/* Copyright (c) 2018, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #ifndef OPENSSL_HEADER_SHA_INTERNAL_H #define OPENSSL_HEADER_SHA_INTERNAL_H #include #include "../../internal.h" #include "../cpucap/internal.h" #if defined(__cplusplus) extern "C" { #endif // Internal SHA2 constants // SHA*_CHAINING_LENGTH is the chaining length in bytes of SHA-* // It corresponds to the length in bytes of the h part of the state #define SHA1_CHAINING_LENGTH 20 #define SHA224_CHAINING_LENGTH 32 #define SHA256_CHAINING_LENGTH 32 #define SHA384_CHAINING_LENGTH 64 #define SHA512_CHAINING_LENGTH 64 #define SHA512_224_CHAINING_LENGTH 64 #define SHA512_256_CHAINING_LENGTH 64 // SHA3 constants, from NIST FIPS202. // https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf #define SHA3_ROWS 5 #define KECCAK1600_WIDTH 1600 #define SHA3_224_CAPACITY_BYTES 56 #define SHA3_224_DIGEST_BITLENGTH 224 #define SHA3_224_DIGEST_LENGTH 28 #define SHA3_256_CAPACITY_BYTES 64 #define SHA3_256_DIGEST_BITLENGTH 256 #define SHA3_256_DIGEST_LENGTH 32 #define SHA3_384_CAPACITY_BYTES 96 #define SHA3_384_DIGEST_BITLENGTH 384 #define SHA3_384_DIGEST_LENGTH 48 #define SHA3_512_CAPACITY_BYTES 128 #define SHA3_512_DIGEST_BITLENGTH 512 #define SHA3_512_DIGEST_LENGTH 64 #define SHA3_BLOCKSIZE(bitlen) (KECCAK1600_WIDTH - bitlen * 2) / 8 #define SHA3_PAD_CHAR 0x06 // SHAKE constants, from NIST FIPS202. // https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf #define SHAKE_PAD_CHAR 0x1F #define SHAKE128_BLOCKSIZE (KECCAK1600_WIDTH - 128 * 2) / 8 #define SHAKE256_BLOCKSIZE (KECCAK1600_WIDTH - 256 * 2) / 8 #define SHAKE128_RATE 168 #define XOF_BLOCKBYTES SHAKE128_RATE // SHAKE128 has the maximum block size among the SHA3/SHAKE algorithms. #define SHA3_MAX_BLOCKSIZE SHAKE128_BLOCKSIZE typedef struct keccak_st KECCAK1600_CTX; // The data buffer should have at least the maximum number of // block size bytes to fit any SHA3/SHAKE block length. struct keccak_st { uint64_t A[SHA3_ROWS][SHA3_ROWS]; size_t block_size; // cached ctx->digest->block_size size_t md_size; // output length, variable in XOF (SHAKE) size_t buf_load; // used bytes in below buffer uint8_t buf[SHA3_MAX_BLOCKSIZE]; // should have at least the max data block size bytes uint8_t pad; // padding character uint8_t padded; // denotes if padding has been performed }; // Define SHA{n}[_{variant}]_ASM if sha{n}_block_data_order[_{variant}] is // defined in assembly. #if defined(OPENSSL_PPC64LE) #define SHA1_ALTIVEC void sha1_block_data_order(uint32_t *state, const uint8_t *data, size_t num_blocks); #elif !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86) #define SHA1_ASM #define SHA256_ASM #define SHA512_ASM void sha1_block_data_order(uint32_t *state, const uint8_t *data, size_t num_blocks); void sha256_block_data_order(uint32_t *state, const uint8_t *data, size_t num_blocks); void sha512_block_data_order(uint64_t *state, const uint8_t *data, size_t num_blocks); #elif !defined(OPENSSL_NO_ASM) && defined(OPENSSL_ARM) #define SHA1_ASM_NOHW #define SHA256_ASM_NOHW #define SHA512_ASM_NOHW #define SHA1_ASM_HW OPENSSL_INLINE int sha1_hw_capable(void) { return CRYPTO_is_ARMv8_SHA1_capable(); } #define SHA1_ASM_NEON void sha1_block_data_order_neon(uint32_t *state, const uint8_t *data, size_t num); #define SHA256_ASM_HW OPENSSL_INLINE int sha256_hw_capable(void) { return CRYPTO_is_ARMv8_SHA256_capable(); } #define SHA256_ASM_NEON void sha256_block_data_order_neon(uint32_t *state, const uint8_t *data, size_t num); // Armv8.2 SHA-512 instructions are not available