/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include #include #include #include #include #include #include #include "../fipsmodule/bn/internal.h" #include "../fipsmodule/rsa/internal.h" #include "../internal.h" #include "internal.h" static void rand_nonzero(uint8_t *out, size_t len) { RAND_bytes(out, len); for (size_t i = 0; i < len; i++) { // Zero values are replaced, and the distribution of zero and non-zero bytes // is public, so leaking this is safe. while (constant_time_declassify_int(out[i] == 0)) { RAND_bytes(out + i, 1); } } } int RSA_padding_add_PKCS1_OAEP_mgf1(uint8_t *to, size_t to_len, const uint8_t *from, size_t from_len, const uint8_t *param, size_t param_len, const EVP_MD *md, const EVP_MD *mgf1md) { if (md == NULL) { md = EVP_sha1(); } if (mgf1md == NULL) { mgf1md = md; } size_t mdlen = EVP_MD_size(md); if (to_len < 2 * mdlen + 2) { OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); return 0; } size_t emlen = to_len - 1; if (from_len > emlen - 2 * mdlen - 1) { OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); return 0; } if (emlen < 2 * mdlen + 1) { OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); return 0; } to[0] = 0; uint8_t *seed = to + 1; uint8_t *db = to + mdlen + 1; uint8_t *dbmask = NULL; int ret = 0; if (!EVP_Digest(param, param_len, db, NULL, md, NULL)) { goto out; } OPENSSL_memset(db + mdlen, 0, emlen - from_len - 2 * mdlen - 1); db[emlen - from_len - mdlen - 1] = 0x01; OPENSSL_memcpy(db + emlen - from_len - mdlen, from, from_len); if (!RAND_bytes(seed, mdlen)) { goto out; } dbmask = OPENSSL_malloc(emlen - mdlen); if (dbmask == NULL) { goto out; } OPENSSL_BEGIN_ALLOW_DEPRECATED if (!PKCS1_MGF1(dbmask, emlen - mdlen, seed, mdlen, mgf1md)) { goto out; } for (size_t i = 0; i < emlen - mdlen; i++) { db[i] ^= dbmask[i]; } uint8_t seedmask[EVP_MAX_MD_SIZE]; if (!PKCS1_MGF1(seedmask, mdlen, db, emlen - mdlen, mgf1md)) { goto out; } OPENSSL_END_ALLOW_DEPRECATED for (size_t i = 0; i < mdlen; i++) { seed[i] ^= seedmask[i]; } ret = 1; out: OPENSSL_free(dbmask); return ret; } int RSA_padding_check_PKCS1_OAEP_mgf1(uint8_t *out, size_t *out_len, size_t max_out, const uint8_t *from, size_t from_len, const uint8_t *param, size_t param_len, const EVP_MD *md, const EVP_MD *mgf1md) { uint8_t *db = NULL; if (md == NULL) { md = EVP_sha1(); } if (mgf1md == NULL) { mgf1md = md; } size_t mdlen = EVP_MD_size(md); // The encoded message is one byte smaller than the modulus to ensure that it // doesn't end up greater than the modulus. Thus there's an extra "+1" here // compared to https://tools.ietf.org/html/rfc2437#section-9.1.1.2. if (from_len < 1 + 2 * mdlen + 1) { // 'from_len' is the length of the modulus, i.e. does not depend on the // particular ciphertext. goto decoding_err; } size_t dblen = from_len - mdlen - 1; db = OPENSSL_malloc(dblen); if (db == NULL) { goto err; } const uint8_t *maskedseed = from + 1; const uint8_t *maskeddb = from + 1 + mdlen; uint8_t seed[EVP_MAX_MD_SIZE]; OPENSSL_BEGIN_ALLOW_DEPRECATED if (!PKCS1_MGF1(seed, mdlen, maskeddb, dblen, mgf1md)) { goto err; } for (size_t i = 0; i < mdlen; i++) { seed[i] ^= maskedseed[i]; } if (!PKCS1_MGF1(db, dblen, seed, mdlen, mgf1md)) { goto err; } OPENSSL_END_ALLOW_DEPRECATED for (size_t i = 0; i < dblen; i++) { db[i] ^= maskeddb[i]; } uint8_t phash[EVP_MAX_MD_SIZE]; if (!EVP_Digest(param, param_len, phash, NULL, md, NULL)) { goto err; } crypto_word_t bad = ~constant_time_is_zero_w(CRYPTO_memcmp(db, phash, mdlen)); bad |= ~constant_time_is_zero_w(from[0]); crypto_word_t looking_for_one_byte = CONSTTIME_TRUE_W; size_t one_index = 0; for (size_t i = mdlen; i < dblen; i++) { crypto_word_t equals1 = constant_time_eq_w(db[i], 1); crypto_word_t equals0 = constant_time_eq_w(db[i], 0); one_index = constant_time_select_w(looking_for_one_byte & equals1, i, one_index); looking_for_one_byte = constant_time_select_w(equals1, 0, looking_for_one_byte); bad |= looking_for_one_byte & ~equals0; } bad |= looking_for_one_byte; // Whether the overall padding was valid or not in OAEP is public. if (constant_time_declassify_w(bad)) { goto decoding_err; } // Once the padding is known to be valid, the output length is also public. OPENSSL_STATIC_ASSERT(sizeof(size_t) <= sizeof(crypto_word_t), size_t_does_not_fit_in_crypto_word_t); one_index = constant_time_declassify_w(one_index); one_index++; size_t mlen = dblen - one_index; if (max_out < mlen) { OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE); goto