/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../../internal.h" //#include "../../rsa_extra/internal.h" #include "../bn/internal.h" #include "../delocate.h" #include "internal.h" // RSA_R_BLOCK_TYPE_IS_NOT_02 is part of the legacy SSLv23 padding scheme. // Cryptography.io depends on this error code. OPENSSL_DECLARE_ERROR_REASON(RSA, BLOCK_TYPE_IS_NOT_02) DEFINE_STATIC_EX_DATA_CLASS(g_rsa_ex_data_class) static int bn_dup_into(BIGNUM **dst, const BIGNUM *src) { if (src == NULL) { OPENSSL_PUT_ERROR(RSA, ERR_R_PASSED_NULL_PARAMETER); return 0; } BN_free(*dst); *dst = BN_dup(src); return *dst != NULL; } RSA *RSA_new_public_key(const BIGNUM *n, const BIGNUM *e) { RSA *rsa = RSA_new(); if (rsa == NULL || // !bn_dup_into(&rsa->n, n) || // !bn_dup_into(&rsa->e, e) || // !RSA_check_key(rsa)) { RSA_free(rsa); return NULL; } return rsa; } RSA *RSA_new_private_key(const BIGNUM *n, const BIGNUM *e, const BIGNUM *d, const BIGNUM *p, const BIGNUM *q, const BIGNUM *dmp1, const BIGNUM *dmq1, const BIGNUM *iqmp) { SET_DIT_AUTO_RESET; RSA *rsa = RSA_new(); if (rsa == NULL || // !bn_dup_into(&rsa->n, n) || // !bn_dup_into(&rsa->e, e) || // !bn_dup_into(&rsa->d, d) || // !bn_dup_into(&rsa->p, p) || // !bn_dup_into(&rsa->q, q) || // !bn_dup_into(&rsa->dmp1, dmp1) || // !bn_dup_into(&rsa->dmq1, dmq1) || // !bn_dup_into(&rsa->iqmp, iqmp) || // !RSA_check_key(rsa)) { RSA_free(rsa); return NULL; } return rsa; } RSA *RSA_new_private_key_no_crt(const BIGNUM *n, const BIGNUM *e, const BIGNUM *d) { SET_DIT_AUTO_RESET; RSA *rsa = RSA_new(); if (rsa == NULL || // !bn_dup_into(&rsa->n, n) || // !bn_dup_into(&rsa->e, e) || // !bn_dup_into(&rsa->d, d) || // !RSA_check_key(rsa)) { RSA_free(rsa); return NULL; } return rsa; } RSA *RSA_new_private_key_no_e(const BIGNUM *n, const BIGNUM *d) { SET_DIT_AUTO_RESET; RSA *rsa = RSA_new(); if (rsa == NULL) { return NULL; } rsa->flags |= RSA_FLAG_NO_PUBLIC_EXPONENT; if (!bn_dup_into(&rsa->n, n) || // !bn_dup_into(&rsa->d, d) || // !RSA_check_key(rsa)) { RSA_free(rsa); return NULL; } return rsa; } RSA *RSA_new_public_key_large_e(const BIGNUM *n, const BIGNUM *e) { RSA *rsa = RSA_new(); if (rsa == NULL) { return NULL; } rsa->flags |= RSA_FLAG_LARGE_PUBLIC_EXPONENT; if (!bn_dup_into(&rsa->n, n) || // !bn_dup_into(&rsa->e, e) || // !RSA_check_key(rsa)) { RSA_free(rsa); return NULL; } return rsa; } RSA *RSA_new_private_key_large_e(const BIGNUM *n, const BIGNUM *e, const BIGNUM *d, const BIGNUM *p, const BIGNUM *q, const BIGNUM *dmp1, const BIGNUM *dmq1, const BIGNUM *iqmp) { SET_DIT_AUTO_RESET; RSA *rsa = RSA_new(); if (rsa == NULL) { return NULL; } rsa->flags |= RSA_FLAG_LARGE_PUBLIC_EXPONENT; if (!bn_dup_into(&rsa->n, n) || // !bn_dup_into(&rsa->e, e) || // !bn_dup_into(&rsa->d, d) || // !bn_dup_into(&rsa->p, p) || // !bn_dup_into(&rsa->q, q) || // !bn_dup_into(&rsa->dmp1, dmp1) || // !bn_dup_into(&rsa->dmq1, dmq1) || // !bn_dup_into(&rsa->iqmp, iqmp) || // !RSA_check_key(rsa)) { RSA_free(rsa); return NULL; } return rsa; } RSA *RSA_new(void) { return RSA_new_method(NULL); } RSA *RSA_new_method(const ENGINE *engine) { RSA *rsa = OPENSSL_zalloc(sizeof(RSA)); if (rsa == NULL) { return NULL; } if (engine) { rsa->meth = ENGINE_get_RSA(engine); } if (rsa->meth == NULL) { rsa->meth = (RSA_METHOD *) RSA_get_default_method(); } rsa->references = 1; rsa->flags = rsa->meth->flags; CRYPTO_MUTEX_init(&rsa->lock); CRYPTO_new_ex_data(&rsa->ex_data); if (rsa->meth->init && !rsa->meth->init(rsa)) { CRYPTO_free_ex_data(g_rsa_ex_data_class_bss_get(), rsa, &rsa->ex_data); CRYPTO_MUTEX_cleanup(&rsa->lock); OPENSSL_free(rsa); return NULL; } return rsa; } RSA *RSA_new_method_no_e(const ENGINE *engine, const BIGNUM *n) { RSA *rsa = RSA_new_method(engine); if (rsa == NULL || !bn_dup_into(&rsa->n, n)) { RSA_free(rsa); return NULL; } rsa->flags |= RSA_FLAG_NO_PUBLIC_EXPONENT; return rsa; } void RSA_free(RSA *rsa) { SET_DIT_AUTO_RESET; if (rsa == NULL) { return; } if (!CRYPTO_refcount_dec_and_test_zero(&rsa->references)) { return; } if (rsa->meth && rsa->meth->finish) { rsa->meth->finish(rsa); } CRYPTO_free_ex_data(g_rsa_ex_data_class_bss_get(), rsa, &rsa->ex_data); BN_free(rsa->n); BN_free(rsa->e); BN_free(rsa->d); BN_free(rsa->p); BN_free(rsa->q); BN_free(rsa->dmp1); BN_free(rsa->dmq1); BN_free(rsa->iqmp); RSASSA_PSS_PARAMS_free(rsa->pss); rsa_invalidate_key(rsa); CRYPTO_MUTEX_cleanup(&rsa->lock); OPENSSL_free(rsa); } int RSA_up_ref(RSA *rsa) { SET_DIT_AUTO_RESET; CRYPTO_refcount_inc(&rsa->references); return 1; } unsigned RSA_bits(const RSA *rsa) { SET_DIT_AUTO_RESET; return BN_num_bits(rsa->n); } const BIGNUM *RSA_get0_n(const RSA *rsa) { SET_DIT_AUTO_RESET; return rsa->n; } const BIGNUM *RSA_get0_e(const RSA *rsa) { SET_DIT_AUTO_RESET; return