/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include #include #include "internal.h" #include "../../internal.h" // The 32-bit hash algorithms share a common byte-order neutral collector and // padding function implementations that operate on unaligned data, // ../digest/md32_common.h. SHA-512 is the only 64-bit hash algorithm, as of // this writing, so there is no need for a common collector/padding // implementation yet. static int sha512_final_impl(uint8_t *out, size_t md_len, SHA512_CTX *sha); int SHA384_Init(SHA512_CTX *sha) { sha->h[0] = UINT64_C(0xcbbb9d5dc1059ed8); sha->h[1] = UINT64_C(0x629a292a367cd507); sha->h[2] = UINT64_C(0x9159015a3070dd17); sha->h[3] = UINT64_C(0x152fecd8f70e5939); sha->h[4] = UINT64_C(0x67332667ffc00b31); sha->h[5] = UINT64_C(0x8eb44a8768581511); sha->h[6] = UINT64_C(0xdb0c2e0d64f98fa7); sha->h[7] = UINT64_C(0x47b5481dbefa4fa4); sha->Nl = 0; sha->Nh = 0; sha->num = 0; sha->md_len = SHA384_DIGEST_LENGTH; return 1; } int SHA512_Init(SHA512_CTX *sha) { sha->h[0] = UINT64_C(0x6a09e667f3bcc908); sha->h[1] = UINT64_C(0xbb67ae8584caa73b); sha->h[2] = UINT64_C(0x3c6ef372fe94f82b); sha->h[3] = UINT64_C(0xa54ff53a5f1d36f1); sha->h[4] = UINT64_C(0x510e527fade682d1); sha->h[5] = UINT64_C(0x9b05688c2b3e6c1f); sha->h[6] = UINT64_C(0x1f83d9abfb41bd6b); sha->h[7] = UINT64_C(0x5be0cd19137e2179); sha->Nl = 0; sha->Nh = 0; sha->num = 0; sha->md_len = SHA512_DIGEST_LENGTH; return 1; } int SHA512_224_Init(SHA512_CTX *sha) { sha->h[0] = UINT64_C(0x8c3d37c819544da2); sha->h[1] = UINT64_C(0x73e1996689dcd4d6); sha->h[2] = UINT64_C(0x1dfab7ae32ff9c82); sha->h[3] = UINT64_C(0x679dd514582f9fcf); sha->h[4] = UINT64_C(0x0f6d2b697bd44da8); sha->h[5] = UINT64_C(0x77e36f7304c48942); sha->h[6] = UINT64_C(0x3f9d85a86a1d36c8); sha->h[7] = UINT64_C(0x1112e6ad91d692a1); sha->Nl = 0; sha->Nh = 0; sha->num = 0; sha->md_len = SHA512_224_DIGEST_LENGTH; return 1; } int SHA512_256_Init(SHA512_CTX *sha) { sha->h[0] = UINT64_C(0x22312194fc2bf72c); sha->h[1] = UINT64_C(0x9f555fa3c84c64c2); sha->h[2] = UINT64_C(0x2393b86b6f53b151); sha->h[3] = UINT64_C(0x963877195940eabd); sha->h[4] = UINT64_C(0x96283ee2a88effe3); sha->h[5] = UINT64_C(0xbe5e1e2553863992); sha->h[6] = UINT64_C(0x2b0199fc2c85b8aa); sha->h[7] = UINT64_C(0x0eb72ddc81c52ca2); sha->Nl = 0; sha->Nh = 0; sha->num = 0; sha->md_len = SHA512_256_DIGEST_LENGTH; return 1; } OPENSSL_STATIC_ASSERT(SHA512_CHAINING_LENGTH==SHA384_CHAINING_LENGTH, sha512_and_sha384_have_same_chaining_length) OPENSSL_STATIC_ASSERT(SHA512_CHAINING_LENGTH==SHA512_224_CHAINING_LENGTH, sha512_and_sha512_224_have_same_chaining_length) OPENSSL_STATIC_ASSERT(SHA512_CHAINING_LENGTH==SHA512_256_CHAINING_LENGTH, sha512_and_sha512_256_have_same_chaining_length) // sha512_init_from_state_impl is the implementation of // SHA512_Init_from_state and SHA224_Init_from_state // Note that the state h is always SHA512_CHAINING_LENGTH-byte long static int sha512_init_from_state_impl(SHA512_CTX *sha, int md_len, const uint8_t h[SHA512_CHAINING_LENGTH], uint64_t n) { if(n % ((uint64_t) SHA512_CBLOCK * 8) != 0) { // n is not a multiple of the block size in bits, so it fails return 0; } OPENSSL_memset(sha, 0, sizeof(SHA512_CTX)); sha->md_len = md_len; const size_t out_words = SHA512_CHAINING_LENGTH / 8; for (size_t i = 0; i < out_words; i++) { sha->h[i] = CRYPTO_load_u64_be(h); h += 8; } sha->Nh = 0; sha->Nl = n; return 1; } int SHA384_Init_from_state(SHA512_CTX *sha, const uint8_t h[SHA384_CHAINING_LENGTH], uint64_t n) { return sha512_init_from_state_impl(sha, SHA384_DIGEST_LENGTH, h, n); } int SHA512_Init_from_state(SHA512_CTX *sha, const uint8_t h[SHA512_CHAINING_LENGTH], uint64_t n) { return sha512_init_from_state_impl(sha, SHA512_DIGEST_LENGTH, h, n); } int SHA512_224_Init_from_state(SHA512_CTX *sha, const uint8_t h[SHA512_224_CHAINING_LENGTH], uint64_t n) { return sha512_init_from_state_impl(sha, SHA512_224_DIGEST_LENGTH, h, n); } int SHA512_256_Init_from_state(SHA512_CTX *sha, const uint8_t h[SHA512_256_CHAINING_LENGTH], uint64_t n) { return sha512_init_from_state_impl(sha, SHA512_256_DIGEST_LENGTH, h, n); } uint8_t *SHA384(const uint8_t *data, size_t len, uint8_t out[SHA384_DIGEST_LENGTH]) { // We have to verify that all the SHA services actually succeed before // updating the indicator state, so we lock the state here. FIPS_service_indicator_lock_state(); SHA512_CTX ctx; const int ok = SHA384_Init(&ctx) && SHA384_Update(&ctx, data, len) && SHA384_Final(out, &ctx); FIPS_service_indicator_unlock_state(); if(ok) { FIPS_service_indicator_update_state(); } OPENSSL_cleanse(&ctx, sizeof(ctx)); return out; } uint8_t *SHA512(const uint8_t *data, size_t len, uint8_t out[SHA512_DIGEST_LENGTH]) { // We have to verify that all the SHA services actually succeed before // updating the indicator state, so we lock the state here. FIPS_service_indicator_lock_state(); SHA512_CTX ctx; const int ok = SHA512_Init(&ctx) && SHA512_Update(&ctx, data, len) && SHA512_Final(out, &ctx); FIPS_service_indicator_unlock_state(); if(ok) { FIPS_service_indicator_update_state(); } OPENSSL_cleanse(&ctx, sizeof(ctx)); return out; } uint8_t *SHA512_224(const uint8_t *data, size_t len, uint8_t out[SHA512_224_DIGEST_LENGTH]) { // We have to verify that all the SHA services actually succeed before // updating the indicator state, so we lock the state here. FIPS_service_indicator_lock_state(); SHA512_CTX ctx; const int ok = SHA512_224_Init(&ctx) && SHA512_224_Update(&ctx, data, len) && SHA512_224_Final(out, &ctx); FIPS_service_indicator_unlock_state(); if(ok) { FIPS_service_indicator_update_state(); } OPENSSL_cleanse(&ctx, sizeof(ctx)); return out; } uint8_t *SHA512_256(const uint8_t *data, size_t len, uint8_t out[SHA512_256_DIGEST_LENGTH]) { // We have to verify that all the SHA services actually succeed before // updating the indicator state, so we lock the state here. FIPS_service_indicator_lock_state(); SHA512_CTX ctx; const int ok = SHA512_256_Init(&ctx) && SHA512_256_Update(&ctx, data, len) && SHA512_256_Final(out, &ctx); FIPS_service_indicator_unlock_state(); if(ok) { FIPS_service_indicator_update_state(); } OPENSSL_cleanse(&ctx, sizeof(ctx)); return out; } #if !defined(SHA512_ASM) static void sha512_block_data_order(uint64_t *state, const uint8_t *in, size_t num_blocks); #endif int SHA384_Final(uint8_t out[SHA384_DIGEST_LENGTH], SHA512_CTX *sha) { // This function must be paired with |SHA384_Init|, which