in 32-bit. #define SHA512_ASM_NEON void sha512_block_data_order_neon(uint64_t *state, const uint8_t *data, size_t num); #elif !defined(OPENSSL_NO_ASM) && defined(OPENSSL_AARCH64) #define SHA1_ASM_NOHW #define SHA256_ASM_NOHW #define SHA512_ASM_NOHW #define SHA1_ASM_HW OPENSSL_INLINE int sha1_hw_capable(void) { return CRYPTO_is_ARMv8_SHA1_capable(); } #define SHA256_ASM_HW OPENSSL_INLINE int sha256_hw_capable(void) { return CRYPTO_is_ARMv8_SHA256_capable(); } #define SHA512_ASM_HW OPENSSL_INLINE int sha512_hw_capable(void) { return CRYPTO_is_ARMv8_SHA512_capable(); } #elif !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) #define SHA1_ASM_NOHW #define SHA256_ASM_NOHW #define SHA512_ASM_NOHW #define SHA1_ASM_HW OPENSSL_INLINE int sha1_hw_capable(void) { return CRYPTO_is_SHAEXT_capable() && CRYPTO_is_SSSE3_capable(); } #define SHA1_ASM_AVX2 OPENSSL_INLINE int sha1_avx2_capable(void) { // TODO: Simplify this logic, which was extracted from the assembly: // * Does AVX2 imply SSSE3? // * sha1_block_data_order_avx2 does not seem to use SSSE3 instructions. return CRYPTO_is_AVX2_capable() && CRYPTO_is_BMI2_capable() && CRYPTO_is_BMI1_capable() && CRYPTO_is_SSSE3_capable(); } void sha1_block_data_order_avx2(uint32_t *state, const uint8_t *data, size_t num); #define SHA1_ASM_AVX OPENSSL_INLINE int sha1_avx_capable(void) { // TODO: Simplify this logic, which was extracted from the assembly: // * Does AVX imply SSSE3? // * sha1_block_data_order_avx does not seem to use SSSE3 instructions. // Pre-Zen AMD CPUs had slow SHLD/SHRD; Zen added the SHA extension; see the // discussion in sha1-586.pl. return CRYPTO_is_AVX_capable() && CRYPTO_is_SSSE3_capable() && CRYPTO_is_intel_cpu(); } void sha1_block_data_order_avx(uint32_t *state, const uint8_t *data, size_t num); #define SHA1_ASM_SSSE3 OPENSSL_INLINE int sha1_ssse3_capable(void) { return CRYPTO_is_SSSE3_capable(); } void sha1_block_data_order_ssse3(uint32_t *state, const uint8_t *data, size_t num); #define SHA256_ASM_HW OPENSSL_INLINE int sha256_hw_capable(void) { return CRYPTO_is_SHAEXT_capable(); } #define SHA256_ASM_AVX OPENSSL_INLINE int sha256_avx_capable(void) { // TODO: Simplify this logic, which was extracted from the assembly: // * Does AVX imply SSSE3? // * sha256_block_data_order_avx does not seem to use SSSE3 instructions. // Pre-Zen AMD CPUs had slow SHLD/SHRD; Zen added the SHA extension; see the // discussion in sha1-586.pl. return CRYPTO_is_AVX_capable() && CRYPTO_is_SSSE3_capable() && CRYPTO_is_intel_cpu(); } void sha256_block_data_order_avx(uint32_t *state, const uint8_t *data, size_t num); #define SHA256_ASM_SSSE3 OPENSSL_INLINE int sha256_ssse3_capable(void) { return CRYPTO_is_SSSE3_capable(); } void sha256_block_data_order_ssse3(uint32_t *state, const uint8_t *data, size_t num); #define SHA512_ASM_AVX OPENSSL_INLINE int sha512_avx_capable(void) { // TODO: Simplify this logic, which was extracted from the assembly: // * Does AVX imply SSSE3? // * sha512_block_data_order_avx does not seem to use SSSE3 instructions. // Pre-Zen AMD CPUs had slow SHLD/SHRD; Zen added the SHA extension; see the // discussion in sha1-586.pl. return CRYPTO_is_AVX_capable() && CRYPTO_is_SSSE3_capable() && CRYPTO_is_intel_cpu(); } void sha512_block_data_order_avx(uint64_t *state, const uint8_t *data, size_t num); #endif #if defined(SHA1_ASM_HW) void sha1_block_data_order_hw(uint32_t *state, const uint8_t *data, size_t num); #endif #if defined(SHA1_ASM_NOHW) void sha1_block_data_order_nohw(uint32_t *state, const uint8_t *data, size_t