rsa->e; } const BIGNUM *RSA_get0_d(const RSA *rsa) { SET_DIT_AUTO_RESET; return rsa->d; } const BIGNUM *RSA_get0_p(const RSA *rsa) { SET_DIT_AUTO_RESET; return rsa->p; } const BIGNUM *RSA_get0_q(const RSA *rsa) { SET_DIT_AUTO_RESET; return rsa->q; } const BIGNUM *RSA_get0_dmp1(const RSA *rsa) { SET_DIT_AUTO_RESET; return rsa->dmp1; } const BIGNUM *RSA_get0_dmq1(const RSA *rsa) { SET_DIT_AUTO_RESET; return rsa->dmq1; } const BIGNUM *RSA_get0_iqmp(const RSA *rsa) { SET_DIT_AUTO_RESET; return rsa->iqmp; } void RSA_get0_key(const RSA *rsa, const BIGNUM **out_n, const BIGNUM **out_e, const BIGNUM **out_d) { SET_DIT_AUTO_RESET; if (out_n != NULL) { *out_n = rsa->n; } if (out_e != NULL) { *out_e = rsa->e; } if (out_d != NULL) { *out_d = rsa->d; } } void RSA_get0_factors(const RSA *rsa, const BIGNUM **out_p, const BIGNUM **out_q) { SET_DIT_AUTO_RESET; if (out_p != NULL) { *out_p = rsa->p; } if (out_q != NULL) { *out_q = rsa->q; } } const RSA_PSS_PARAMS *RSA_get0_pss_params(const RSA *rsa) { // We do not support the id-RSASSA-PSS key encoding. If we add support later, // the |maskHash| field should be filled in for OpenSSL compatibility. SET_DIT_AUTO_RESET; return NULL; } void RSA_get0_crt_params(const RSA *rsa, const BIGNUM **out_dmp1, const BIGNUM **out_dmq1, const BIGNUM **out_iqmp) { SET_DIT_AUTO_RESET; if (out_dmp1 != NULL) { *out_dmp1 = rsa->dmp1; } if (out_dmq1 != NULL) { *out_dmq1 = rsa->dmq1; } if (out_iqmp != NULL) { *out_iqmp = rsa->iqmp; } } int RSA_set0_key(RSA *rsa, BIGNUM *n, BIGNUM *e, BIGNUM *d) { SET_DIT_AUTO_RESET; if ((rsa->n == NULL && n == NULL) || (rsa->e == NULL && e == NULL && rsa->d == NULL && d == NULL)) { return 0; } if (n != NULL) { BN_free(rsa->n); rsa->n = n; } if (e != NULL) { BN_free(rsa->e); rsa->e = e; } if (d != NULL) { BN_free(rsa->d); rsa->d = d; } rsa_invalidate_key(rsa); return 1; } int RSA_set0_factors(RSA *rsa, BIGNUM *p, BIGNUM *q) { SET_DIT_AUTO_RESET; if ((rsa->p == NULL && p == NULL) || (rsa->q == NULL && q == NULL)) { return 0; } if (p != NULL) { BN_free(rsa->p); rsa->p = p; } if (q != NULL) { BN_free(rsa->q); rsa->q = q; } rsa_invalidate_key(rsa); return 1; } int RSA_set0_crt_params(RSA *rsa, BIGNUM *dmp1, BIGNUM *dmq1, BIGNUM *iqmp) { SET_DIT_AUTO_RESET; if ((rsa->dmp1 == NULL && dmp1 == NULL) || (rsa->dmq1 == NULL && dmq1 == NULL) || (rsa->iqmp == NULL && iqmp == NULL)) { return 0; } if (dmp1 != NULL) { BN_free(rsa->dmp1); rsa->dmp1 = dmp1; } if (dmq1 != NULL) { BN_free(rsa->dmq1); rsa->dmq1 = dmq1; } if (iqmp != NULL) { BN_free(rsa->iqmp); rsa->iqmp = iqmp; } rsa_invalidate_key(rsa); return 1; } RSA_METHOD *RSA_meth_new(const char *name, int flags) { RSA_METHOD *meth = OPENSSL_zalloc(sizeof(*meth)); if (meth == NULL) { OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); return NULL; } if (flags == RSA_FLAG_OPAQUE) { meth->flags = flags; } return meth; } int RSA_set_method(RSA *rsa, const RSA_METHOD *meth) { if(rsa == NULL || meth == NULL) { OPENSSL_PUT_ERROR(RSA, ERR_R_PASSED_NULL_PARAMETER); return 0; } rsa->meth = meth; return 1; } const RSA_METHOD *RSA_get_method(const RSA *rsa) { if(rsa == NULL) { OPENSSL_PUT_ERROR(RSA, ERR_R_PASSED_NULL_PARAMETER); return NULL; } return rsa->meth; } void RSA_meth_free(RSA_METHOD *meth) { if (meth != NULL) { OPENSSL_free(meth); } } int RSA_meth_set_init(RSA_METHOD *meth, int (*init) (RSA *rsa)) { if(meth == NULL) { OPENSSL_PUT_ERROR(RSA, ERR_R_PASSED_NULL_PARAMETER); return 0; } meth->init = init; return 1; } int RSA_meth_set_finish(RSA_METHOD *meth, int (*finish) (RSA *rsa)) { if(meth == NULL) { OPENSSL_PUT_ERROR(RSA, ERR_R_PASSED_NULL_PARAMETER); return 0; } meth->finish = finish; return 1; } int RSA_meth_set_priv_dec(RSA_METHOD *meth, int (*priv_dec) (int max_out, const uint8_t *from, uint8_t *to, RSA *rsa, int padding)) { if(meth == NULL) { OPENSSL_PUT_ERROR(RSA, ERR_R_PASSED_NULL_PARAMETER); return 0; } meth->decrypt = priv_dec; return 1; } int RSA_meth_set_priv_enc(RSA_METHOD *meth, int (*priv_enc) (int max_out, const uint8_t *from, uint8_t *to, RSA *rsa, int padding)) { if(meth == NULL) { OPENSSL_PUT_ERROR(RSA, ERR_R_PASSED_NULL_PARAMETER); return 0; } meth->sign_raw = priv_enc; return 1; } int RSA_meth_set_pub_dec(RSA_METHOD *meth, int (*pub_dec) (int max_out, const uint8_t *from, uint8_t *to, RSA *rsa, int padding)) { if(meth == NULL) { OPENSSL_PUT_ERROR(RSA, ERR_R_PASSED_NULL_PARAMETER); return 0; } meth->verify_raw = pub_dec; return 1; } int RSA_meth_set_pub_enc(RSA_METHOD *meth, int (*pub_enc) (int max_out, const uint8_t *from, uint8_t *to, RSA *rsa, int padding)) { if(meth == NULL) { OPENSSL_PUT_ERROR(RSA, ERR_R_PASSED_NULL_PARAMETER); return 0; } meth->encrypt = pub_enc; return 1; } int RSA_meth_set0_app_data(RSA_METHOD *meth, void *app_data) { if(meth == NULL) { OPENSSL_PUT_ERROR(RSA, ERR_R_PASSED_NULL_PARAMETER); return 0; } meth->app_data = app_data; return 1; } int RSA_meth_set_sign(RSA_METHOD *meth, int (*sign) (int type, const unsigned char *m, unsigned int m_length, unsigned char *sigret, unsigned int *siglen, const RSA *rsa)) { if(meth == NULL) { OPENSSL_PUT_ERROR(RSA, ERR_R_PASSED_NULL_PARAMETER); return 0; } meth->sign = sign; return 1; } static int rsa_sign_raw_no_self_test(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, const uint8_t *in, size_t in_len, int padding) { SET_DIT_AUTO_RESET; if (rsa->meth && rsa->meth->sign_raw) { // In OpenSSL, the RSA_METHOD |sign_raw| or |priv_enc| operation does // not directly take and initialize an |out_len| parameter. Instead, it // returns the size of the encrypted data or a negative number for error. // Our wrapping functions like |RSA_sign_raw| diverge from this paradigm // and expect an |out_len| parameter. To remain compatible with this new // paradigm and OpenSSL, we initialize |out_len| based on the return value // here. int ret = rsa->meth->sign_raw((int)max_out, in, out, rsa, padding); if(ret < 0) { *out_len = 0; return 0; } *out_len = ret; return 1; } return rsa_default_sign_raw(rsa, out_len, out, max_out, in, in_len, padding); } int RSA_sign_raw(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, const uint8_t *in, size_t in_len, int padding) { boringssl_ensure_rsa_self_test(); SET_DIT_AUTO_RESET; return rsa_sign_raw_no_self_test(rsa, out_len, out, max_out, in, in_len, padding); } unsigned RSA_size(const RSA *rsa) { SET_DIT_AUTO_RESET; size_t ret = (rsa->meth && rsa->meth->size) ? rsa->meth->size(rsa) : rsa_default_size(rsa); // RSA modulus sizes are bounded by |BIGNUM|, which must fit in |unsigned|. // // TODO(https://crbug.com/boringssl/516): Should we make this return |size_t|? assert(ret < UINT_MAX); return (unsigned)ret; } int RSA_is_opaque(const RSA *rsa) { SET_DIT_AUTO_RESET; return rsa->meth && (rsa->meth->flags & RSA_FLAG_OPAQUE); } int RSA_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused *unused, CRYPTO_EX_dup *dup_unused, CRYPTO_EX_free *free_func) { SET_DIT_AUTO_RESET; int index; if (!CRYPTO_get_ex_new_index(g_rsa_ex_data_class_bss_get(), &index, argl, argp, free_func)) { return -1; } return index; } int RSA_set_ex_data(RSA *rsa, int idx, void *arg) { SET_DIT_AUTO_RESET; return CRYPTO_set_ex_data(&rsa->ex_data, idx, arg); } void *RSA_get_ex_data(const RSA *rsa, int idx) { SET_DIT_AUTO_RESET; return CRYPTO_get_ex_data(&rsa->ex_data, idx); } // SSL_SIG_LENGTH is the size of an SSL/TLS (prior to TLS 1.2) signature: it's // the length of an MD5 and SHA1 hash. static const unsigned SSL_SIG_LENGTH = 36; // pkcs1_sig_prefix contains the ASN.1, DER encoded prefix for a hash that is // to be signed with PKCS#1. struct pkcs1_sig_prefix { // nid identifies the hash function. int nid; // hash_len is the expected length of the hash function. uint8_t hash_len; // len is the number of bytes of |bytes| which are valid. uint8_t len; // bytes contains the DER bytes. uint8_t bytes[19]; }; // kPKCS1SigPrefixes contains the ASN.1 prefixes for PKCS#1 signatures with // different hash functions. These are defined in RFC-8017 Section 9.2 // https://datatracker.ietf.org/doc/html/rfc8017#section-9.2 static const struct pkcs1_sig_prefix kPKCS1SigPrefixes[] = { { NID_md5, MD5_DIGEST_LENGTH, 18, {0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10}, }, { NID_sha1, SHA_DIGEST_LENGTH, 15, {0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14}, }, { NID_sha224, SHA224_DIGEST_LENGTH, 19, {0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1c}, }, { NID_sha256, SHA256_DIGEST_LENGTH, 19, {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20}, }, { NID_sha384, SHA384_DIGEST_LENGTH, 19, {0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30}, }, { NID_sha512, SHA512_DIGEST_LENGTH, 19, {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40}, }, { NID_sha512_224, SHA512_224_DIGEST_LENGTH, 19, {0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x05, 0x05, 0x00, 0x04, 0x1c}, }, { NID_sha512_256, SHA512_256_DIGEST_LENGTH, 19, {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x06, 0x05, 0x00, 0x04, 0x20}, }, { NID_sha3_224, 28, 19, {0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x07, 0x05, 0x00, 0x04, 0x1c}, }, { NID_sha3_256, 32, 19, {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x08, 0x05, 0x00, 0x04, 0x20}, }, { NID_sha3_384, 48, 19, {0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x09, 0x05, 0x00, 0x04, 0x30}, }, { NID_sha3_512, 64, 19, {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x0a, 0x05, 0x00, 0x04, 0x40}, }, { NID_undef, 0, 0, {0}, }, }; static int rsa_check_digest_size(int