sets |sha->md_len| // to |SHA384_DIGEST_LENGTH|. assert(sha->md_len == SHA384_DIGEST_LENGTH); return sha512_final_impl(out, SHA384_DIGEST_LENGTH, sha); } int SHA384_Update(SHA512_CTX *sha, const void *data, size_t len) { return SHA512_Update(sha, data, len); } int SHA512_224_Update(SHA512_CTX *sha, const void *data, size_t len) { return SHA512_Update(sha, data, len); } int SHA512_224_Final(uint8_t out[SHA512_224_DIGEST_LENGTH], SHA512_CTX *sha) { // This function must be paired with |SHA512_224_Init|, which sets // |sha->md_len| to |SHA512_224_DIGEST_LENGTH|. assert(sha->md_len == SHA512_224_DIGEST_LENGTH); return sha512_final_impl(out, SHA512_224_DIGEST_LENGTH, sha); } int SHA512_256_Update(SHA512_CTX *sha, const void *data, size_t len) { return SHA512_Update(sha, data, len); } int SHA512_256_Final(uint8_t out[SHA512_256_DIGEST_LENGTH], SHA512_CTX *sha) { // This function must be paired with |SHA512_256_Init|, which sets // |sha->md_len| to |SHA512_256_DIGEST_LENGTH|. assert(sha->md_len == SHA512_256_DIGEST_LENGTH); return sha512_final_impl(out, SHA512_256_DIGEST_LENGTH, sha); } void SHA512_Transform(SHA512_CTX *c, const uint8_t block[SHA512_CBLOCK]) { sha512_block_data_order(c->h, block, 1); } int SHA512_Update(SHA512_CTX *c, const void *in_data, size_t len) { uint64_t l; uint8_t *p = c->p; const uint8_t *data = in_data; if (len == 0) { return 1; } l = (c->Nl + (((uint64_t)len) << 3)) & UINT64_C(0xffffffffffffffff); if (l < c->Nl) { c->Nh++; } if (sizeof(len) >= 8) { c->Nh += (((uint64_t)len) >> 61); } c->Nl = l; if (c->num != 0) { size_t n = sizeof(c->p) - c->num; if (len < n) { OPENSSL_memcpy(p + c->num, data, len); c->num += (unsigned int)len; return 1; } else { OPENSSL_memcpy(p + c->num, data, n), c->num = 0; len -= n; data += n; sha512_block_data_order(c->h, p, 1); } } if (len >= sizeof(c->p)) { sha512_block_data_order(c->h, data, len / sizeof(c->p)); data += len; len %= sizeof(c->p); data -= len; } if (len != 0) { OPENSSL_memcpy(p, data, len); c->num = (int)len; } return 1; } int SHA512_Final(uint8_t out[SHA512_DIGEST_LENGTH], SHA512_CTX *sha) { // Ideally we would assert |sha->md_len| is |SHA512_DIGEST_LENGTH| to match // the size hint, but calling code often pairs |SHA384_Init| with // |SHA512_Final| and expects |sha->md_len| to carry the size over. // // TODO(davidben): Add an assert and fix code to match them up. return sha512_final_impl(out, sha->md_len, sha); } static int sha512_final_impl(uint8_t *out, size_t md_len, SHA512_CTX *sha) { uint8_t *p = sha->p; size_t n = sha->num; p[n] = 0x80; // There always is a room for one n++; if (n > (sizeof(sha->p) - 16)) { OPENSSL_memset(p + n, 0, sizeof(sha->p) - n); n = 0; sha512_block_data_order(sha->h, p, 1); } OPENSSL_memset(p + n, 0, sizeof(sha->p) - 16 - n); CRYPTO_store_u64_be(p + sizeof(sha->p) - 16, sha->Nh); CRYPTO_store_u64_be(p + sizeof(sha->p) - 8, sha->Nl); sha512_block_data_order(sha->h, p, 1); if (out == NULL) { // TODO(davidben): This NULL check is absent in other low-level hash 'final' // functions and is one of the few places one can fail. return 0; } const size_t out_words = md_len / 8; assert(md_len % 8 == 0 || md_len == SHA512_224_DIGEST_LENGTH); for (size_t i = 0; i < out_words; i++) { CRYPTO_store_u64_be(out, sha->h[i]); out += 8; } // SHA-512 and SHA-512/256 are aligned to 8-byte words, SHA-512/224 is not. // If the digest size is not aligned to 8-byte words, we need to process the // non-word-aligned "trailer". if (md_len == SHA512_224_DIGEST_LENGTH) { uint64_t trailer; CRYPTO_store_u64_be(&trailer, sha->h[out_words]); OPENSSL_memcpy(out, &trailer, SHA512_224_DIGEST_LENGTH % 8); } FIPS_service_indicator_update_state(); return 1; } // sha512_get_state_impl is the implementation of // SHA512_get_state and SHA224_get_state // Note that the state out_h is always SHA512_CHAINING_LENGTH-byte long static int sha512_get_state_impl(SHA512_CTX *ctx, uint8_t out_h[SHA512_CHAINING_LENGTH], uint64_t *out_n) { if (ctx->Nl % ((uint64_t)SHA512_CBLOCK * 8) != 0) { // ctx->Nl is not a multiple of the block size in bits, so it fails return 0; } if (ctx->Nh != 0) { // |sha512_get_state_impl| assumes that at most 2^64 bits have been // processed by the hash function return 0; } const size_t out_words = SHA512_CHAINING_LENGTH / 8; for (size_t i = 0; i < out_words; i++) { CRYPTO_store_u64_be(out_h, ctx->h[i]); out_h += 8; } *out_n = ctx->Nl; // we know that ctx->Nh = 0 return 1; } int SHA384_get_state(SHA512_CTX *ctx, uint8_t out_h[SHA384_CHAINING_LENGTH], uint64_t *out_n) { return sha512_get_state_impl(ctx, out_h, out_n); } int SHA512_get_state(SHA512_CTX *ctx, uint8_t out_h[SHA512_CHAINING_LENGTH], uint64_t *out_n) { return sha512_get_state_impl(ctx, out_h, out_n); } int SHA512_224_get_state(SHA512_CTX *ctx, uint8_t out_h[SHA512_224_CHAINING_LENGTH], uint64_t *out_n) { return sha512_get_state_impl(ctx, out_h, out_n); } int SHA512_256_get_state(SHA512_CTX *ctx, uint8_t out_h[SHA512_256_CHAINING_LENGTH], uint64_t *out_n) { return sha512_get_state_impl(ctx, out_h, out_n); } #if !defined(SHA512_ASM) #if !defined(SHA512_ASM_NOHW) static const uint64_t K512[80] = { UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd), UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc), UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019), UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118), UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe), UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2), UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1), UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694), UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3), UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65), UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483), UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5), UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210), UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4), UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725), UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70), UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926), UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df), UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8), UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b), UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001), UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30), UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910), UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8), UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53), UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8), UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb), UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3), UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60), UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec), UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9), UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b), UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207), UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178), UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6), UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b), UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493), UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c), UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a), UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817), }; #define Sigma0(x) \ (CRYPTO_rotr_u64((x), 28) ^ CRYPTO_rotr_u64((x), 34) ^ \ CRYPTO_rotr_u64((x), 39)) #define Sigma1(x) \ (CRYPTO_rotr_u64((x), 14) ^ CRYPTO_rotr_u64((x), 18) ^ \ CRYPTO_rotr_u64((x), 41)) #define sigma0(x) \ (CRYPTO_rotr_u64((x), 1) ^ CRYPTO_rotr_u64((x), 8) ^ ((x) >> 7)) #define sigma1(x) \ (CRYPTO_rotr_u64((x), 19) ^ CRYPTO_rotr_u64((x), 61) ^ ((x) >> 6)) #define Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z))) #define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) #if defined(__i386) || defined(__i386__) || defined(_M_IX86) // This code should give better results on 32-bit CPU with less than // ~24 registers, both size and performance wise... static void sha512_block_data_order_nohw(uint64_t *state, const uint8_t *in, size_t num) { uint64_t A, E, T; uint64_t X[9 + 80], *F; int i; while (num--) { F = X + 80; A = state[0]; F[1] = state[1]; F[2] = state[2]; F[3] = state[3]; E = state[4]; F[5] = state[5]; F[6] = state[6]; F[7] = state[7]; for (i = 0; i < 16; i++, F--) { T = CRYPTO_load_u64_be(in + i * 8); F[0] = A; F[4] = E; F[8] = T; T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i]; E = F[3] + T; A = T + Sigma0(A) + Maj(A, F[1], F[2]); } for (; i < 80; i++, F--) { T = sigma0(F[8 + 16 - 1]); T += sigma1(F[8 + 16 - 14]); T += F[8 + 16] + F[8 + 16 - 9]; F[0] = A; F[4] = E; F[8] = T; T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i]; E = F[3] + T; A = T + Sigma0(A) + Maj(A, F[1], F[2]); } state[0] += A; state[1] += F[1]; state[2] += F[2]; state[3] += F[3]; state[4] += E; state[5] += F[5]; state[6] += F[6]; state[7] += F[7]; in += 16 * 8; } } #else #define ROUND_00_15(i, a, b, c, d, e, f, g, h) \ do { \ T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i]; \ h = Sigma0(a) + Maj(a, b, c); \ d += T1; \ h += T1; \ } while (0) #define ROUND_16_80(i, j, a, b, c, d, e, f, g, h, X) \ do { \ s0 = X[(j + 1) & 0x0f]; \ s0 = sigma0(s0); \ s1 = X[(j + 14) & 0x0f]; \ s1 = sigma1(s1); \ T1 = X[(j) & 0x0f] += s0 + s1 + X[(j + 9) & 0x0f]; \ ROUND_00_15(i + j, a, b, c, d, e, f, g, h); \ } while (0) static void sha512_block_data_order_nohw(uint64_t *state, const uint8_t *in, size_t num) { uint64_t a, b, c, d, e, f, g, h, s0, s1, T1; uint64_t X[16]; int i; while (num--) { a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; f = state[5]; g = state[6]; h = state[7]; T1 = X[0] = CRYPTO_load_u64_be(in); ROUND_00_15(0, a, b, c, d, e, f, g, h); T1 = X[1] = CRYPTO_load_u64_be(in + 8); ROUND_00_15(1, h, a, b, c, d, e, f, g); T1 = X[2] = CRYPTO_load_u64_be(in + 2 * 8); ROUND_00_15(2, g, h, a, b, c, d, e, f); T1 = X[3] = CRYPTO_load_u64_be(in + 3 * 8); ROUND_00_15(3, f, g, h, a, b, c, d, e); T1 = X[4] = CRYPTO_load_u64_be(in + 4 * 8); ROUND_00_15(4, e, f, g, h, a, b, c, d); T1 = X[5] = CRYPTO_load_u64_be(in + 5 * 8); ROUND_00_15(5, d, e, f, g, h, a, b, c); T1 = X[6] = CRYPTO_load_u64_be(in + 6 * 8); ROUND_00_15(6, c, d, e, f, g, h, a, b); T1 = X[7] = CRYPTO_load_u64_be(in + 7 * 8); ROUND_00_15(7, b, c, d, e, f, g, h, a); T1 = X[8] = CRYPTO_load_u64_be(in + 8 * 8); ROUND_00_15(8, a, b, c, d, e, f, g, h); T1 = X[9] = CRYPTO_load_u64_be(in + 9 * 8); ROUND_00_15(9, h, a, b, c, d, e, f, g); T1 = X[10] = CRYPTO_load_u64_be(in + 10 * 8); ROUND_00_15(10, g, h, a, b, c, d, e, f); T1 = X[11] = CRYPTO_load_u64_be(in + 11 * 8); ROUND_00_15(11, f, g, h, a, b, c, d, e); T1 = X[12] = CRYPTO_load_u64_be(in + 12 * 8); ROUND_00_15(12, e, f, g, h, a, b, c, d); T1 = X[13] = CRYPTO_load_u64_be(in + 13 * 8); ROUND_00_15(13, d, e, f, g, h, a, b, c); T1 = X[14] = CRYPTO_load_u64_be(in + 14 * 8); ROUND_00_15(14, c, d, e, f, g, h, a, b); T1 = X[15] = CRYPTO_load_u64_be(in + 15 * 8); ROUND_00_15(15, b, c, d, e, f, g, h, a); for (i = 16; i < 80; i += 16) { ROUND_16_80(i, 0, a, b, c, d, e, f, g, h, X); ROUND_16_80(i, 1, h, a, b, c, d, e, f, g, X); ROUND_16_80(i, 2, g, h, a, b, c, d, e, f, X); ROUND_16_80(i, 3, f, g, h, a, b, c, d, e, X); ROUND_16_80(i, 4, e, f, g, h, a, b, c, d, X); ROUND_16_80(i, 5, d, e, f, g, h, a, b, c, X); ROUND_16_80(i, 6, c, d, e, f, g, h, a, b, X); ROUND_16_80(i, 7, b, c, d, e, f, g, h, a, X); ROUND_16_80(i, 8, a, b, c, d, e, f, g, h, X); ROUND_16_80(i, 9, h, a, b, c, d, e, f, g, X); ROUND_16_80(i, 10, g, h, a, b, c, d, e, f, X); ROUND_16_80(i, 11, f, g, h, a, b, c, d, e, X); ROUND_16_80(i, 12, e, f, g, h, a, b, c, d, X); ROUND_16_80(i, 13, d, e, f, g, h, a, b, c, X); ROUND_16_80(i, 14, c, d, e, f, g, h, a, b, X); ROUND_16_80(i, 15, b, c, d, e, f, g, h, a, X); } state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; state[5] += f; state[6] += g; state[7] += h; in += 16 * 8; } } #endif #endif // !SHA512_ASM_NOHW static void sha512_block_data_order(uint64_t *state, const uint8_t *data, size_t num) { #if defined(SHA512_ASM_HW) if (sha512_hw_capable()) { sha512_block_data_order_hw(state, data, num); return; } #endif #if defined(SHA512_ASM_AVX) && !defined(MY_ASSEMBLER_IS_TOO_OLD_FOR_AVX) if (sha512_avx_capable()) { sha512_block_data_order_avx(state, data, num); return; } #endif #if defined(SHA512_ASM_NEON) if (CRYPTO_is_NEON_capable()) { sha512_block_data_order_neon(state, data, num); return; } #endif sha512_block_data_order_nohw(state, data, num); } #endif // !SHA512_ASM #undef Sigma0 #undef Sigma1 #undef sigma0 #undef sigma1 #undef Ch #undef Maj #undef ROUND_00_15 #undef ROUND_16_80