/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include #include #include "../../internal.h" #include "../digest/md32_common.h" #include "internal.h" int SHA1_Init(SHA_CTX *sha) { OPENSSL_memset(sha, 0, sizeof(SHA_CTX)); sha->h[0] = 0x67452301UL; sha->h[1] = 0xefcdab89UL; sha->h[2] = 0x98badcfeUL; sha->h[3] = 0x10325476UL; sha->h[4] = 0xc3d2e1f0UL; return 1; } int SHA1_Init_from_state(SHA_CTX *sha, const uint8_t h[SHA1_CHAINING_LENGTH], uint64_t n) { if (n % ((uint64_t)SHA_CBLOCK * 8) != 0) { // n is not a multiple of the block size in bits, so it fails return 0; } OPENSSL_memset(sha, 0, sizeof(SHA_CTX)); const size_t out_words = SHA1_CHAINING_LENGTH / 4; for (size_t i = 0; i < out_words; i++) { sha->h[i] = CRYPTO_load_u32_be(h); h += 4; } sha->Nh = n >> 32; sha->Nl = n & 0xffffffff; return 1; } uint8_t *SHA1(const uint8_t *data, size_t len, uint8_t out[SHA_DIGEST_LENGTH]) { // We have to verify that all the SHA services actually succeed before // updating the indicator state, so we lock the state here. FIPS_service_indicator_lock_state(); SHA_CTX ctx; const int ok = SHA1_Init(&ctx) && SHA1_Update(&ctx, data, len) && SHA1_Final(out, &ctx); FIPS_service_indicator_unlock_state(); if(ok) { FIPS_service_indicator_update_state(); } OPENSSL_cleanse(&ctx, sizeof(ctx)); return out; } #if !defined(SHA1_ASM) && !defined(SHA1_ALTIVEC) static void sha1_block_data_order(uint32_t *state, const uint8_t *data, size_t num); #endif void SHA1_Transform(SHA_CTX *c, const uint8_t data[SHA_CBLOCK]) { sha1_block_data_order(c->h, data, 1); } int SHA1_Update(SHA_CTX *c, const void *data, size_t len) { crypto_md32_update(&sha1_block_data_order, c->h, c->data, SHA_CBLOCK, &c->num, &c->Nh, &c->Nl, data, len); return 1; } int SHA1_Final(uint8_t out[SHA_DIGEST_LENGTH], SHA_CTX *c) { crypto_md32_final(&sha1_block_data_order, c->h, c->data, SHA_CBLOCK, &c->num, c->Nh, c->Nl, /*is_big_endian=*/1); CRYPTO_store_u32_be(out, c->h[0]); CRYPTO_store_u32_be(out + 4, c->h[1]); CRYPTO_store_u32_be(out + 8, c->h[2]); CRYPTO_store_u32_be(out + 12, c->h[3]); CRYPTO_store_u32_be(out + 16, c->h[4]); FIPS_service_indicator_update_state(); return 1; } int SHA1_get_state(SHA_CTX *ctx, uint8_t out_h[SHA1_CHAINING_LENGTH], uint64_t *out_n) { if (ctx->Nl % ((uint64_t)SHA_CBLOCK * 8) != 0) { // ctx->Nl is not a multiple of the block size in bits, so it fails return 0; } const size_t out_words = SHA1_CHAINING_LENGTH / 4; for (size_t i = 0; i < out_words; i++) { CRYPTO_store_u32_be(out_h, ctx->h[i]); out_h += 4; } *out_n = (((uint64_t)ctx->Nh) << 32) + ctx->Nl; return 1; } #define Xupdate(a, ix, ia, ib, ic, id) \ do { \ (a) = ((ia) ^ (ib) ^ (ic) ^ (id)); \ (ix) = (a) = CRYPTO_rotl_u32((a), 1); \ } while (0) #define K_00_19 0x5a827999UL #define K_20_39 0x6ed9eba1UL #define K_40_59 0x8f1bbcdcUL #define K_60_79 0xca62c1d6UL // As pointed out by Wei Dai , F() below can be simplified // to the code in F_00_19. Wei attributes these optimisations to Peter // Gutmann's SHS code, and he attributes it to Rich Schroeppel. #define // F(x,y,z) (((x) & (y)) | ((~(x)) & (z))) I've just become aware of another // tweak to be made, again from Wei Dai, in F_40_59, (x&a)|(y&a) -> (x|y)&a #define F_00_19(b, c, d) ((((c) ^ (d)) & (b)) ^ (d)) #define F_20_39(b, c, d) ((b) ^ (c) ^ (d)) #define F_40_59(b, c, d) (((b) & (c)) | (((b) | (c)) & (d))) #define F_60_79(b, c, d) F_20_39(b, c, d) #define BODY_00_15(i, a, b, c, d, e, f, xi) \ do { \ (f) = (xi) + (e) + K_00_19 + CRYPTO_rotl_u32((a), 5) + \ F_00_19((b), (c), (d)); \ (b) = CRYPTO_rotl_u32((b), 30); \ } while (0) #define BODY_16_19(i, a, b, c, d, e, f, xi, xa, xb, xc, xd) \ do { \ Xupdate(f, xi, xa, xb, xc, xd); \ (f) += (e) + K_00_19 + CRYPTO_rotl_u32((a), 5) + F_00_19((b), (c), (d)); \ (b) = CRYPTO_rotl_u32((b), 30); \ } while (0) #define BODY_20_31(i, a, b, c, d, e, f, xi, xa, xb, xc, xd) \ do { \ Xupdate(f, xi, xa, xb, xc, xd); \ (f) += (e) + K_20_39 + CRYPTO_rotl_u32((a), 5) + F_20_39((b), (c), (d)); \ (b) = CRYPTO_rotl_u32((b), 30); \ } while (0) #define BODY_32_39(i, a, b, c, d, e, f, xa, xb, xc, xd) \ do { \ Xupdate(f, xa, xa, xb, xc, xd); \ (f) += (e) + K_20_39 + CRYPTO_rotl_u32((a), 5) + F_20_39((b), (c), (d)); \ (b) = CRYPTO_rotl_u32((b), 30); \ } while (0) #define BODY_40_59(i, a, b, c, d, e, f, xa, xb, xc, xd) \ do { \ Xupdate(f, xa, xa, xb, xc, xd); \ (f) += (e) + K_40_59 + CRYPTO_rotl_u32((a), 5) + F_40_59((b), (c), (d)); \ (b) = CRYPTO_rotl_u32((b), 30); \ } while (0) #define BODY_60_79(i, a, b, c, d, e, f, xa, xb, xc, xd) \ do { \ Xupdate(f, xa, xa, xb, xc, xd); \ (f) = (xa) + (e) + K_60_79 + CRYPTO_rotl_u32((a), 5) + \ F_60_79((b), (c), (d)); \ (b) = CRYPTO_rotl_u32((b), 30); \ } while (0) #ifdef X #undef X #endif /* Originally X was an array. As it's automatic it's natural * to expect RISC compiler to accomodate at least part of it in * the register bank, isn't it? Unfortunately not all compilers * "find" this expectation reasonable:-( On order to make such * compilers generate better code I replace X[] with a bunch of * X0, X1, etc. See the function body below... * */ #define X(i) XX##i #if !defined(SHA1_ASM) && !defined(SHA1_ALTIVEC) #if !defined(SHA1_ASM_NOHW) static void sha1_block_data_order_nohw(uint32_t *state, const uint8_t *data, size_t num) { register uint32_t A, B, C, D, E, T; uint32_t XX0, XX1, XX2, XX3, XX4, XX5, XX6, XX7, XX8, XX9, XX10, XX11, XX12, XX13, XX14, XX15; A = state[0]; B = state[1]; C = state[2]; D = state[3]; E = state[4]; for (;;) { X(0) = CRYPTO_load_u32_be(data); data += 4; X(1) = CRYPTO_load_u32_be(data); data += 4; BODY_00_15(0, A, B, C, D, E, T, X(0)); X(2) = CRYPTO_load_u32_be(data); data += 4; BODY_00_15(1, T, A, B, C, D, E, X(1)); X(3) = CRYPTO_load_u32_be(data); data += 4; BODY_00_15(2, E, T, A, B, C, D, X(2)); X(4) = CRYPTO_load_u32_be(data); data += 4; BODY_00_15(3, D, E, T, A, B, C, X(3)); X(5) = CRYPTO_load_u32_be(data); data += 4; BODY_00_15(4, C, D, E, T, A, B, X(4)); X(6) = CRYPTO_load_u32_be(data); data += 4; BODY_00_15(5, B, C, D, E, T, A, X(5)); X(7) = CRYPTO_load_u32_be(data); data += 