hash_nid, size_t digest_len) { if (hash_nid == NID_md5_sha1) { if (digest_len != SSL_SIG_LENGTH) { OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH); return 0; } return 1; } for (size_t i = 0; kPKCS1SigPrefixes[i].nid != NID_undef; i++) { const struct pkcs1_sig_prefix *sig_prefix = &kPKCS1SigPrefixes[i]; if (sig_prefix->nid == hash_nid) { if (digest_len != sig_prefix->hash_len) { OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH); return 0; } return 1; } } OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_ALGORITHM_TYPE); return 0; } int RSA_add_pkcs1_prefix(uint8_t **out_msg, size_t *out_msg_len, int *is_alloced, int hash_nid, const uint8_t *digest, size_t digest_len) { if (!rsa_check_digest_size(hash_nid, digest_len)) { return 0; } if (hash_nid == NID_md5_sha1) { // The length should already have been checked. assert(digest_len == SSL_SIG_LENGTH); *out_msg = (uint8_t *)digest; *out_msg_len = digest_len; *is_alloced = 0; return 1; } for (size_t i = 0; kPKCS1SigPrefixes[i].nid != NID_undef; i++) { const struct pkcs1_sig_prefix *sig_prefix = &kPKCS1SigPrefixes[i]; if (sig_prefix->nid != hash_nid) { continue; } // The length should already have been checked. assert(digest_len == sig_prefix->hash_len); const uint8_t* prefix = sig_prefix->bytes; size_t prefix_len = sig_prefix->len; size_t signed_msg_len = prefix_len + digest_len; if (signed_msg_len < prefix_len) { OPENSSL_PUT_ERROR(RSA, RSA_R_TOO_LONG); return 0; } uint8_t *signed_msg = OPENSSL_malloc(signed_msg_len); if (!signed_msg) { return 0; } OPENSSL_memcpy(signed_msg, prefix, prefix_len); OPENSSL_memcpy(signed_msg + prefix_len, digest, digest_len); *out_msg = signed_msg; *out_msg_len = signed_msg_len; *is_alloced = 1; return 1; } OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_ALGORITHM_TYPE); return 0; } int rsa_sign_no_self_test(int hash_nid, const uint8_t *digest, size_t digest_len, uint8_t *out, unsigned *out_len, RSA *rsa) { if (rsa->meth && rsa->meth->sign) { if (!rsa_check_digest_size(hash_nid, digest_len)) { return 0; } // All supported digest lengths fit in |unsigned|. assert(digest_len <= EVP_MAX_MD_SIZE); OPENSSL_STATIC_ASSERT(EVP_MAX_MD_SIZE <= UINT_MAX, digest_too_long); return rsa->meth->sign(hash_nid, digest, (unsigned)digest_len, out, out_len, rsa); } const unsigned rsa_size = RSA_size(rsa); int ret = 0; uint8_t *signed_msg = NULL; size_t signed_msg_len = 0; int signed_msg_is_alloced = 0; size_t size_t_out_len; if (!RSA_add_pkcs1_prefix(&signed_msg, &signed_msg_len, &signed_msg_is_alloced, hash_nid, digest, digest_len) || !rsa_sign_raw_no_self_test(rsa, &size_t_out_len, out, rsa_size, signed_msg, signed_msg_len, RSA_PKCS1_PADDING)) { goto err; } if (size_t_out_len > UINT_MAX) { OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW); goto err; } *out_len = (unsigned)size_t_out_len; ret = 1; err: if (signed_msg_is_alloced) { OPENSSL_free(signed_msg); } return ret; } int RSA_sign(int hash_nid, const uint8_t *digest, size_t digest_len, uint8_t *out, unsigned *out_len, RSA *rsa) { boringssl_ensure_rsa_self_test(); SET_DIT_AUTO_RESET; return rsa_sign_no_self_test(hash_nid, digest, digest_len, out, out_len, rsa); } int RSA_sign_pss_mgf1(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, const uint8_t *digest, size_t digest_len, const EVP_MD *md, const EVP_MD *mgf1_md, int salt_len) { SET_DIT_AUTO_RESET; if (digest_len != EVP_MD_size(md)) { OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH); return 0; } size_t padded_len = RSA_size(rsa); uint8_t *padded = OPENSSL_malloc(padded_len); if (padded == NULL) { return 0; } int ret = RSA_padding_add_PKCS1_PSS_mgf1(rsa, padded, digest, md, mgf1_md, salt_len) && RSA_sign_raw(rsa, out_len, out, max_out, padded, padded_len, RSA_NO_PADDING); OPENSSL_free(padded); return ret; } int rsa_digestsign_no_self_test(const EVP_MD *md, const uint8_t *input, size_t in_len, uint8_t *out, unsigned *out_len, RSA *rsa) { SET_DIT_AUTO_RESET; uint8_t digest[EVP_MAX_MD_SIZE]; unsigned int digest_len = EVP_MAX_MD_SIZE; if (!EVP_Digest(input, in_len, digest, &digest_len, md, NULL)) { return 0; } return rsa_sign_no_self_test(EVP_MD_type(md), digest, digest_len, out, out_len, rsa); } int rsa_verify_no_self_test(int hash_nid, const uint8_t *digest, size_t digest_len, const uint8_t *sig, size_t sig_len, RSA *rsa) { if (rsa->n == NULL || rsa->e == NULL) { OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING); return 0; } const size_t rsa_size = RSA_size(rsa); uint8_t *buf = NULL; int ret = 0; uint8_t *signed_msg = NULL; size_t signed_msg_len = 0, len; int signed_msg_is_alloced = 0; if (hash_nid == NID_md5_sha1 && digest_len != SSL_SIG_LENGTH) { OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH); return 