/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include #include #include "../../internal.h" #include "../digest/md32_common.h" #include "internal.h" int SHA224_Init(SHA256_CTX *sha) { OPENSSL_memset(sha, 0, sizeof(SHA256_CTX)); sha->h[0] = 0xc1059ed8UL; sha->h[1] = 0x367cd507UL; sha->h[2] = 0x3070dd17UL; sha->h[3] = 0xf70e5939UL; sha->h[4] = 0xffc00b31UL; sha->h[5] = 0x68581511UL; sha->h[6] = 0x64f98fa7UL; sha->h[7] = 0xbefa4fa4UL; sha->md_len = SHA224_DIGEST_LENGTH; return 1; } int SHA256_Init(SHA256_CTX *sha) { OPENSSL_memset(sha, 0, sizeof(SHA256_CTX)); sha->h[0] = 0x6a09e667UL; sha->h[1] = 0xbb67ae85UL; sha->h[2] = 0x3c6ef372UL; sha->h[3] = 0xa54ff53aUL; sha->h[4] = 0x510e527fUL; sha->h[5] = 0x9b05688cUL; sha->h[6] = 0x1f83d9abUL; sha->h[7] = 0x5be0cd19UL; sha->md_len = SHA256_DIGEST_LENGTH; return 1; } OPENSSL_STATIC_ASSERT(SHA256_CHAINING_LENGTH==SHA224_CHAINING_LENGTH, sha256_and_sha224_have_same_chaining_length) // sha256_init_from_state_impl is the implementation of // SHA256_Init_from_state and SHA224_Init_from_state // Note that the state h is always SHA256_CHAINING_LENGTH-byte long static int sha256_init_from_state_impl(SHA256_CTX *sha, int md_len, const uint8_t h[SHA256_CHAINING_LENGTH], uint64_t n) { if(n % ((uint64_t) SHA256_CBLOCK * 8) != 0) { // n is not a multiple of the block size in bits, so it fails return 0; } OPENSSL_memset(sha, 0, sizeof(SHA256_CTX)); sha->md_len = md_len; const size_t out_words = SHA256_CHAINING_LENGTH / 4; for (size_t i = 0; i < out_words; i++) { sha->h[i] = CRYPTO_load_u32_be(h); h += 4; } sha->Nh = n >> 32; sha->Nl = n & 0xffffffff; return 1; } int SHA224_Init_from_state(SHA256_CTX *sha, const uint8_t h[SHA224_CHAINING_LENGTH], uint64_t n) { return sha256_init_from_state_impl(sha, SHA224_DIGEST_LENGTH, h, n); } int SHA256_Init_from_state(SHA256_CTX *sha, const uint8_t h[SHA256_CHAINING_LENGTH], uint64_t n) { return sha256_init_from_state_impl(sha, SHA256_DIGEST_LENGTH, h, n); } uint8_t *SHA224(const uint8_t *data, size_t len, uint8_t out[SHA224_DIGEST_LENGTH]) { // We have to verify that all the SHA services actually succeed before // updating the indicator state, so we lock the state here. FIPS_service_indicator_lock_state(); SHA256_CTX ctx; const int ok = SHA224_Init(&ctx) && SHA224_Update(&ctx, data, len) && SHA224_Final(out, &ctx); FIPS_service_indicator_unlock_state(); if(ok) { FIPS_service_indicator_update_state(); } OPENSSL_cleanse(&ctx, sizeof(ctx)); return out; } uint8_t *SHA256(const uint8_t *data, size_t len, uint8_t out[SHA256_DIGEST_LENGTH]) { // We have to verify that all the SHA services actually succeed before // updating the indicator state, so we lock the state here. FIPS_service_indicator_lock_state(); SHA256_CTX ctx; const int ok = SHA256_Init(&ctx) && SHA256_Update(&ctx, data, len) && SHA256_Final(out, &ctx); FIPS_service_indicator_unlock_state(); if(ok) { FIPS_service_indicator_update_state(); } OPENSSL_cleanse(&ctx, sizeof(ctx)); return out; } #if !defined(SHA256_ASM) static void sha256_block_data_order(uint32_t *state, const uint8_t *in, size_t num); #endif void SHA256_Transform(SHA256_CTX *c, const uint8_t