/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../internal.h" #include "../fipsmodule/evp/internal.h" #define MIN_LENGTH 4 static int load_iv(char **fromp, unsigned char *to, size_t num); static int check_pem(const char *nm, const char *name); // PEM_proc_type appends a Proc-Type header to |buf|, determined by |type|. static void PEM_proc_type(char buf[PEM_BUFSIZE], int type) { const char *str; if (type == PEM_TYPE_ENCRYPTED) { str = "ENCRYPTED"; } else if (type == PEM_TYPE_MIC_CLEAR) { str = "MIC-CLEAR"; } else if (type == PEM_TYPE_MIC_ONLY) { str = "MIC-ONLY"; } else { str = "BAD-TYPE"; } OPENSSL_strlcat(buf, "Proc-Type: 4,", PEM_BUFSIZE); OPENSSL_strlcat(buf, str, PEM_BUFSIZE); OPENSSL_strlcat(buf, "\n", PEM_BUFSIZE); } // PEM_dek_info appends a DEK-Info header to |buf|, with an algorithm of |type| // and a single parameter, specified by hex-encoding |len| bytes from |str|. static void PEM_dek_info(char buf[PEM_BUFSIZE], const char *type, size_t len, char *str) { static const unsigned char map[17] = "0123456789ABCDEF"; OPENSSL_strlcat(buf, "DEK-Info: ", PEM_BUFSIZE); OPENSSL_strlcat(buf, type, PEM_BUFSIZE); OPENSSL_strlcat(buf, ",", PEM_BUFSIZE); size_t buf_len = strlen(buf); // We must write an additional |2 * len + 2| bytes after |buf_len|, including // the trailing newline and NUL. if (len > (PEM_BUFSIZE - buf_len - 2) / 2) { return; } for (size_t i = 0; i < len; i++) { buf[buf_len + i * 2] = map[(str[i] >> 4) & 0x0f]; buf[buf_len + i * 2 + 1] = map[(str[i]) & 0x0f]; } buf[buf_len + len * 2] = '\n'; buf[buf_len + len * 2 + 1] = '\0'; } void *PEM_ASN1_read(d2i_of_void *d2i, const char *name, FILE *fp, void **x, pem_password_cb *cb, void *u) { BIO *b = BIO_new_fp(fp, BIO_NOCLOSE); if (b == NULL) { OPENSSL_PUT_ERROR(PEM, ERR_R_BUF_LIB); return NULL; } void *ret = PEM_ASN1_read_bio(d2i, name, b, x, cb, u); BIO_free(b); return ret; } static int check_pem(const char *nm, const char *name) { // Normal matching nm and name if (!strcmp(nm, name)) { return 1; } // Make PEM_STRING_EVP_PKEY match any private key if (!strcmp(name, PEM_STRING_EVP_PKEY)) { return !strcmp(nm, PEM_STRING_PKCS8) || !strcmp(nm, PEM_STRING_PKCS8INF) || !strcmp(nm, PEM_STRING_RSA) || !strcmp(nm, PEM_STRING_EC) || !strcmp(nm, PEM_STRING_DSA); } // These correspond with the PEM strings that have "PARAMETERS". if (!strcmp(name, PEM_STRING_PARAMETERS)) { return !strcmp(nm, PEM_STRING_ECPARAMETERS) || !strcmp(nm, PEM_STRING_DSAPARAMS) || !strcmp(nm, PEM_STRING_DHPARAMS); } // Permit older strings if (!strcmp(nm, PEM_STRING_X509_OLD) && !strcmp(name, PEM_STRING_X509)) { return 1; } if (!strcmp(nm, PEM_STRING_X509_REQ_OLD) && !strcmp(name, PEM_STRING_X509_REQ)) { return 1; } // Allow normal certs to be read as trusted certs if (!strcmp(nm, PEM_STRING_X509) && !strcmp(name, PEM_STRING_X509_TRUSTED)) { return 1; } if (!strcmp(nm, PEM_STRING_X509_OLD) && !strcmp(name, PEM_STRING_X509_TRUSTED)) { return 1; } // Some CAs use PKCS#7 with CERTIFICATE headers if (!strcmp(nm, PEM_STRING_X509) && !strcmp(name, PEM_STRING_PKCS7)) { return 1; } if (!strcmp(nm, PEM_STRING_PKCS7_SIGNED) && !strcmp(name, PEM_STRING_PKCS7)) { return 1; } #ifndef OPENSSL_NO_CMS if (!strcmp(nm, PEM_STRING_X509) && !strcmp(name, PEM_STRING_CMS)) { return 1; } // Allow CMS to be read from PKCS#7 headers if (!strcmp(nm, PEM_STRING_PKCS7) && !strcmp(name, PEM_STRING_CMS)) { return 1; } #endif return 0; } static const EVP_CIPHER *cipher_by_name(const char *name) { // This is similar to the (deprecated) function |EVP_get_cipherbyname|. Note // the PEM code assumes that ciphers have at least 8 bytes of IV, at most 20 // bytes of overhead and generally behave like CBC mode. if (0 == strcmp(name, SN_des_cbc)) { return EVP_des_cbc(); } else if (0 == strcmp(name, SN_des_ede3_cbc)) { return EVP_des_ede3_cbc(); } else if (0 == strcmp(name, SN_aes_128_cbc)) { return EVP_aes_128_cbc(); } else if (0 == strcmp(name, SN_aes_192_cbc)) { return EVP_aes_192_cbc(); } else if (0 == strcmp(name, SN_aes_256_cbc)) { return EVP_aes_256_cbc(); } else { return NULL; } } int PEM_bytes_read_bio(unsigned char **pdata, long *plen, char **pnm, const char *name, BIO *bp, pem_password_cb *cb, void *u) { EVP_CIPHER_INFO cipher; char *nm = NULL, *header = NULL; unsigned char *data = NULL; long len; int ret = 0; for (;;) { if (!PEM_read_bio(bp, &nm, &header, &data, &len)) { uint32_t error = ERR_peek_error(); if (ERR_GET_LIB(error) == ERR_LIB_PEM && ERR_GET_REASON(error) == PEM_R_NO_START_LINE) { ERR_add_error_data(2, "Expecting: ", name); } return 0; } if (check_pem(nm, name)) { break; } OPENSSL_free(nm); OPENSSL_free(header); OPENSSL_free(data); } if (!PEM_get_EVP_CIPHER_INFO(header, &cipher)) { goto err; } if (!PEM_do_header(&cipher, data, &len, cb, u)) { goto err; } *pdata = data; *plen = len; if (pnm) { *pnm = nm; } ret = 1; err: if (!ret || !pnm) { OPENSSL_free(nm); } OPENSSL_free(header); if (!ret) { OPENSSL_free(data); } return ret; } int PEM_ASN1_write(i2d_of_void *i2d, const char *name, FILE *fp, void *x, const EVP_CIPHER *enc, unsigned char *kstr, int klen, pem_password_cb *callback, void *u) { BIO *b = BIO_new_fp(fp, BIO_NOCLOSE); if (b == NULL) { OPENSSL_PUT_ERROR(PEM, ERR_R_BUF_LIB); return 0; } int ret = PEM_ASN1_write_bio(i2d, name, b, x, enc, kstr, klen, callback, u); BIO_free(b); return ret; } int PEM_ASN1_write_bio(i2d_of_void *i2d, const char *name, BIO *bp, void *x, const EVP_CIPHER *enc, unsigned char *kstr, int klen, pem_password_cb *callback, void *u) { EVP_CIPHER_CTX ctx; int dsize = 0, i, j, ret = 0; unsigned char *p, *data = NULL; const char *objstr = NULL; char buf[PEM_BUFSIZE]; unsigned char key[EVP_MAX_KEY_LENGTH]; unsigned char iv[EVP_MAX_IV_LENGTH]; if (enc != NULL) { objstr = OBJ_nid2sn(EVP_CIPHER_nid(enc)); if (objstr == NULL || cipher_by_name(objstr) == NULL || EVP_CIPHER_iv_length(enc) < 8) { OPENSSL_PUT_ERROR(PEM, PEM_R_UNSUPPORTED_CIPHER); goto err; } } if ((dsize = i2d(x, NULL)) < 0) { OPENSSL_PUT_ERROR(PEM, ERR_R_ASN1_LIB); dsize = 0; goto err; } // dzise + 8 bytes are needed // actually it needs the cipher block size extra... data = (unsigned char *)OPENSSL_malloc((unsigned int)dsize + 20); if (data == NULL) { goto err; } p = data; i = i2d(x, &p); if (enc != NULL) { const unsigned iv_len = EVP_CIPHER_iv_length(enc); if (kstr == NULL) { klen = 0; if (!callback) { callback = PEM_def_callback; } klen = (*callback)(buf, PEM_BUFSIZE, 1, u); if (klen <= 0) { OPENSSL_PUT_ERROR(PEM, PEM_R_READ_KEY); goto err; } kstr = (unsigned char *)buf; } assert(iv_len <= sizeof(iv)); if (!RAND_bytes(iv, iv_len)) { // Generate a salt goto err; } // The 'iv' is used as the iv and as a salt. It is NOT taken from // the BytesToKey function if (!EVP_BytesToKey(enc, EVP_md5(), iv, kstr, klen, 1, key, NULL)) { goto err; } if (kstr == (unsigned char *)buf) { OPENSSL_cleanse(buf, PEM_BUFSIZE); } assert(strlen(objstr) + 23 + 2 * iv_len + 13 <= sizeof(buf)); buf[0] = '\0'; PEM_proc_type(buf, PEM_TYPE_ENCRYPTED); PEM_dek_info(buf, objstr, iv_len, (char *)iv); // k=strlen(buf); EVP_CIPHER_CTX_init(&ctx); ret = 1; if (!EVP_EncryptInit_ex(&ctx, enc, NULL, key, iv) || !EVP_EncryptUpdate(&ctx, data, &j, data, i) || !EVP_EncryptFinal_ex(&ctx, &(data[j]), &i)) { ret = 0; } else { i += j; } EVP_CIPHER_CTX_cleanup(&ctx); if (ret == 0) { goto err; } } else { ret = 1; buf[0] = '\0'; } i = PEM_write_bio(bp, name, buf, data, i); if (i <= 0) { ret = 0; } err: OPENSSL_cleanse(key, sizeof(key)); OPENSSL_cleanse(iv, sizeof(iv)); OPENSSL_cleanse((char *)&ctx, sizeof(ctx)); OPENSSL_cleanse(buf, PEM_BUFSIZE); OPENSSL_free(data); return ret; } int PEM_do_header(EVP_CIPHER_INFO *cipher, unsigned char *data, long *plen, pem_password_cb *callback, void *u) { int i = 0, j, o, klen; long len; EVP_CIPHER_CTX ctx; unsigned char key[EVP_MAX_KEY_LENGTH]; char buf[PEM_BUFSIZE]; len = *plen; if (cipher->cipher == NULL) { return 1; } klen = 0; if (!callback) { callback = PEM_def_callback; } klen = callback(buf, PEM_BUFSIZE, 0, u); if (klen <= 0) { OPENSSL_PUT_ERROR(PEM, PEM_R_BAD_PASSWORD_READ); return 0; } if (!EVP_BytesToKey(cipher->cipher, EVP_md5(), &(cipher->iv[0]), (unsigned char *)buf, klen, 1, key, NULL)) { return 0; } j = (int)len; EVP_CIPHER_CTX_init(&ctx); o = EVP_DecryptInit_ex(&ctx, cipher->cipher, NULL, key, &(cipher->iv[0])); if (o) { o = EVP_DecryptUpdate(&ctx, data, &i, data, j); } if (o) { o = EVP_DecryptFinal_ex(&ctx, &(data[i]), &j); } EVP_CIPHER_CTX_cleanup(&ctx); OPENSSL_cleanse((char *)buf, sizeof(buf)); OPENSSL_cleanse((char *)key, sizeof(key)); if (!o) { OPENSSL_PUT_ERROR(PEM, PEM_R_BAD_DECRYPT); return 0; } j += i; *plen = j; return 1; } int PEM_get_EVP_CIPHER_INFO(char *header, EVP_CIPHER_INFO *cipher) { const EVP_CIPHER *enc = NULL; char *p, c; char **header_pp = &header; cipher->cipher = NULL; OPENSSL_memset(cipher->iv, 0, sizeof(cipher->iv)); if ((header == NULL) || (*header == '\0') || (*header == '\n')) { return 1; } if (strncmp(header, "Proc-Type: ", 11) != 0) { OPENSSL_PUT_ERROR(PEM, PEM_R_NOT_PROC_TYPE); return 0; } header += 11; if (*header != '4') { return 0; } header++; if (*header != ',') { return 0; } header++; if (strncmp(header, "ENCRYPTED", 9) != 0) { OPENSSL_PUT_ERROR(PEM, PEM_R_NOT_ENCRYPTED); return 0; } for (; (*header != '\n') && (*header != '\0'); header++) { ; } if (*header == '\0') { OPENSSL_PUT_ERROR(PEM, PEM_R_SHORT_HEADER); return 0; } header++; if (strncmp(header, "DEK-Info: ", 10) != 0) { OPENSSL_PUT_ERROR(PEM, PEM_R_NOT_DEK_INFO); return 0; } header += 10; p = header; for (;;) { c = *header; if (!