num); #endif #if defined(SHA256_ASM_HW) void sha256_block_data_order_hw(uint32_t *state, const uint8_t *data, size_t num); #endif #if defined(SHA256_ASM_NOHW) void sha256_block_data_order_nohw(uint32_t *state, const uint8_t *data, size_t num); #endif #if defined(SHA512_ASM_HW) void sha512_block_data_order_hw(uint64_t *state, const uint8_t *data, size_t num); #endif #if defined(SHA512_ASM_NOHW) void sha512_block_data_order_nohw(uint64_t *state, const uint8_t *data, size_t num); #endif #if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_AARCH64) #define KECCAK1600_ASM #endif // SHAx_Init_from_state is a low-level function that initializes |sha| with a // custom state. |h| is the hash state in big endian. |n| is the number of bits // processed at this point. It must be a multiple of |SHAy_CBLOCK*8|, // where SHAy=SHA1 if SHAx=SHA1, SHAy=SHA256 if SHAx=SHA224 or SHA256, and // SHAy=SHA512 otherwise. // This function returns one on success and zero on error. // This function is for internal use only and should never be directly called. OPENSSL_EXPORT int SHA1_Init_from_state( SHA_CTX *sha, const uint8_t h[SHA1_CHAINING_LENGTH], uint64_t n); OPENSSL_EXPORT int SHA224_Init_from_state( SHA256_CTX *sha, const uint8_t h[SHA224_CHAINING_LENGTH], uint64_t n); OPENSSL_EXPORT int SHA256_Init_from_state( SHA256_CTX *sha, const uint8_t h[SHA256_CHAINING_LENGTH], uint64_t n); OPENSSL_EXPORT int SHA384_Init_from_state( SHA512_CTX *sha, const uint8_t h[SHA384_CHAINING_LENGTH], uint64_t n); OPENSSL_EXPORT int SHA512_Init_from_state( SHA512_CTX *sha, const uint8_t h[SHA512_CHAINING_LENGTH], uint64_t n); OPENSSL_EXPORT int SHA512_224_Init_from_state( SHA512_CTX *sha, const uint8_t h[SHA512_224_CHAINING_LENGTH], uint64_t n); OPENSSL_EXPORT int SHA512_256_Init_from_state( SHA512_CTX *sha, const uint8_t h[SHA512_256_CHAINING_LENGTH], uint64_t n); // SHAx_get_state is a low-level function that exports the hash state in big // endian into |out_h| and the number of bits processed at this point in // |out_n|. |SHAx_Final| must not have been called before (otherwise results // are not guaranteed). Furthermore, the number of bytes processed by // |SHAx_Update| must be a multiple of the block length |SHAy_CBLOCK| and // must be less than 2^61 (otherwise it fails). See comment above about // |SHAx_Init_from_state| for the definition of SHAy. // This function returns one on success and zero on error. // This function is for internal use only and should never be directly called. OPENSSL_EXPORT int SHA1_get_state( SHA_CTX *ctx, uint8_t out_h[SHA1_CHAINING_LENGTH], uint64_t *out_n); OPENSSL_EXPORT int SHA224_get_state( SHA256_CTX *ctx, uint8_t out_h[SHA224_CHAINING_LENGTH], uint64_t *out_n); OPENSSL_EXPORT int SHA256_get_state( SHA256_CTX *ctx, uint8_t out_h[SHA256_CHAINING_LENGTH], uint64_t *out_n); OPENSSL_EXPORT int SHA384_get_state( SHA512_CTX *ctx, uint8_t out_h[SHA384_CHAINING_LENGTH], uint64_t *out_n); OPENSSL_EXPORT int SHA512_get_state( SHA512_CTX *ctx, uint8_t out_h[SHA512_CHAINING_LENGTH], uint64_t *out_n); OPENSSL_EXPORT int SHA512_224_get_state( SHA512_CTX *ctx, uint8_t out_h[SHA512_224_CHAINING_LENGTH], uint64_t *out_n); OPENSSL_EXPORT int SHA512_256_get_state( SHA512_CTX *ctx, uint8_t out_h[SHA512_256_CHAINING_LENGTH], uint64_t *out_n); // SHA3_224 writes the digest of |len| bytes from |data| to |out| and returns |out|. // There must be at least |SHA3_224_DIGEST_LENGTH| bytes of space in |out|. // On failure |SHA3_224| returns NULL. OPENSSL_EXPORT uint8_t *SHA3_224(const uint8_t *data, size_t