/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL * project 2005. */ /* ==================================================================== * Copyright (c) 2005 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). */ #include #include #include #include #include #include #include #include #include #include #include "internal.h" #include "../../internal.h" int RSA_padding_add_PKCS1_type_1(uint8_t *to, size_t to_len, const uint8_t *from, size_t from_len) { // See RFC 8017, section 9.2. if (to_len < RSA_PKCS1_PADDING_SIZE) { OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); return 0; } if (from_len > to_len - RSA_PKCS1_PADDING_SIZE) { OPENSSL_PUT_ERROR(RSA, RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY); return 0; } to[0] = 0; to[1] = 1; OPENSSL_memset(to + 2, 0xff, to_len - 3 - from_len); to[to_len - from_len - 1] = 0; OPENSSL_memcpy(to + to_len - from_len, from, from_len); return 1; } int RSA_padding_check_PKCS1_type_1(uint8_t *out, size_t *out_len, size_t max_out, const uint8_t *from, size_t from_len) { // See RFC 8017, section 9.2. This is part of signature verification and thus // does not need to run in constant-time. if (from_len < 2) { OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_SMALL); return 0; } // Check the header. if (from[0] != 0 || from[1] != 1) { OPENSSL_PUT_ERROR(RSA, RSA_R_BLOCK_TYPE_IS_NOT_01); return 0; } // Scan over padded data, looking for the 00. size_t pad; for (pad = 2 /* header */; pad < from_len; pad++) { if (from[pad] == 0x00) { break; } if (from[pad] != 0xff) { OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_FIXED_HEADER_DECRYPT); return 0; } } if (pad == from_len) { OPENSSL_PUT_ERROR(RSA, RSA_R_NULL_BEFORE_BLOCK_MISSING); return 0; } if (pad < 2 /* header */ + 8) { OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_PAD_BYTE_COUNT); return 0; } // Skip over the 00. pad++; if (from_len - pad > max_out) { OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE); return 0; } OPENSSL_memcpy(out, from + pad, from_len - pad); *out_len = from_len - pad; return 1; } int RSA_padding_add_none(uint8_t *to, size_t to_len, const uint8_t *from, size_t from_len) { if (from_len > to_len) { OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); return 0; } if (from_len < to_len) { OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_SMALL); return 0; } OPENSSL_memcpy(to, from, from_len); return 1; } int PKCS1_MGF1(uint8_t *out, size_t len, const uint8_t *seed, size_t seed_len, const EVP_MD *md) { // We have to avoid the underlying SHA services updating the indicator // state, so we lock the state here. FIPS_service_indicator_lock_state(); int ret = 0; EVP_MD_CTX ctx; EVP_MD_CTX_init(&ctx); size_t md_len = EVP_MD_size(md); for (uint32_t i = 0; len > 0; i++) { uint8_t counter[4]; counter[0] = (uint8_t)(i >> 24); counter[1] = (uint8_t)(i >> 16); counter[2] = (uint8_t)(i >> 8); counter[3] = (uint8_t)i; if (!EVP_DigestInit_ex(&ctx, md, NULL) || !EVP_DigestUpdate(&ctx, seed, seed_len) || !EVP_DigestUpdate(&ctx, counter, sizeof(counter))) { goto err; } if (md_len <= len) { if (!EVP_DigestFinal_ex(&ctx, out, NULL)) { goto err; } out += md_len; len -= md_len; } else { uint8_t digest[EVP_MAX_MD_SIZE]; if (!EVP_DigestFinal_ex(&ctx, digest, NULL)) { goto err; } OPENSSL_memcpy(out, digest, len); len = 0; } } ret = 1; err: EVP_MD_CTX_cleanup(&ctx); FIPS_service_indicator_unlock_state(); return ret; } static const uint8_t kPSSZeroes[] = {0, 0, 0, 0, 0, 0, 0, 0}; int RSA_verify_PKCS1_PSS_mgf1(const RSA *rsa, const uint8_t *mHash, const EVP_MD *Hash, const EVP_MD *mgf1Hash, const uint8_t *EM, int sLen) { // We have to avoid the underlying SHA services updating the indicator // state, so we lock the state here. FIPS_service_indicator_lock_state(); if (mgf1Hash == NULL) { mgf1Hash = Hash; } int ret = 0; uint8_t *DB = NULL; EVP_MD_CTX ctx; EVP_MD_CTX_init(&ctx); // Negative sLen has special meanings: // RSA_PSS_SALTLEN_DIGEST sLen == hLen // -2 salt length is autorecovered from signature // -N reserved size_t hLen = EVP_MD_size(Hash); if (sLen == RSA_PSS_SALTLEN_DIGEST) { sLen = (int)hLen; } else if (sLen == -2) { sLen = -2; } else if (sLen < -2) { OPENSSL_PUT_ERROR(RSA, RSA_R_SLEN_CHECK_FAILED); goto err; } unsigned MSBits = (BN_num_bits(rsa->n) - 1) & 0x7; size_t emLen = RSA_size(rsa); if (EM[0] & (0xFF << MSBits)) { OPENSSL_PUT_ERROR(RSA, RSA_R_FIRST_OCTET_INVALID); goto err; } if (MSBits == 0) { EM++; emLen--; } // |sLen| may be -2 for the non-standard salt length recovery mode. if (emLen < hLen + 2 || (sLen >= 0 && emLen < hLen + (size_t)sLen + 2)) { OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE); goto err; } if (EM[emLen - 1] != 0xbc) { OPENSSL_PUT_ERROR(RSA, RSA_R_LAST_OCTET_INVALID); goto err; } size_t maskedDBLen = emLen - hLen - 1; const uint8_t *H = EM + maskedDBLen; DB = OPENSSL_malloc(maskedDBLen); if (!DB) { goto err; } OPENSSL_BEGIN_ALLOW_DEPRECATED if (!PKCS1_MGF1(DB, maskedDBLen, H, hLen, mgf1Hash)) { goto err; } OPENSSL_END_ALLOW_DEPRECATED for (size_t i = 0; i < maskedDBLen; i++) { DB[i] ^= EM[i]; } if (MSBits) { DB[0] &= 0xFF >> (8 - MSBits); } // This step differs slightly from EMSA-PSS-VERIFY (RFC 8017) step 10 because // it accepts a non-standard salt recovery flow. DB should be some number of // zeros, a one, then the salt. size_t salt_start; for (salt_start = 0; DB[salt_start] == 0 && salt_start < maskedDBLen - 1; salt_start++) { ; } if (DB[salt_start] != 0x1) { OPENSSL_PUT_ERROR(RSA, RSA_R_SLEN_RECOVERY_FAILED); goto err; } salt_start++; // If a salt length was specified, check it matches. if (sLen >= 0 && maskedDBLen - salt_start != (size_t)sLen) { OPENSSL_PUT_ERROR(RSA, RSA_R_SLEN_CHECK_FAILED); goto err; } uint8_t H_[EVP_MAX_MD_SIZE]; if (!EVP_DigestInit_ex(&ctx, Hash, NULL) || !EVP_DigestUpdate(&ctx, kPSSZeroes, sizeof(kPSSZeroes)) || !EVP_DigestUpdate(&ctx, mHash, hLen) || !EVP_DigestUpdate(&ctx, DB + salt_start, maskedDBLen - salt_start) || !EVP_DigestFinal_ex(&ctx, H_, NULL)) { goto err; } if (OPENSSL_memcmp(H_, H, hLen) != 0) { OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_SIGNATURE); goto err; } ret = 1; err: OPENSSL_free(DB); EVP_MD_CTX_cleanup(&ctx); FIPS_service_indicator_unlock_state(); return ret; } int RSA_padding_add_PKCS1_PSS_mgf1(const RSA *rsa, unsigned char *EM, const unsigned char *mHash, const EVP_MD *Hash, const EVP_MD *mgf1Hash, int sLenRequested) { // We have to avoid the underlying SHA services updating the indicator // state, so we lock the state here. FIPS_service_indicator_lock_state(); int ret = 0; size_t maskedDBLen, MSBits, emLen; size_t hLen; unsigned char *H, *salt = NULL, *p; if (mgf1Hash == NULL) { mgf1Hash = Hash; } hLen = EVP_MD_size(Hash); if (BN_is_zero(rsa->n)) { OPENSSL_PUT_ERROR(RSA, RSA_R_EMPTY_PUBLIC_KEY); goto err; } MSBits = (BN_num_bits(rsa->n) - 1) & 0x7; emLen = RSA_size(rsa); if (MSBits == 0) { assert(emLen >= 1); *EM++ = 0; emLen--; } if (emLen < hLen + 2) { OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); goto err; } // Negative sLenRequested has special meanings: // RSA_PSS_SALTLEN_DIGEST sLen == hLen // -2 salt length is maximized // -N reserved size_t sLen; if (sLenRequested == RSA_PSS_SALTLEN_DIGEST) { sLen = hLen; } else if (sLenRequested == -2) { sLen = emLen - hLen - 2; } else if (sLenRequested < 0) { OPENSSL_PUT_ERROR(RSA, RSA_R_SLEN_CHECK_FAILED); goto err; } else { sLen = (size_t)sLenRequested; } if (emLen - hLen - 2 < sLen) { OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); goto err; } if (sLen > 0) { salt = OPENSSL_malloc(sLen); if (!salt) { goto err; } if (!RAND_bytes(salt, sLen)) { goto err; } } maskedDBLen = emLen - hLen - 1; H = EM + maskedDBLen; EVP_MD_CTX ctx; EVP_MD_CTX_init(&ctx); int digest_ok = EVP_DigestInit_ex(&ctx, Hash, NULL) && EVP_DigestUpdate(&ctx, kPSSZeroes, sizeof(kPSSZeroes)) && EVP_DigestUpdate(&ctx, mHash, hLen) && EVP_DigestUpdate(&ctx, salt, sLen) && EVP_DigestFinal_ex(&ctx, H, NULL); EVP_MD_CTX_cleanup(&ctx); if (!digest_ok) { goto err; } OPENSSL_BEGIN_ALLOW_DEPRECATED // Generate dbMask in place then perform XOR on it if (!PKCS1_MGF1(EM, maskedDBLen, H, hLen, mgf1Hash)) { goto err; } OPENSSL_END_ALLOW_DEPRECATED p = EM; // Initial PS XORs with all zeroes which is a NOP so just update // pointer. Note from a test above this value is guaranteed to // be non-negative. p += emLen - sLen - hLen - 2; *p++ ^= 0x1; if (sLen > 0) { for (size_t i = 0; i < sLen; i++) { *p++ ^= salt[i]; } } if (MSBits) { EM[0] &= 0xFF >> (8 - MSBits); } // H is already in place so just set final 0xbc EM[emLen - 1] = 0xbc; ret = 1; err: OPENSSL_free(salt); FIPS_service_indicator_unlock_state(); return ret; }