^ (a3 * (uint64_t)b1); uint64_t c1 = (a0 * (uint64_t)b1) ^ (a1 * (uint64_t)b0) ^ (a2 * (uint64_t)b3) ^ (a3 * (uint64_t)b2); uint64_t c2 = (a0 * (uint64_t)b2) ^ (a1 * (uint64_t)b1) ^ (a2 * (uint64_t)b0) ^ (a3 * (uint64_t)b3); uint64_t c3 = (a0 * (uint64_t)b3) ^ (a1 * (uint64_t)b2) ^ (a2 * (uint64_t)b1) ^ (a3 * (uint64_t)b0); return (c0 & UINT64_C(0x1111111111111111)) | (c1 & UINT64_C(0x2222222222222222)) | (c2 & UINT64_C(0x4444444444444444)) | (c3 & UINT64_C(0x8888888888888888)); } static void gcm_mul64_nohw(uint64_t *out_lo, uint64_t *out_hi, uint64_t a, uint64_t b) { uint32_t a0 = a & 0xffffffff; uint32_t a1 = a >> 32; uint32_t b0 = b & 0xffffffff; uint32_t b1 = b >> 32; // Karatsuba multiplication. uint64_t lo = gcm_mul32_nohw(a0, b0); uint64_t hi = gcm_mul32_nohw(a1, b1); uint64_t mid = gcm_mul32_nohw(a0 ^ a1, b0 ^ b1) ^ lo ^ hi; *out_lo = lo ^ (mid << 32); *out_hi = hi ^ (mid >> 32); } #endif // BORINGSSL_HAS_UINT128 void gcm_init_nohw(u128 Htable[16], const uint64_t Xi[2]) { // We implement GHASH in terms of POLYVAL, as described in RFC 8452. This // avoids a shift by 1 in the multiplication, needed to account for bit // reversal losing a bit after multiplication, that is, // rev128(X) * rev128(Y) = rev255(X*Y). // // Per Appendix A, we run mulX_POLYVAL. Note this is the same transformation // applied by |gcm_init_clmul|, etc. Note |Xi| has already been byteswapped. // // See also slide 16 of // https://crypto.stanford.edu/RealWorldCrypto/slides/gueron.pdf Htable[0].lo = Xi[1]; Htable[0].hi = Xi[0]; uint64_t carry = Htable[0].hi >> 63; carry = 0u - carry; Htable[0].hi <<= 1; Htable[0].hi |= Htable[0].lo >> 63; Htable[0].lo <<= 1; // The irreducible polynomial is 1 + x^121 + x^126 + x^127 + x^128, so we // conditionally add 0xc200...0001. Htable[0].lo ^= carry & 1; Htable[0].hi ^= carry & UINT64_C(0xc200000000000000); // This implementation does not use the rest of |Htable|. } static void gcm_polyval_nohw(uint64_t Xi[2], const u128 *H) { // Karatsuba multiplication. The product of |Xi| and |H| is stored in |r0| // through |r3|. Note there is no byte or bit reversal because we are // evaluating POLYVAL. uint64_t r0, r1; gcm_mul64_nohw(&r0, &r1, Xi[0], H->lo); uint64_t r2, r3; gcm_mul64_nohw(&r2, &r3, Xi[1], H->hi); uint64_t mid0, mid1; gcm_mul64_nohw(&mid0, &mid1, Xi[0] ^ Xi[1], H->hi ^ H->lo); mid0 ^= r0 ^ r2; mid1 ^= r1 ^ r3; r2 ^= mid1; r1 ^= mid0; // Now we multiply our 256-bit result by x^-128 and reduce. |r2| and // |r3| shifts into position and we must multiply |r0| and |r1| by x^-128. We // have: // // 1 = x^121 + x^126 + x^127 + x^128 // x^-128 = x^-7 + x^-2 + x^-1 + 1 // // This is the GHASH reduction step, but with bits flowing in reverse. // The x^-7, x^-2, and x^-1 terms shift bits past x^0, which would require // another reduction steps. Instead, we gather the excess bits, incorporate // them into |r0| and |r1| and reduce once. See slides 17-19 // of https://crypto.stanford.edu/RealWorldCrypto/slides/gueron.pdf. r1 ^= (r0 << 63) ^ (r0 << 62) ^ (r0 << 57); // 1 r2 ^= r0; r3 ^= r1; // x^-1 r2 ^= r0 >> 1; r2 ^= r1 << 63; r3 ^= r1 >> 1; // x^-2 r2 ^= r0 >> 2; r2 ^= r1 << 62; r3 ^= r1 >> 2; // x^-7 r2 ^= r0 >> 7; r2 ^= r1 << 57; r3 ^= r1 >> 7; Xi[0] = r2; Xi[1] = r3; } void gcm_gmult_nohw(uint8_t Xi[16], const u128 Htable[16]) { uint64_t swapped[2]; swapped[0] = CRYPTO_load_u64_be(Xi + 8); swapped[1] = CRYPTO_load_u64_be(Xi); gcm_polyval_nohw(swapped, &Htable[0]); CRYPTO_store_u64_be(Xi, swapped[1]); CRYPTO_store_u64_be(Xi + 8, swapped[0]); } void gcm_ghash_nohw(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp, size_t len) { uint64_t swapped[2]; swapped[0] = CRYPTO_load_u64_be(Xi + 8); swapped[1] = CRYPTO_load_u64_be(Xi); while (len >= 16) { swapped[0] ^= CRYPTO_load_u64_be(inp + 8); swapped[1] ^= CRYPTO_load_u64_be(inp); gcm_polyval_nohw(swapped, &Htable[0]); inp += 16; len -= 16; } CRYPTO_store_u64_be(Xi, swapped[1]); CRYPTO_store_u64_be(Xi + 8, swapped[0]); }