len, uint8_t out[SHA3_224_DIGEST_LENGTH]); // SHA3_256 writes the digest of |len| bytes from |data| to |out| and returns |out|. // There must be at least |SHA3_256_DIGEST_LENGTH| bytes of space in |out|. // On failure |SHA3_256| returns NULL. OPENSSL_EXPORT uint8_t *SHA3_256(const uint8_t *data, size_t len, uint8_t out[SHA3_256_DIGEST_LENGTH]); // SHA3_384 writes the digest of |len| bytes from |data| to |out| and returns |out|. // There must be at least |SHA3_384_DIGEST_LENGTH| bytes of space in |out|. // On failure |SHA3_384| returns NULL. OPENSSL_EXPORT uint8_t *SHA3_384(const uint8_t *data, size_t len, uint8_t out[SHA3_384_DIGEST_LENGTH]); // SHA3_512 writes the digest of |len| bytes from |data| to |out| and returns |out|. // There must be at least |SHA3_512_DIGEST_LENGTH| bytes of space in |out|. // On failure |SHA3_512| returns NULL. OPENSSL_EXPORT uint8_t *SHA3_512(const uint8_t *data, size_t len, uint8_t out[SHA3_512_DIGEST_LENGTH]); // SHAKE128 writes the |out_len| bytes output from |in_len| bytes |data| // to |out| and returns |out| on success and NULL on failure. OPENSSL_EXPORT uint8_t *SHAKE128(const uint8_t *data, const size_t in_len, uint8_t *out, size_t out_len); // SHAKE256 writes |out_len| bytes output from |in_len| bytes |data| // to |out| and returns |out| on success and NULL on failure. OPENSSL_EXPORT uint8_t *SHAKE256(const uint8_t *data, const size_t in_len, uint8_t *out, size_t out_len); // SHAKE_Init initializes |ctx| with specified |block_size|, returns 1 on // success and 0 on failure. Calls SHA3_Init under the hood. OPENSSL_EXPORT int SHAKE_Init(KECCAK1600_CTX *ctx, size_t block_size); // SHAKE_Final writes |len| bytes of finalized digest to |md|, returns 1 on // success and 0 on failure. Calls SHA3_Final under the hood. OPENSSL_EXPORT int SHAKE_Final(uint8_t *md, KECCAK1600_CTX *ctx, size_t len); // SHA3_Reset zeros the bitstate and the amount of processed input. OPENSSL_EXPORT void SHA3_Reset(KECCAK1600_CTX *ctx); // SHA3_Init initialises |ctx| fields and returns 1 on success and 0 on failure. OPENSSL_EXPORT int SHA3_Init(KECCAK1600_CTX *ctx, uint8_t pad, size_t bitlen); // SHA3_Update processes all data blocks that don't need pad through // |SHA3_Absorb| and returns 1 and 0 on failure. OPENSSL_EXPORT int SHA3_Update(KECCAK1600_CTX *ctx, const void *data, size_t len); // SHA3_Final pads the last data block and processes it through |SHA3_Absorb|. // It processes the data through |SHA3_Squeeze| and returns 1 and 0 on failure. OPENSSL_EXPORT int SHA3_Final(uint8_t *md, KECCAK1600_CTX *ctx); // SHA3_Absorb processes the largest multiple of |r| out of |len| bytes and // returns the remaining number of bytes. OPENSSL_EXPORT size_t SHA3_Absorb(uint64_t A[SHA3_ROWS][SHA3_ROWS], const uint8_t *data, size_t len, size_t r); // SHA3_Squeeze generates |out| value of |len| bytes (per call). It can be called // multiple times when used as eXtendable Output Function. |padded| indicates // whether it is the first call to SHA3_Squeeze; i.e., if the current block has // been already processed and padded right after the last call to SHA3_Absorb. // Squeezes full blocks of |r| bytes each. When performing multiple squeezes, any // left over bytes from previous squeezes are not consumed, and |len| must be a // multiple of the block size (except on the final squeeze). OPENSSL_EXPORT void SHA3_Squeeze(uint64_t A[SHA3_ROWS][SHA3_ROWS], uint8_t *out, size_t len, size_t r, int padded); #if defined(__cplusplus) } // extern "C" #endif #endif // OPENSSL_HEADER_SHA_INTERNAL_H