/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include #include #include #include #include #include #include #include #include #include #include "../fipsmodule/evp/internal.h" EVP_PKEY *PEM_read_bio_PrivateKey(BIO *bp, EVP_PKEY **x, pem_password_cb *cb, void *u) { char *nm = NULL; const unsigned char *p = NULL; unsigned char *data = NULL; long len; EVP_PKEY *ret = NULL; if (!PEM_bytes_read_bio(&data, &len, &nm, PEM_STRING_EVP_PKEY, bp, cb, u)) { return NULL; } p = data; if (strcmp(nm, PEM_STRING_PKCS8INF) == 0) { PKCS8_PRIV_KEY_INFO *p8inf; p8inf = d2i_PKCS8_PRIV_KEY_INFO(NULL, &p, len); if (!p8inf) { goto p8err; } ret = EVP_PKCS82PKEY(p8inf); if (x) { if (*x) { EVP_PKEY_free((EVP_PKEY *)*x); } *x = ret; } PKCS8_PRIV_KEY_INFO_free(p8inf); } else if (strcmp(nm, PEM_STRING_PKCS8) == 0) { PKCS8_PRIV_KEY_INFO *p8inf; X509_SIG *p8; int klen; char psbuf[PEM_BUFSIZE]; p8 = d2i_X509_SIG(NULL, &p, len); if (!p8) { goto p8err; } klen = 0; if (!cb) { cb = PEM_def_callback; } klen = cb(psbuf, PEM_BUFSIZE, 0, u); if (klen <= 0) { OPENSSL_PUT_ERROR(PEM, PEM_R_BAD_PASSWORD_READ); X509_SIG_free(p8); goto err; } p8inf = PKCS8_decrypt(p8, psbuf, klen); X509_SIG_free(p8); OPENSSL_cleanse(psbuf, klen); if (!p8inf) { goto p8err; } ret = EVP_PKCS82PKEY(p8inf); if (x) { if (*x) { EVP_PKEY_free((EVP_PKEY *)*x); } *x = ret; } PKCS8_PRIV_KEY_INFO_free(p8inf); } else if (strcmp(nm, PEM_STRING_RSA) == 0) { // TODO(davidben): d2i_PrivateKey parses PKCS#8 along with the // standalone format. This and the cases below probably should not // accept PKCS#8. ret = d2i_PrivateKey(EVP_PKEY_RSA, x, &p, len); } else if (strcmp(nm, PEM_STRING_EC) == 0) { ret = d2i_PrivateKey(EVP_PKEY_EC, x, &p, len); } else if (strcmp(nm, PEM_STRING_DSA) == 0) { ret = d2i_PrivateKey(EVP_PKEY_DSA, x, &p, len); } p8err: if (ret == NULL) { OPENSSL_PUT_ERROR(PEM, ERR_R_ASN1_LIB); } err: OPENSSL_free(nm); OPENSSL_free(data); return ret; } int PEM_write_bio_PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc, unsigned char *kstr, int klen, pem_password_cb *cb, void *u) { return PEM_write_bio_PKCS8PrivateKey(bp, x, enc, (char *)kstr, klen, cb, u); } EVP_PKEY *PEM_read_bio_Parameters(BIO *bio, EVP_PKEY **pkey) { if (bio == NULL) { OPENSSL_PUT_ERROR(PEM, ERR_R_PASSED_NULL_PARAMETER); return NULL; } char *nm = NULL; unsigned char *data = NULL; long len; if (!PEM_bytes_read_bio(&data, &len, &nm, PEM_STRING_PARAMETERS, bio, 0, NULL)) { return NULL; } const unsigned char *data_const = data; // Implementing the ASN1 logic here allows us to decouple the pem logic for // |EVP_PKEY|. These correspond to the historical |param_decode| // |EVP_PKEY_ASN1_METHOD| hooks in OpenSSL. EVP_PKEY *ret = EVP_PKEY_new(); if (ret == NULL) { goto err; } if (strcmp(nm, PEM_STRING_ECPARAMETERS) == 0) { EC_KEY *ec_key = d2i_ECParameters(NULL, &data_const, len); if (ec_key == NULL || !EVP_PKEY_assign_EC_KEY(ret, ec_key)) { OPENSSL_PUT_ERROR(EVP, ERR_R_EC_LIB); EC_KEY_free(ec_key); goto err; } } else if (strcmp(nm, PEM_STRING_DSAPARAMS) == 0) { DSA *dsa = d2i_DSAparams(NULL, &data_const, len); if (dsa == NULL || !EVP_PKEY_assign_DSA(ret, dsa)) { OPENSSL_PUT_ERROR(EVP, ERR_R_DSA_LIB); DSA_free(dsa); goto err; } } else if (strcmp(nm, PEM_STRING_DHPARAMS) == 0) { DH *dh = d2i_DHparams(NULL, &data_const, len); if (dh == NULL || !EVP_PKEY_assign_DH(ret, dh)) { OPENSSL_PUT_ERROR(EVP, ERR_R_DH_LIB); DH_free(dh); goto err; } } else { goto err; } if (pkey != NULL) { EVP_PKEY_free(*pkey); *pkey = ret; } OPENSSL_free(nm); OPENSSL_free(data); return ret; err: EVP_PKEY_free(ret); OPENSSL_free(nm); OPENSSL_free(data); return NULL; } static int i2d_ECParameters_void(const void *key, uint8_t **out) { return i2d_ECParameters((EC_KEY *)key, out); } static int i2d_DSAparams_void(const void *key, uint8_t **out) { return i2d_DSAparams((DSA *)key, out); } static int i2d_DHparams_void(const void *key, uint8_t **out) { return i2d_DHparams((DH *)key, out); } int PEM_write_bio_Parameters(BIO *bio, EVP_PKEY *pkey) { if (bio == NULL || pkey == NULL) { OPENSSL_PUT_ERROR(PEM, ERR_R_PASSED_NULL_PARAMETER); return 0; } // Implementing the ASN1 logic here allows us to decouple the pem logic for // |EVP_PKEY|. These correspond to the historical |param_encode| // |EVP_PKEY_ASN1_METHOD| hooks in OpenSSL. char pem_str[80]; switch (pkey->type) { case EVP_PKEY_EC: BIO_snprintf(pem_str, 80, PEM_STRING_ECPARAMETERS); return PEM_ASN1_write_bio(i2d_ECParameters_void, pem_str, bio, pkey->pkey.ec, NULL, NULL, 0, 0, NULL); case EVP_PKEY_DSA: BIO_snprintf(pem_str, 80, PEM_STRING_DSAPARAMS); return PEM_ASN1_write_bio(i2d_DSAparams_void, pem_str, bio, pkey->pkey.dsa, NULL, NULL, 0, 0, NULL); case EVP_PKEY_DH: BIO_snprintf(pem_str, 80, PEM_STRING_DHPARAMS); return PEM_ASN1_write_bio(i2d_DHparams_void, pem_str, bio, pkey->pkey.dh, NULL, NULL, 0, 0, NULL); default: return 0; } } static int i2d_PrivateKey_void(const void *key, uint8_t **out) { return i2d_PrivateKey((const EVP_PKEY *)key, out); } int PEM_write_bio_PrivateKey_traditional(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc, unsigned char *kstr, int klen, pem_password_cb *cb, void *u) { if (bp == NULL || x == NULL || x->ameth == NULL || x->ameth->pem_str == NULL) { OPENSSL_PUT_ERROR(PEM, ERR_R_PASSED_NULL_PARAMETER); return 0; } char pem_str[80]; BIO_snprintf(pem_str, sizeof(pem_str), "%s PRIVATE KEY", x->ameth->pem_str); return PEM_ASN1_write_bio(i2d_PrivateKey_void, pem_str, bp, x, enc, kstr, klen, cb, u); } EVP_PKEY *PEM_read_PrivateKey(FILE *fp, EVP_PKEY **x, pem_password_cb *cb, void *u) { BIO *b = BIO_new_fp(fp, BIO_NOCLOSE); if (b == NULL) { OPENSSL_PUT_ERROR(PEM, ERR_R_BUF_LIB); return NULL; } EVP_PKEY *ret = PEM_read_bio_PrivateKey(b, x, cb, u); BIO_free(b); return ret; } int PEM_write_PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, unsigned char *kstr, int klen, pem_password_cb *cb, void *u) { BIO *b = BIO_new_fp(fp, BIO_NOCLOSE); if (b == NULL) { OPENSSL_PUT_ERROR(PEM, ERR_R_BUF_LIB); return 0; } int ret = PEM_write_bio_PrivateKey(b, x, enc, kstr, klen, cb, u); BIO_free(b); return ret; }