4; BODY_00_15(6, A, B, C, D, E, T, X(6)); X(8) = CRYPTO_load_u32_be(data); data += 4; BODY_00_15(7, T, A, B, C, D, E, X(7)); X(9) = CRYPTO_load_u32_be(data); data += 4; BODY_00_15(8, E, T, A, B, C, D, X(8)); X(10) = CRYPTO_load_u32_be(data); data += 4; BODY_00_15(9, D, E, T, A, B, C, X(9)); X(11) = CRYPTO_load_u32_be(data); data += 4; BODY_00_15(10, C, D, E, T, A, B, X(10)); X(12) = CRYPTO_load_u32_be(data); data += 4; BODY_00_15(11, B, C, D, E, T, A, X(11)); X(13) = CRYPTO_load_u32_be(data); data += 4; BODY_00_15(12, A, B, C, D, E, T, X(12)); X(14) = CRYPTO_load_u32_be(data); data += 4; BODY_00_15(13, T, A, B, C, D, E, X(13)); X(15) = CRYPTO_load_u32_be(data); data += 4; BODY_00_15(14, E, T, A, B, C, D, X(14)); BODY_00_15(15, D, E, T, A, B, C, X(15)); BODY_16_19(16, C, D, E, T, A, B, X(0), X(0), X(2), X(8), X(13)); BODY_16_19(17, B, C, D, E, T, A, X(1), X(1), X(3), X(9), X(14)); BODY_16_19(18, A, B, C, D, E, T, X(2), X(2), X(4), X(10), X(15)); BODY_16_19(19, T, A, B, C, D, E, X(3), X(3), X(5), X(11), X(0)); BODY_20_31(20, E, T, A, B, C, D, X(4), X(4), X(6), X(12), X(1)); BODY_20_31(21, D, E, T, A, B, C, X(5), X(5), X(7), X(13), X(2)); BODY_20_31(22, C, D, E, T, A, B, X(6), X(6), X(8), X(14), X(3)); BODY_20_31(23, B, C, D, E, T, A, X(7), X(7), X(9), X(15), X(4)); BODY_20_31(24, A, B, C, D, E, T, X(8), X(8), X(10), X(0), X(5)); BODY_20_31(25, T, A, B, C, D, E, X(9), X(9), X(11), X(1), X(6)); BODY_20_31(26, E, T, A, B, C, D, X(10), X(10), X(12), X(2), X(7)); BODY_20_31(27, D, E, T, A, B, C, X(11), X(11), X(13), X(3), X(8)); BODY_20_31(28, C, D, E, T, A, B, X(12), X(12), X(14), X(4), X(9)); BODY_20_31(29, B, C, D, E, T, A, X(13), X(13), X(15), X(5), X(10)); BODY_20_31(30, A, B, C, D, E, T, X(14), X(14), X(0), X(6), X(11)); BODY_20_31(31, T, A, B, C, D, E, X(15), X(15), X(1), X(7), X(12)); BODY_32_39(32, E, T, A, B, C, D, X(0), X(2), X(8), X(13)); BODY_32_39(33, D, E, T, A, B, C, X(1), X(3), X(9), X(14)); BODY_32_39(34, C, D, E, T, A, B, X(2), X(4), X(10), X(15)); BODY_32_39(35, B, C, D, E, T, A, X(3), X(5), X(11), X(0)); BODY_32_39(36, A, B, C, D, E, T, X(4), X(6), X(12), X(1)); BODY_32_39(37, T, A, B, C, D, E, X(5), X(7), X(13), X(2)); BODY_32_39(38, E, T, A, B, C, D, X(6), X(8), X(14), X(3)); BODY_32_39(39, D, E, T, A, B, C, X(7), X(9), X(15), X(4)); BODY_40_59(40, C, D, E, T, A, B, X(8), X(10), X(0), X(5)); BODY_40_59(41, B, C, D, E, T, A, X(9), X(11), X(1), X(6)); BODY_40_59(42, A, B, C, D, E, T, X(10), X(12), X(2), X(7)); BODY_40_59(43, T, A, B, C, D, E, X(11), X(13), X(3), X(8)); BODY_40_59(44, E, T, A, B, C, D, X(12), X(14), X(4), X(9)); BODY_40_59(45, D, E, T, A, B, C, X(13), X(15), X(5), X(10)); BODY_40_59(46, C, D, E, T, A, B, X(14), X(0), X(6), X(11)); BODY_40_59(47, B, C, D, E, T, A, X(15), X(1), X(7), X(12)); BODY_40_59(48, A, B, C, D, E, T, X(0), X(2), X(8), X(13)); BODY_40_59(49, T, A, B, C, D, E, X(1), X(3), X(9), X(14)); BODY_40_59(50, E, T, A, B, C, D, X(2), X(4), X(10), X(15)); BODY_40_59(51, D, E, T, A, B, C, X(3), X(5), X(11), X(0)); BODY_40_59(52, C, D, E, T, A, B, X(4), X(6), X(12), X(1)); BODY_40_59(53, B, C, D, E, T, A, X(5), X(7), X(13), X(2)); BODY_40_59(54, A, B, C, D, E, T, X(6), X(8), X(14), X(3)); BODY_40_59(55, T, A, B, C, D, E, X(7), X(9), X(15), X(4)); BODY_40_59(56, E, T, A, B, C, D, X(8), X(10), X(0), X(5)); BODY_40_59(57, D, E, T, A, B, C, X(9), X(11), X(1), X(6)); BODY_40_59(58, C, D, E, T, A, B, X(10), X(12), X(2), X(7)); BODY_40_59(59, B, C, D, E, T, A, X(11), X(13), X(3), X(8)); BODY_60_79(60, A, B, C, D, E, T, X(12), X(14), X(4), X(9)); BODY_60_79(61, T, A, B, C, D, E, X(13), X(15), X(5), X(10)); BODY_60_79(62, E, T, A, B, C, D, X(14), X(0), X(6), X(11)); BODY_60_79(63, D, E, T, A, B, C, X(15), X(1), X(7), X(12)); BODY_60_79(64, C, D, E, T, A, B, X(0), X(2), X(8), X(13)); BODY_60_79(65, B, C, D, E, T, A, X(1), X(3), X(9), X(14)); BODY_60_79(66, A, B, C, D, E, T, X(2), X(4), X(10), X(15)); BODY_60_79(67, T, A, B, C, D, E, X(3), X(5), X(11), X(0)); BODY_60_79(68, E, T, A, B, C, D, X(4), X(6), X(12), X(1)); BODY_60_79(69, D, E, T, A, B, C, X(5), X(7), X(13), X(2)); BODY_60_79(70, C, D, E, T, A, B, X(6), X(8), X(14), X(3)); BODY_60_79(71, B, C, D, E, T, A, X(7), X(9), X(15), X(4)); BODY_60_79(72, A, B, C, D, E, T, X(8), X(10), X(0), X(5)); BODY_60_79(73, T, A, B, C, D, E, X(9), X(11), X(1), X(6)); BODY_60_79(74, E, T, A, B, C, D, X(10), X(12), X(2), X(7)); BODY_60_79(75, D, E, T, A, B, C, X(11), X(13), X(3), X(8)); BODY_60_79(76, C, D, E, T, A, B, X(12), X(14), X(4), X(9)); BODY_60_79(77, B, C, D, E, T, A, X(13), X(15), X(5), X(10)); BODY_60_79(78, A, B, C, D, E, T, X(14), X(0), X(6), X(11)); BODY_60_79(79, T, A, B, C, D, E, X(15), X(1), X(7), X(12)); state[0] = (state[0] + E) & 0xffffffffL; state[1] = (state[1] + T) & 0xffffffffL; state[2] = (state[2] + A) & 0xffffffffL; state[3] = (state[3] + B) & 0xffffffffL; state[4] = (state[4] + C) & 0xffffffffL; if (--num == 0) { break; } A = state[0]; B = state[1]; C = state[2]; D = state[3]; E = state[4]; } } #endif // !SHA1_ASM_NOHW static void sha1_block_data_order(uint32_t *state, const uint8_t *data, size_t num) { #if defined(SHA1_ASM_HW) if (sha1_hw_capable()) { sha1_block_data_order_hw(state, data, num); return; } #endif #if defined(SHA1_ASM_AVX2) && !defined(MY_ASSEMBLER_IS_TOO_OLD_FOR_AVX) if (sha1_avx2_capable()) { sha1_block_data_order_avx(state, data, num); return; } #endif #if defined(SHA1_ASM_AVX) && !defined(MY_ASSEMBLER_IS_TOO_OLD_FOR_AVX) if (sha1_avx_capable()) { sha1_block_data_order_avx(state, data, num); return; } #endif #if defined(SHA1_ASM_SSSE3) if (sha1_ssse3_capable()) { sha1_block_data_order_ssse3(state, data, num); return; } #endif #if defined(SHA1_ASM_NEON) if (CRYPTO_is_NEON_capable()) { sha1_block_data_order_neon(state, data, num); return; } #endif sha1_block_data_order_nohw(state, data, num); } #endif // !SHA1_ASM && !SHA1_ALTIVEC #undef Xupdate #undef K_00_19 #undef K_20_39 #undef K_40_59 #undef K_60_79 #undef F_00_19 #undef F_20_39 #undef F_40_59 #undef F_60_79 #undef BODY_00_15 #undef BODY_16_19 #undef BODY_20_31 #undef BODY_32_39 #undef BODY_40_59 #undef BODY_60_79 #undef X