data[SHA256_CBLOCK]) { sha256_block_data_order(c->h, data, 1); } int SHA256_Update(SHA256_CTX *c, const void *data, size_t len) { crypto_md32_update(&sha256_block_data_order, c->h, c->data, SHA256_CBLOCK, &c->num, &c->Nh, &c->Nl, data, len); return 1; } int SHA224_Update(SHA256_CTX *ctx, const void *data, size_t len) { return SHA256_Update(ctx, data, len); } static int sha256_final_impl(uint8_t *out, size_t md_len, SHA256_CTX *c) { crypto_md32_final(&sha256_block_data_order, c->h, c->data, SHA256_CBLOCK, &c->num, c->Nh, c->Nl, /*is_big_endian=*/1); if (c->md_len != md_len) { return 0; } assert(md_len % 4 == 0); const size_t out_words = md_len / 4; for (size_t i = 0; i < out_words; i++) { CRYPTO_store_u32_be(out, c->h[i]); out += 4; } FIPS_service_indicator_update_state(); return 1; } int SHA256_Final(uint8_t out[SHA256_DIGEST_LENGTH], SHA256_CTX *c) { return sha256_final_impl(out, SHA256_DIGEST_LENGTH, c); } int SHA224_Final(uint8_t out[SHA224_DIGEST_LENGTH], SHA256_CTX *ctx) { return sha256_final_impl(out, SHA224_DIGEST_LENGTH, ctx); } // sha256_get_state_impl is the implementation of // SHA256_get_state and SHA224_get_state // Note that the state out_h is always SHA256_CHAINING_LENGTH-byte long static int sha256_get_state_impl(SHA256_CTX *ctx, uint8_t out_h[SHA256_CHAINING_LENGTH], uint64_t *out_n) { if (ctx->Nl % ((uint64_t)SHA256_CBLOCK * 8) != 0) { // ctx->Nl is not a multiple of the block size in bits, so it fails return 0; } const size_t out_words = SHA256_CHAINING_LENGTH / 4; for (size_t i = 0; i < out_words; i++) { CRYPTO_store_u32_be(out_h, ctx->h[i]); out_h += 4; } *out_n = (((uint64_t)ctx->Nh) << 32) + ctx->Nl; return 1; } int SHA224_get_state(SHA256_CTX *ctx, uint8_t out_h[SHA224_CHAINING_LENGTH], uint64_t *out_n) { return sha256_get_state_impl(ctx, out_h, out_n); } int SHA256_get_state(SHA256_CTX *ctx, uint8_t out_h[SHA256_CHAINING_LENGTH], uint64_t *out_n) { return sha256_get_state_impl(ctx, out_h, out_n); } #if !defined(SHA256_ASM) #if !defined(SHA256_ASM_NOHW) static const uint32_t K256[64] = { 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL}; // See FIPS 180-4, section 4.1.2. #define Sigma0(x) \ (CRYPTO_rotr_u32((x), 2) ^ CRYPTO_rotr_u32((x), 13) ^ \ CRYPTO_rotr_u32((x), 22)) #define Sigma1(x) \ (CRYPTO_rotr_u32((x), 6) ^ CRYPTO_rotr_u32((x), 11) ^ \ CRYPTO_rotr_u32((x), 25)) #define sigma0(x) \ (CRYPTO_rotr_u32((x), 7) ^ CRYPTO_rotr_u32((x), 18) ^ ((x) >> 3)) #define sigma1(x) \ (CRYPTO_rotr_u32((x), 17) ^ CRYPTO_rotr_u32((x), 19) ^ ((x) >> 10)) #define Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z))) #define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) #define ROUND_00_15(i, a, b, c, d, e, f, g, h) \ do { \ T1 += h + Sigma1(e) + Ch(e, f, g) + K256[i]; \ h = Sigma0(a) + Maj(a, b, c); \ d += T1; \ h += T1; \ } while (0) #define ROUND_16_63(i, a, b, c, d, e, f, g, h, X) \ do { \ s0 = X[(i + 1) & 0x0f]; \ s0 = sigma0(s0); \ s1 = X[(i + 14) & 0x0f]; \ s1 = sigma1(s1); \ T1 = X[(i) & 0x0f] += s0 + s1 + X[(i + 9) & 0x0f]; \ ROUND_00_15(i, a, b, c, d, e, f, g, h); \ } while (0) static void sha256_block_data_order_nohw(uint32_t *state, const uint8_t *data, size_t