/* Copyright (c) 2015, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #ifndef OPENSSL_HEADER_CRYPTO_RAND_INTERNAL_H #define OPENSSL_HEADER_CRYPTO_RAND_INTERNAL_H #include #include #include "../../internal.h" #include "../modes/internal.h" #if defined(__cplusplus) extern "C" { #endif #if defined(BORINGSSL_UNSAFE_DETERMINISTIC_MODE) #define OPENSSL_RAND_DETERMINISTIC #elif defined(OPENSSL_FUCHSIA) #define OPENSSL_RAND_FUCHSIA #elif defined(OPENSSL_TRUSTY) #define OPENSSL_RAND_TRUSTY #elif defined(OPENSSL_WINDOWS) #define OPENSSL_RAND_WINDOWS #else #define OPENSSL_RAND_URANDOM #endif // RAND_bytes_with_additional_data samples from the RNG after mixing 32 bytes // from |user_additional_data| in. void RAND_bytes_with_additional_data(uint8_t *out, size_t out_len, const uint8_t user_additional_data[32]); // CRYPTO_sysrand fills |len| bytes at |buf| with entropy from the operating // system. void CRYPTO_sysrand(uint8_t *buf, size_t len); // CRYPTO_sysrand_for_seed fills |len| bytes at |buf| with entropy from the // operating system. It may draw from the |GRND_RANDOM| pool on Android, // depending on the vendor's configuration. void CRYPTO_sysrand_for_seed(uint8_t *buf, size_t len); #if defined(OPENSSL_RAND_URANDOM) || defined(OPENSSL_RAND_WINDOWS) // CRYPTO_init_sysrand initializes long-lived resources needed to draw entropy // from the operating system. void CRYPTO_init_sysrand(void); #else OPENSSL_INLINE void CRYPTO_init_sysrand(void) {} #endif // defined(OPENSSL_RAND_URANDOM) || defined(OPENSSL_RAND_WINDOWS) #if defined(OPENSSL_RAND_URANDOM) // CRYPTO_sysrand_if_available fills |len| bytes at |buf| with entropy from the // operating system, or early /dev/urandom data, and returns 1, _if_ the entropy // pool is initialized or if getrandom() is not available and not in FIPS mode. // Otherwise it will not block and will instead fill |buf| with all zeros and // return 0. int CRYPTO_sysrand_if_available(uint8_t *buf, size_t len); #else OPENSSL_INLINE int CRYPTO_sysrand_if_available(uint8_t *buf, size_t len) { CRYPTO_sysrand(buf, len); return 1; } #endif // defined(OPENSSL_RAND_URANDOM) // rand_fork_unsafe_buffering_enabled returns whether fork-unsafe buffering has // been enabled via |RAND_enable_fork_unsafe_buffering|. int rand_fork_unsafe_buffering_enabled(void); // CTR_DRBG_STATE contains the state of a CTR_DRBG based on AES-256. See SP // 800-90Ar1. struct ctr_drbg_state_st { AES_KEY ks; block128_f block; ctr128_f ctr; uint8_t counter[16]; uint64_t reseed_counter; }; // CTR_DRBG_init initialises |*drbg| given |CTR_DRBG_ENTROPY_LEN| bytes of // entropy in |entropy| and, optionally, a personalization string up to // |CTR_DRBG_ENTROPY_LEN| bytes in length. It returns one on success and zero // on error. OPENSSL_EXPORT int CTR_DRBG_init(CTR_DRBG_STATE *drbg, const uint8_t entropy[CTR_DRBG_ENTROPY_LEN], const uint8_t *personalization, size_t personalization_len); #if defined(OPENSSL_X86_64) && !defined(OPENSSL_NO_ASM) OPENSSL_INLINE int have_rdrand(void) { return CRYPTO_is_RDRAND_capable(); } // have_fast_rdrand returns true if RDRAND is supported and it's reasonably // fast. Concretely the latter is defined by whether the chip is Intel (fast) or // not (assumed slow). OPENSSL_INLINE int have_fast_rdrand(void) { return CRYPTO_is_RDRAND_capable() && CRYPTO_is_intel_cpu(); } // CRYPTO_rdrand writes eight bytes of random data from the hardware RNG to // |out|. It returns one on success or zero on hardware failure. int CRYPTO_rdrand(uint8_t out[8]); // CRYPTO_rdrand_multiple8_buf fills |len| bytes at |buf| with random data from // the hardware RNG. The |len| argument must be a multiple of eight. It returns // one on success and zero on hardware failure. int CRYPTO_rdrand_multiple8_buf(uint8_t *buf, size_t len); #else // OPENSSL_X86_64 && !OPENSSL_NO_ASM OPENSSL_INLINE int have_rdrand(void) { return 0; } OPENSSL_INLINE int have_fast_rdrand(void) { return 0; } #endif // OPENSSL_X86_64 && !OPENSSL_NO_ASM // Don't retry forever. There is no science in picking this number and can be // adjusted in the future if need be. We do not backoff forever, because we // believe that it is easier to detect failing calls than detecting infinite // spinning loops. #define MAX_BACKOFF_RETRIES 9 OPENSSL_EXPORT void HAZMAT_set_urandom_test_mode_for_testing(void); // Total number of bytes of entropy to load into FIPS module. Separate constants // that separate the logically distinct operations (1) loading entropy, and (2) // invoking DRBG. #define PASSIVE_ENTROPY_LOAD_LENGTH CTR_DRBG_ENTROPY_LEN #if defined(BORINGSSL_FIPS) #if defined(FIPS_ENTROPY_SOURCE_JITTER_CPU) #define JITTER_MAX_NUM_TRIES (3) #elif defined(FIPS_ENTROPY_SOURCE_PASSIVE) OPENSSL_EXPORT void RAND_module_entropy_depleted(uint8_t out_entropy[CTR_DRBG_ENTROPY_LEN], int *out_want_additional_input); void CRYPTO_get_seed_entropy(uint8_t entropy[PASSIVE_ENTROPY_LOAD_LENGTH], int *out_want_additional_input); OPENSSL_EXPORT void RAND_load_entropy(uint8_t out_entropy[CTR_DRBG_ENTROPY_LEN], uint8_t entropy[PASSIVE_ENTROPY_LOAD_LENGTH]); #endif #endif // defined(BORINGSSL_FIPS) #if defined(__cplusplus) } // extern C #endif #endif // OPENSSL_HEADER_CRYPTO_RAND_INTERNAL_H