((c >= 'A' && c <= 'Z') || c == '-' || OPENSSL_isdigit(c))) { break; } header++; } *header = '\0'; cipher->cipher = enc = cipher_by_name(p); *header = c; header++; if (enc == NULL) { OPENSSL_PUT_ERROR(PEM, PEM_R_UNSUPPORTED_ENCRYPTION); return 0; } // The IV parameter must be at least 8 bytes long to be used as the salt in // the KDF. (This should not happen given |cipher_by_name|.) if (EVP_CIPHER_iv_length(enc) < 8) { assert(0); OPENSSL_PUT_ERROR(PEM, PEM_R_UNSUPPORTED_ENCRYPTION); return 0; } if (!load_iv(header_pp, &(cipher->iv[0]), EVP_CIPHER_iv_length(enc))) { return 0; } return 1; } static int load_iv(char **fromp, unsigned char *to, size_t num) { uint8_t v; char *from; from = *fromp; for (size_t i = 0; i < num; i++) { to[i] = 0; } num *= 2; for (size_t i = 0; i < num; i++) { if (!OPENSSL_fromxdigit(&v, *from)) { OPENSSL_PUT_ERROR(PEM, PEM_R_BAD_IV_CHARS); return 0; } from++; to[i / 2] |= v << (!(i & 1)) * 4; } *fromp = from; return 1; } int PEM_write(FILE *fp, const char *name, const char *header, const unsigned char *data, long len) { BIO *b = BIO_new_fp(fp, BIO_NOCLOSE); if (b == NULL) { OPENSSL_PUT_ERROR(PEM, ERR_R_BUF_LIB); return 0; } int ret = PEM_write_bio(b, name, header, data, len); BIO_free(b); return ret; } int PEM_write_bio(BIO *bp, const char *name, const char *header, const unsigned char *data, long len) { int nlen, n, i, j, outl; unsigned char *buf = NULL; EVP_ENCODE_CTX ctx; int reason = ERR_R_BUF_LIB; EVP_EncodeInit(&ctx); nlen = strlen(name); if ((BIO_write(bp, "-----BEGIN ", 11) != 11) || (BIO_write(bp, name, nlen) != nlen) || (BIO_write(bp, "-----\n", 6) != 6)) { goto err; } i = (header != NULL) ? strlen(header) : 0; if (i > 0) { if ((BIO_write(bp, header, i) != i) || (BIO_write(bp, "\n", 1) != 1)) { goto err; } } buf = OPENSSL_malloc(PEM_BUFSIZE * 8); if (buf == NULL) { goto err; } i = j = 0; while (len > 0) { n = (int)((len > (PEM_BUFSIZE * 5)) ? (PEM_BUFSIZE * 5) : len); if(!EVP_EncodeUpdate(&ctx, buf, &outl, &(data[j]), n)) { goto err; } if ((outl) && (BIO_write(bp, (char *)buf, outl) != outl)) { goto err; } i += outl; len -= n; j += n; } EVP_EncodeFinal(&ctx, buf, &outl); if ((outl > 0) && (BIO_write(bp, (char *)buf, outl) != outl)) { goto err; } OPENSSL_free(buf); buf = NULL; if ((BIO_write(bp, "-----END ", 9) != 9) || (BIO_write(bp, name, nlen) != nlen) || (BIO_write(bp, "-----\n", 6) != 6)) { goto err; } return i + outl; err: if (buf) { OPENSSL_free(buf); } OPENSSL_PUT_ERROR(PEM, reason); return 0; } int PEM_read(FILE *fp, char **name, char **header, unsigned char **data, long *len) { BIO *b = BIO_new_fp(fp, BIO_NOCLOSE); if (b == NULL) { OPENSSL_PUT_ERROR(PEM, ERR_R_BUF_LIB); return 0; } int ret = PEM_read_bio(b, name, header, data, len); BIO_free(b); return ret; } int PEM_read_bio(BIO *bp, char **name, char **header, unsigned char **data, long *len) { EVP_ENCODE_CTX ctx; int end = 0, i, k, bl = 0, hl = 0, nohead = 0; char buf[256]; BUF_MEM *nameB; BUF_MEM *headerB; BUF_MEM *dataB, *tmpB; nameB = BUF_MEM_new(); headerB = BUF_MEM_new(); dataB = BUF_MEM_new(); if ((nameB == NULL) || (headerB == NULL) || (dataB == NULL)) { BUF_MEM_free(nameB); BUF_MEM_free(headerB); BUF_MEM_free(dataB); return 0; } buf[254] = '\0'; for (;;) { i = BIO_gets(bp, buf, 254); if (i <= 0) { OPENSSL_PUT_ERROR(PEM, PEM_R_NO_START_LINE); goto err; } while ((i >= 0) && (buf[i] <= ' ')) { i--; } buf[++i] = '\n'; buf[++i] = '\0'; if (strncmp(buf, "-----BEGIN ", 11) == 0) { i = strlen(&(buf[11])); if (strncmp(&(buf[11 + i - 6]), "-----\n", 6) != 0) { continue; } if (!BUF_MEM_grow(nameB, i + 9)) { goto err; } OPENSSL_memcpy(nameB->data, &(buf[11]), i - 6); nameB->data[i - 6] = '\0'; break; } } hl = 0; if (!BUF_MEM_grow(headerB, 256)) { goto err; } headerB->data[0] = '\0'; for (;;) { i = BIO_gets(bp, buf, 254); if (i <= 0) { break; } while ((i >= 0) && (buf[i] <= ' ')) { i--; } buf[++i] = '\n'; buf[++i] = '\0'; if (buf[0] == '\n') { break; } if (!BUF_MEM_grow(headerB, hl + i + 9)) { goto err; } if (strncmp(buf, "-----END ", 9) == 0) { nohead = 1; break; } OPENSSL_memcpy(&(headerB->data[hl]), buf, i); headerB->data[hl + i] = '\0'; hl += i; } bl = 0; if (!BUF_MEM_grow(dataB, 1024)) { goto err; } dataB->data[0] = '\0'; if (!nohead) { for (;;) { i = BIO_gets(bp, buf, 254); if (i <= 0) { break; } while ((i >= 0) && (buf[i] <= ' ')) { i--; } buf[++i] = '\n'; buf[++i] = '\0'; if (i != 65) { end = 1; } if (strncmp(buf, "-----END ", 9) == 0) { break; } if (i > 65) { break; } if (!BUF_MEM_grow_clean(dataB, i + bl + 9)) { goto err; } OPENSSL_memcpy(&(dataB->data[bl]), buf, i); dataB->data[bl + i] = '\0'; bl += i; if (end) { buf[0] = '\0'; i = BIO_gets(bp, buf, 254); if (i <= 0) { break; } while ((i >= 0) && (buf[i] <= ' ')) { i--; } buf[++i] = '\n'; buf[++i] = '\0'; break; } } } else { tmpB = headerB; headerB = dataB; dataB = tmpB; bl = hl; } i = strlen(nameB->data); if ((strncmp(buf, "-----END ", 9) != 0) || (strncmp(nameB->data, &(buf[9]), i) != 0) || (strncmp(&(buf[9 + i]), "-----\n", 6) != 0)) { OPENSSL_PUT_ERROR(PEM, PEM_R_BAD_END_LINE); goto err; } EVP_DecodeInit(&ctx); i = EVP_DecodeUpdate(&ctx, (unsigned char *)dataB->data, &bl, (unsigned char *)dataB->data, bl); if (i < 0) { OPENSSL_PUT_ERROR(PEM, PEM_R_BAD_BASE64_DECODE); goto err; } i = EVP_DecodeFinal(&ctx, (unsigned char *)&(dataB->data[bl]), &k); if (i < 0) { OPENSSL_PUT_ERROR(PEM, PEM_R_BAD_BASE64_DECODE); goto err; } bl += k; if (bl == 0) { goto err; } *name = nameB->data; *header = headerB->data; *data = (unsigned char *)dataB->data; *len = bl; OPENSSL_free(nameB); OPENSSL_free(headerB); OPENSSL_free(dataB); return 1; err: BUF_MEM_free(nameB); BUF_MEM_free(headerB); BUF_MEM_free(dataB); return 0; } int PEM_def_callback(char *buf, int size, int rwflag, void *userdata) { if (!buf || !userdata || size < 0) { return 0; } size_t len = strlen((char *)userdata); if (len >= (size_t)size) { return 0; } OPENSSL_strlcpy(buf, userdata, (size_t)size); return (int)len; }