0; } buf = OPENSSL_malloc(rsa_size); if (!buf) { return 0; } if (!rsa_verify_raw_no_self_test(rsa, &len, buf, rsa_size, sig, sig_len, RSA_PKCS1_PADDING) || !RSA_add_pkcs1_prefix(&signed_msg, &signed_msg_len, &signed_msg_is_alloced, hash_nid, digest, digest_len)) { goto out; } // Check that no other information follows the hash value (FIPS 186-4 Section 5.5) if (len != signed_msg_len) { OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_SIGNATURE); goto out; } // Check that the computed hash matches the expected hash if (OPENSSL_memcmp(buf, signed_msg, len) != 0) { OPENSSL_PUT_ERROR(RSA, RSA_R_MISMATCHED_SIGNATURE); goto out; } ret = 1; out: OPENSSL_free(buf); if (signed_msg_is_alloced) { OPENSSL_free(signed_msg); } return ret; } int rsa_digestverify_no_self_test(const EVP_MD *md, const uint8_t *input, size_t in_len, const uint8_t *sig, size_t sig_len, RSA *rsa) { uint8_t digest[EVP_MAX_MD_SIZE]; unsigned int digest_len = EVP_MAX_MD_SIZE; if (!EVP_Digest(input, in_len, digest, &digest_len, md, NULL)) { return 0; } return rsa_verify_no_self_test(EVP_MD_type(md), digest, digest_len, sig, sig_len, rsa); } int RSA_verify(int hash_nid, const uint8_t *digest, size_t digest_len, const uint8_t *sig, size_t sig_len, RSA *rsa) { boringssl_ensure_rsa_self_test(); SET_DIT_AUTO_RESET; return rsa_verify_no_self_test(hash_nid, digest, digest_len, sig, sig_len, rsa); } int RSA_verify_pss_mgf1(RSA *rsa, const uint8_t *digest, size_t digest_len, const EVP_MD *md, const EVP_MD *mgf1_md, int salt_len, const uint8_t *sig, size_t sig_len) { SET_DIT_AUTO_RESET; if (digest_len != EVP_MD_size(md)) { OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH); return 0; } size_t em_len = RSA_size(rsa); uint8_t *em = OPENSSL_malloc(em_len); if (em == NULL) { return 0; } int ret = 0; if (!RSA_verify_raw(rsa, &em_len, em, em_len, sig, sig_len, RSA_NO_PADDING)) { goto err; } if (em_len != RSA_size(rsa)) { OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); goto err; } ret = RSA_verify_PKCS1_PSS_mgf1(rsa, digest, md, mgf1_md, em, salt_len); err: OPENSSL_free(em); return ret; } int rsa_private_transform_no_self_test(RSA *rsa, uint8_t *out, const uint8_t *in, size_t len) { if (rsa->meth && rsa->meth->private_transform) { return rsa->meth->private_transform(rsa, out, in, len); } return rsa_default_private_transform(rsa, out, in, len); } int rsa_private_transform(RSA *rsa, uint8_t *out, const uint8_t *in, size_t len) { boringssl_ensure_rsa_self_test(); SET_DIT_AUTO_RESET; return rsa_private_transform_no_self_test(rsa, out, in, len); } int RSA_flags(const RSA *rsa) { SET_DIT_AUTO_RESET; if (rsa == NULL) { OPENSSL_PUT_ERROR(RSA, ERR_R_PASSED_NULL_PARAMETER); return 0; } return rsa->flags; } void RSA_set_flags(RSA *rsa, int flags) { SET_DIT_AUTO_RESET; if (rsa == NULL) { OPENSSL_PUT_ERROR(RSA, ERR_R_PASSED_NULL_PARAMETER); return; } rsa->flags |= flags; } int RSA_test_flags(const RSA *rsa, int flags) { SET_DIT_AUTO_RESET; if (rsa) { return rsa->flags & flags; } OPENSSL_PUT_ERROR(RSA, ERR_R_PASSED_NULL_PARAMETER); return 0; } int RSA_blinding_on(RSA *rsa, BN_CTX *ctx) { SET_DIT_AUTO_RESET; return (rsa != NULL && ((rsa->flags & RSA_FLAG_NO_BLINDING) == 0)) ? 1 : 0; } void RSA_blinding_off_temp_for_accp_compatibility(RSA *rsa) { SET_DIT_AUTO_RESET; if (rsa != NULL) { rsa->flags |= RSA_FLAG_NO_BLINDING; } } int RSA_pkey_ctx_ctrl(EVP_PKEY_CTX *ctx, int optype, int cmd, int p1, void *p2) { SET_DIT_AUTO_RESET; if (ctx != NULL && ctx->pmeth != NULL) { if (ctx->pmeth->pkey_id == EVP_PKEY_RSA || ctx->pmeth->pkey_id == EVP_PKEY_RSA_PSS) { return EVP_PKEY_CTX_ctrl(ctx, -1, optype, cmd, p1, p2); } return -1; } return 0; } // ------------- KEY CHECKING FUNCTIONS ---------------- // // Performs several checks on the public component of the given RSA key. // The key must have at least the public modulus n, the public exponent e is // optional (this is to support the special case of JCA stripped private keys // that are missing e). // // The checks: // - n is positive, odd, and fits in 16k bits, // - e is positive and odd (if present), // - e is either <= 2^33 in default case, // or <= n when RSA_FLAG_LARGE_PUBLIC_EXPONENT is set. // int is_public_component_of_rsa_key_good(const RSA *key) { SET_DIT_AUTO_RESET; if (key->n == NULL) { OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING); return 0; } unsigned int n_bits = BN_num_bits(key->n); if (n_bits > 16 * 1024) { OPENSSL_PUT_ERROR(RSA, RSA_R_MODULUS_TOO_LARGE); return 0; } // RSA moduli n must be positive and odd because it is // a product of positive odd prime numbers. if (!BN_is_odd(key->n) || BN_is_negative(key->n)) { OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_RSA_PARAMETERS); return 0; } // Stripped private keys do not have the public exponent e, so the remaining // checks in this function are not applicable. However, such keys should have // the RSA_FLAG_NO_PUBLIC_EXPONENT flag set. if (key->e == NULL) { if (!