num) { uint32_t a, b, c, d, e, f, g, h, s0, s1, T1; uint32_t X[16]; int i; while (num--) { a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; f = state[5]; g = state[6]; h = state[7]; T1 = X[0] = CRYPTO_load_u32_be(data); data += 4; ROUND_00_15(0, a, b, c, d, e, f, g, h); T1 = X[1] = CRYPTO_load_u32_be(data); data += 4; ROUND_00_15(1, h, a, b, c, d, e, f, g); T1 = X[2] = CRYPTO_load_u32_be(data); data += 4; ROUND_00_15(2, g, h, a, b, c, d, e, f); T1 = X[3] = CRYPTO_load_u32_be(data); data += 4; ROUND_00_15(3, f, g, h, a, b, c, d, e); T1 = X[4] = CRYPTO_load_u32_be(data); data += 4; ROUND_00_15(4, e, f, g, h, a, b, c, d); T1 = X[5] = CRYPTO_load_u32_be(data); data += 4; ROUND_00_15(5, d, e, f, g, h, a, b, c); T1 = X[6] = CRYPTO_load_u32_be(data); data += 4; ROUND_00_15(6, c, d, e, f, g, h, a, b); T1 = X[7] = CRYPTO_load_u32_be(data); data += 4; ROUND_00_15(7, b, c, d, e, f, g, h, a); T1 = X[8] = CRYPTO_load_u32_be(data); data += 4; ROUND_00_15(8, a, b, c, d, e, f, g, h); T1 = X[9] = CRYPTO_load_u32_be(data); data += 4; ROUND_00_15(9, h, a, b, c, d, e, f, g); T1 = X[10] = CRYPTO_load_u32_be(data); data += 4; ROUND_00_15(10, g, h, a, b, c, d, e, f); T1 = X[11] = CRYPTO_load_u32_be(data); data += 4; ROUND_00_15(11, f, g, h, a, b, c, d, e); T1 = X[12] = CRYPTO_load_u32_be(data); data += 4; ROUND_00_15(12, e, f, g, h, a, b, c, d); T1 = X[13] = CRYPTO_load_u32_be(data); data += 4; ROUND_00_15(13, d, e, f, g, h, a, b, c); T1 = X[14] = CRYPTO_load_u32_be(data); data += 4; ROUND_00_15(14, c, d, e, f, g, h, a, b); T1 = X[15] = CRYPTO_load_u32_be(data); data += 4; ROUND_00_15(15, b, c, d, e, f, g, h, a); for (i = 16; i < 64; i += 8) { ROUND_16_63(i + 0, a, b, c, d, e, f, g, h, X); ROUND_16_63(i + 1, h, a, b, c, d, e, f, g, X); ROUND_16_63(i + 2, g, h, a, b, c, d, e, f, X); ROUND_16_63(i + 3, f, g, h, a, b, c, d, e, X); ROUND_16_63(i + 4, e, f, g, h, a, b, c, d, X); ROUND_16_63(i + 5, d, e, f, g, h, a, b, c, X); ROUND_16_63(i + 6, c, d, e, f, g, h, a, b, X); ROUND_16_63(i + 7, b, c, d, e, f, g, h, a, X); } state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; state[5] += f; state[6] += g; state[7] += h; } } #endif // !defined(SHA256_ASM_NOHW) static void sha256_block_data_order(uint32_t *state, const uint8_t *data, size_t num) { #if defined(SHA256_ASM_HW) if (sha256_hw_capable()) { sha256_block_data_order_hw(state, data, num); return; } #endif #if defined(SHA256_ASM_AVX) && !defined(MY_ASSEMBLER_IS_TOO_OLD_FOR_AVX) if (sha256_avx_capable()) { sha256_block_data_order_avx(state, data, num); return; } #endif #if defined(SHA256_ASM_SSSE3) if (sha256_ssse3_capable()) { sha256_block_data_order_ssse3(state, data, num); return; } #endif #if defined(SHA256_ASM_NEON) if (CRYPTO_is_NEON_capable()) { sha256_block_data_order_neon(state, data, num); return; } #endif sha256_block_data_order_nohw(state, data, num); } #endif // !defined(SHA256_ASM) void SHA256_TransformBlocks(uint32_t state[8], const uint8_t *data, size_t num_blocks) { sha256_block_data_order(state, data, num_blocks); } #undef Sigma0 #undef Sigma1 #undef sigma0 #undef sigma1 #undef Ch #undef Maj #undef ROUND_00_15 #undef ROUND_16_63