(key->flags & RSA_FLAG_NO_PUBLIC_EXPONENT)) { OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING); return 0; } return 1; } unsigned int e_bits = BN_num_bits(key->e); // RSA public exponent e must be odd because it is a multiplicative inverse // of the corresponding private exponent modulo phi(n). To be invertible // modulo phi(n), e has to be realtively prime to phi(n). Since // phi(n) = (p-1)(q-1) and p and q are odd prime numbers, it follows that // phi(n) is even. Therefore, for e to be relatively prime to phi(n) it is // necessary that e is odd. Additionally, reject e = 1 and negative e. if (!BN_is_odd(key->e) || BN_is_negative(key->e) || e_bits < 2) { OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_E_VALUE); return 0; } if (key->flags & RSA_FLAG_LARGE_PUBLIC_EXPONENT) { // The caller has requested disabling DoS protections. // Still, e must be less than n. if (BN_ucmp(key->n, key->e) <= 0) { OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_E_VALUE); return 0; } } else { // Mitigate DoS attacks by limiting the exponent size. 33 bits was chosen as // the limit based on the recommendations in: // - https://www.imperialviolet.org/2012/03/16/rsae.html // - https://www.imperialviolet.org/2012/03/17/rsados.html if (e_bits > 33) { OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_E_VALUE); return 0; } } return 1; } // The RSA key checking function works with five different types of keys: // - public: (n, e), // - private_min: (n, e, d), // - private: (n, e, d, p, q), // - private_crt: (n, e, d, p, q, dmp1, dmq1, iqmp), // - private_strip: (n, d). enum rsa_key_type_for_checking { RSA_KEY_TYPE_FOR_CHECKING_PUBLIC, RSA_KEY_TYPE_FOR_CHECKING_PRIVATE_MIN, RSA_KEY_TYPE_FOR_CHECKING_PRIVATE, RSA_KEY_TYPE_FOR_CHECKING_PRIVATE_CRT, RSA_KEY_TYPE_FOR_CHECKING_PRIVATE_STRIP, RSA_KEY_TYPE_FOR_CHECKING_INVALID, }; static enum rsa_key_type_for_checking determine_key_type_for_checking(const RSA *key) { // The key must have the modulus n. SET_DIT_AUTO_RESET; if (key->n == NULL) { return RSA_KEY_TYPE_FOR_CHECKING_INVALID; } // (n, e) if (key->e != NULL && key->d == NULL && key->p == NULL && key->q == NULL && key->dmp1 == NULL && key->dmq1 == NULL && key->iqmp == NULL) { return RSA_KEY_TYPE_FOR_CHECKING_PUBLIC; } // (n, e, d) if (key->e != NULL && key->d != NULL && key->p == NULL && key->q == NULL && key->dmp1 == NULL && key->dmq1 == NULL && key->iqmp == NULL) { return RSA_KEY_TYPE_FOR_CHECKING_PRIVATE_MIN; } // (n, e, d, p, q) if (key->e != NULL && key->d != NULL && key->p != NULL && key->q != NULL && key->dmp1 == NULL && key->dmq1 == NULL && key->iqmp == NULL) { return RSA_KEY_TYPE_FOR_CHECKING_PRIVATE; } // (n, e, d, p, q, dmp1, dmq1, iqmp) if (key->e != NULL && key->d != NULL && key->p != NULL && key->q != NULL && key->dmp1 != NULL && key->dmq1 != NULL && key->iqmp != NULL) { return RSA_KEY_TYPE_FOR_CHECKING_PRIVATE_CRT; } // (n, d) if (key->e == NULL && key->d != NULL && key->p == NULL && key->q == NULL && key->dmp1 == NULL && key->dmq1 == NULL && key->iqmp == NULL) { return RSA_KEY_TYPE_FOR_CHECKING_PRIVATE_STRIP; } return RSA_KEY_TYPE_FOR_CHECKING_INVALID; } // Performs certain checks on the given RSA key. The key can be a key pair // consisting of public and private component, but it can also be only the // public component. The public component is // (n, e), // the modulus n and the public exponent e. A private key contains at minimum // the private exponent e in addition to the public part: // (n, e, d), // while normally a private key would consist of // (n, e, d, p, q) // where p and q are the prime factors of n. Some keys store additional // precomputed private parameters // (dmp1, dmq1, iqmp). // Additionally, we support checking stripped private keys that JCA supports // that consist of (n, d). // // The function performs the following checks (when possible): // - n fits in 16k bits, // - 1 < log(e, 2) <= 33, // - n and e are odd, // - n > e, // - p * q = n, // - (d * e) mod (p - 1) = 1, // - (d * e) mod (q - 1) = 1, // - dmp1 = d mod (p - 1), // - dmq1 = d mod (q - 1), // - (q * iqmp) mod p = 1. // // Note: see the rsa_key_type_for_checking enum for details on types of keys // the function can work with. int RSA_check_key(const RSA *key) { SET_DIT_AUTO_RESET; enum rsa_key_type_for_checking key_type = determine_key_type_for_checking(key); if (key_type == RSA_KEY_TYPE_FOR_CHECKING_INVALID) { OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_RSA_PARAMETERS); return 0; } // We check the public component for every key type. if (!is_public_component_of_rsa_key_good(key)) { return 0; } // Nothing else to check for public keys (n, e) and private keys in minimal // or stripped format, (n, e, d) and (n, d), resp. if (key_type == RSA_KEY_TYPE_FOR_CHECKING_PUBLIC || key_type == RSA_KEY_TYPE_FOR_CHECKING_PRIVATE_MIN || key_type == RSA_KEY_TYPE_FOR_CHECKING_PRIVATE_STRIP) { return 1; } // Keys that reach this point are either private keys (n, e, p, q, d), // or CRT keys with (dmp1, dmq1, iqmp) values precomputed. if (key_type != RSA_KEY_TYPE_FOR_CHECKING_PRIVATE && key_type != RSA_KEY_TYPE_FOR_CHECKING_PRIVATE_CRT) { OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_RSA_PARAMETERS); return 0; } int ret = 0; BN_CTX *ctx = BN_CTX_new(); if (ctx == NULL) { OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN); return 0; } BIGNUM tmp, de, pm1, qm1, dmp1, dmq1; BN_init(&tmp); BN_init(&de); BN_init(&pm1); BN_init(&qm1); BN_init(&dmp1); BN_init(&dmq1); // Check that p * q == n. Before we multiply, we check that p and q are in // bounds, to avoid a DoS vector in |bn_mul_consttime| below. Note that // n was bound by |is_public_component_of_rsa_key_good|. This also implicitly // checks p and q are odd, which is a necessary condition for Montgomery // reduction. if (BN_is_negative(key->p) || BN_cmp(key->p, key->n) >= 0 || BN_is_negative(key->q) || BN_cmp(key->q, key->n) >= 0) { OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_RSA_PARAMETERS); goto out; } if (!bn_mul_consttime(&tmp, key->p, key->q, ctx)) { OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN); goto out; } if (BN_cmp(&tmp, key->n) != 0) { OPENSSL_PUT_ERROR(RSA, RSA_R_N_NOT_EQUAL_P_Q); goto out; } // d must be an inverse of e mod the Carmichael totient, lcm(p-1, q-1), but it // may be unreduced because other implementations use the Euler totient. We // simply check that d * e is one mod p-1 and mod q-1. Note d and e were bound // by earlier checks in this function. if (!bn_usub_consttime(&pm1, key->p, BN_value_one()) || !bn_usub_consttime(&qm1, key->q, BN_value_one())) { OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN); goto out; } const unsigned pm1_bits = BN_num_bits(&pm1); const unsigned qm1_bits = BN_num_bits(&qm1); if (!bn_mul_consttime(&de, key->d, key->e, ctx) || !bn_div_consttime(NULL, &tmp, &de, &pm1, pm1_bits, ctx) || !bn_div_consttime(NULL, &de, &de, &qm1, qm1_bits, ctx)) { OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN); goto out; } if (!BN_is_one(&tmp) || !BN_is_one(&de)) { OPENSSL_PUT_ERROR(RSA, RSA_R_D_E_NOT_CONGRUENT_TO_1); goto out; } // No more checks for a basic private key without CRT parameters. if (key_type == RSA_KEY_TYPE_FOR_CHECKING_PRIVATE) { ret = 1; goto out; } // Keys that reach this point are RSA_KEY_TYPE_FOR_CHECKING_PRIVATE_CRT, // so check that the CRT params are correct: // - dmp1 == d mod (p - 1), // - dmq1 == d mod (q - 1), // - (iqmp * q) mod (p) == 1. if (!bn_div_consttime(NULL, &tmp, key->d, &pm1, pm1_bits, ctx) || !bn_div_consttime(NULL, &de, key->d, &qm1, qm1_bits, ctx)) { OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN); goto out; } // dmp1 == d mod (p - 1) and dmq1 == d mod (q - 1). if (BN_cmp(&tmp, key->dmp1) != 0 || BN_cmp(&de, key->dmq1) != 0) { OPENSSL_PUT_ERROR(RSA, RSA_R_CRT_VALUES_INCORRECT); goto out; } // Check that iqmp is fully reduced modulo p. if (BN_cmp(key->iqmp, key->p) >= 0) { OPENSSL_PUT_ERROR(RSA, RSA_R_CRT_VALUES_INCORRECT); goto out; } if (!bn_mul_consttime(&tmp, key->q, key->iqmp, ctx) || // p is odd, so pm1 and p have the same bit width. !bn_div_consttime(NULL, &tmp, &tmp, key->p, pm1_bits, ctx)) { OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN); goto out; } // (iqmp * q) mod p = 1. if (BN_cmp(&tmp, BN_value_one()) != 0) { OPENSSL_PUT_ERROR(RSA, RSA_R_CRT_VALUES_INCORRECT); goto out; } ret = 1; out: BN_free(&tmp); BN_free(&de); BN_free(&pm1); BN_free(&qm1); BN_free(&dmp1); BN_free(&dmq1); BN_CTX_free(ctx); return ret; } // Performs Pair-Wise Consistency Test (PWCT) with the given RSA key // by signing and verifying a message. This is required for RSA_check_fips // function further below. According to our FIPS lab we have to do the test // with EVP_DigestSign/Verify API. static int rsa_key_fips_pairwise_consistency_test_signing(RSA *key) { int ret = 0; uint8_t msg[1] = {0}; size_t msg_len = 1; uint8_t *sig_der = NULL; size_t sig_len = 0; EVP_PKEY *evp_pkey = NULL; EVP_MD_CTX md_ctx; const EVP_MD *md = EVP_sha256(); evp_pkey = EVP_PKEY_new(); if (!evp_pkey || !EVP_PKEY_set1_RSA(evp_pkey, key)) { OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); goto end; } // Initialize the context and grab the expected signature length. EVP_MD_CTX_init(&md_ctx); if (!EVP_DigestSignInit(&md_ctx, NULL, md, NULL, evp_pkey) || !EVP_DigestSign(&md_ctx, NULL, &sig_len, msg, msg_len)) { OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); goto end; } sig_der = OPENSSL_malloc(sig_len); if (!sig_der || !EVP_DigestSign(&md_ctx, sig_der, &sig_len, msg, msg_len)) { OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); goto end; } if (boringssl_fips_break_test("RSA_PWCT")) { msg[0] = ~msg[0]; } if (!EVP_DigestVerifyInit(&md_ctx, NULL, md, NULL, evp_pkey) || !EVP_DigestVerify(&md_ctx, sig_der, sig_len, msg, msg_len)) { goto end; } ret = 1; end: EVP_PKEY_free(evp_pkey); EVP_MD_CTX_cleanse(&md_ctx); OPENSSL_free(sig_der); return ret; } // This is the product of the 132 smallest odd primes, from 3 to 751, // as defined in SP 800-89 5.3.3. static const BN_ULONG kSmallFactorsLimbs[] = { TOBN(0xc4309333, 0x3ef4e3e1), TOBN(0x71161eb6, 0xcd2d655f), TOBN(0x95e2238c, 0x0bf94862), TOBN(0x3eb233d3, 0x24f7912b), TOBN(0x6b55514b, 0xbf26c483), TOBN(0x0a84d817, 0x5a144871), TOBN(0x77d12fee, 0x9b82210a), TOBN(0xdb5b93c2, 0x97f050b3), TOBN(0x4acad6b9, 0x4d6c026b), TOBN(0xeb7751f3, 0x54aec893), TOBN(0xdba53368, 0x36bc85c4), TOBN(0xd85a1b28, 0x7f5ec78e), TOBN(0x2eb072d8, 0x6b322244), TOBN(0xbba51112, 0x5e2b3aea), TOBN(0x36ed1a6c, 0x0e2486bf), TOBN(0x5f270460, 0xec0c5727), 0x000017b1 }; DEFINE_LOCAL_DATA(BIGNUM, g_small_factors) { out->d = (BN_ULONG *) kSmallFactorsLimbs; out->width = OPENSSL_ARRAY_SIZE(kSmallFactorsLimbs); out->dmax = out->width; out->neg = 0; out->flags = BN_FLG_STATIC_DATA; } // |RSA_check_fips| function: // - validates basic properties of the key (by calling RSA_check_key), // - performs partial public key validation (SP 800-89 5.3.3), // - performs a pair-wise consistency test, if possible. // The reason this function offers only key checks that are relevant for // RSA signatures (SP 800-89) and not RSA key establishment (SP 800-56B) is // that the AWS-LC FIPS module offers only RSA signing and verification as // approved FIPS services. int RSA_check_fips(RSA *key) { SET_DIT_AUTO_RESET; enum rsa_key_type_for_checking key_type = determine_key_type_for_checking(key); // In addition to invalid key type, stripped private keys can not be checked // with this function because they lack the public component which is // necessary for both FIPS checks performed here. if (key_type == RSA_KEY_TYPE_FOR_CHECKING_INVALID || key_type == RSA_KEY_TYPE_FOR_CHECKING_PRIVATE_STRIP) { OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_RSA_PARAMETERS); return 0; } // Validate basic properties of the key. if (!RSA_check_key(key)) { return 0; } BN_CTX *ctx = BN_CTX_new(); if (ctx == NULL) { return 0; } BIGNUM small_gcd; BN_init(&small_gcd); int ret = 0; uint8_t *sig = NULL; // used later in the pair-wise consistency test. // Perform partial public key validation of RSA keys (SP 800-89 5.3.3). // Although this is not for primality testing, SP 800-89 cites an RSA // primality testing algorithm, so we use |BN_prime_checks_for_generation| to // match. This is only a plausibility test and we expect the value to be // composite, so too few iterations will cause us to reject the key, not use // an implausible one. enum bn_primality_result_t primality_result; if (BN_num_bits(key->e) <= 16 || BN_num_bits(key->e) > 256 || !BN_is_odd(key->n) || !BN_is_odd(key->e) || !BN_gcd(&small_gcd, key->n, g_small_factors(), ctx) || !BN_is_one(&small_gcd) || !BN_enhanced_miller_rabin_primality_test(&primality_result, key->n, BN_prime_checks_for_generation, ctx, NULL) || primality_result != bn_non_prime_power_composite) { OPENSSL_PUT_ERROR(RSA, RSA_R_PUBLIC_KEY_VALIDATION_FAILED); goto end; } // For public keys the check is over because the public key validation is // the only thing we can test, we can't perform the pair-wise consistency // test without the private key. if (key_type == RSA_KEY_TYPE_FOR_CHECKING_PUBLIC) { ret = 1; goto end; } // Only private keys (that contain the public component as well) can be // tested with a pair-wise consistency test. if (key_type != RSA_KEY_TYPE_FOR_CHECKING_PRIVATE_MIN && key_type != RSA_KEY_TYPE_FOR_CHECKING_PRIVATE && key_type != RSA_KEY_TYPE_FOR_CHECKING_PRIVATE_CRT) { goto end; } // FIPS pair-wise consistency test (FIPS 140-2 4.9.2). Per FIPS 140-2 IG, // section 9.9, it is not known whether |rsa| will be used for signing or // encryption, so either pair-wise consistency self-test is acceptable. We // perform a signing test. The same guidance can be found in FIPS 140-3 IG // in Section 7.10.3.3, sub-section Additional comments. if (!rsa_key_fips_pairwise_consistency_test_signing(key)) { OPENSSL_PUT_ERROR(RSA, RSA_R_PUBLIC_KEY_VALIDATION_FAILED); goto end; } ret = 1; end: BN_free(&small_gcd); BN_CTX_free(ctx); OPENSSL_free(sig); return ret; }