err; } OPENSSL_memcpy(out, db + one_index, mlen); *out_len = mlen; OPENSSL_free(db); return 1; decoding_err: // To avoid chosen ciphertext attacks, the error message should not reveal // which kind of decoding error happened. OPENSSL_PUT_ERROR(RSA, RSA_R_OAEP_DECODING_ERROR); err: OPENSSL_free(db); return 0; } static int rsa_padding_add_PKCS1_type_2(uint8_t *to, size_t to_len, const uint8_t *from, size_t from_len) { // See RFC 8017, section 7.2.1. if (to_len < RSA_PKCS1_PADDING_SIZE) { OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); return 0; } if (from_len > to_len - RSA_PKCS1_PADDING_SIZE) { OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); return 0; } to[0] = 0; to[1] = 2; size_t padding_len = to_len - 3 - from_len; rand_nonzero(to + 2, padding_len); to[2 + padding_len] = 0; OPENSSL_memcpy(to + to_len - from_len, from, from_len); return 1; } static int rsa_padding_check_PKCS1_type_2(uint8_t *out, size_t *out_len, size_t max_out, const uint8_t *from, size_t from_len) { if (from_len == 0) { OPENSSL_PUT_ERROR(RSA, RSA_R_EMPTY_PUBLIC_KEY); return 0; } // PKCS#1 v1.5 decryption. See "PKCS #1 v2.2: RSA Cryptography // Standard", section 7.2.2. if (from_len < RSA_PKCS1_PADDING_SIZE) { // |from| is zero-padded to the size of the RSA modulus, a public value, so // this can be rejected in non-constant time. OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); return 0; } crypto_word_t first_byte_is_zero = constant_time_eq_w(from[0], 0); crypto_word_t second_byte_is_two = constant_time_eq_w(from[1], 2); crypto_word_t zero_index = 0, looking_for_index = CONSTTIME_TRUE_W; for (size_t i = 2; i < from_len; i++) { crypto_word_t equals0 = constant_time_is_zero_w(from[i]); zero_index = constant_time_select_w(looking_for_index & equals0, i, zero_index); looking_for_index = constant_time_select_w(equals0, 0, looking_for_index); } // The input must begin with 00 02. crypto_word_t valid_index = first_byte_is_zero; valid_index &= second_byte_is_two; // We must have found the end of PS. valid_index &= ~looking_for_index; // PS must be at least 8 bytes long, and it starts two bytes into |from|. valid_index &= constant_time_ge_w(zero_index, 2 + 8); // Skip the zero byte. zero_index++; // NOTE: Although this logic attempts to be constant time, the API contracts // of this function and |RSA_decrypt| with |RSA_PKCS1_PADDING| make it // impossible to completely avoid Bleichenbacher's attack. Consumers should // use |RSA_PADDING_NONE| and perform the padding check in constant-time // combined with a swap to a random session key or other mitigation. CONSTTIME_DECLASSIFY(&valid_index, sizeof(valid_index)); CONSTTIME_DECLASSIFY(&zero_index, sizeof(zero_index)); if (!valid_index) { OPENSSL_PUT_ERROR(RSA, RSA_R_PKCS_DECODING_ERROR); return 0; } const size_t msg_len = from_len - zero_index; if (msg_len > max_out) { // This shouldn't happen because this function is always called with // |max_out| as the key size and |from_len| is bounded by the key size. OPENSSL_PUT_ERROR(RSA, RSA_R_PKCS_DECODING_ERROR); return 0; } OPENSSL_memcpy(out, &from[zero_index], msg_len); *out_len = msg_len; return 1; } int RSA_public_encrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa, int padding) { size_t out_len; if (!RSA_encrypt(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) { return -1; } if (out_len > INT_MAX) { OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW); return -1; } return (int)out_len; } int RSA_private_encrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa, int padding) { size_t out_len; if (!RSA_sign_raw(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) { return -1; } if (out_len > INT_MAX) { OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW); return -1; } return (int)out_len; } int RSA_encrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, const uint8_t *in, size_t in_len, int padding) { if(rsa->meth && rsa->meth->encrypt) { // In OpenSSL, the RSA_METHOD |encrypt| or |pub_enc| operation does not // directly take and initialize an |out_len| parameter. Instead, it returns // the number of bytes written to |out| or a negative number for error. // Our wrapping functions like |RSA_encrypt| diverge from this paradigm and // expect an |out_len| parameter. To remain compatible with this new // paradigm and OpenSSL, we initialize |out_len| based on the return value // here. int ret = rsa->meth->encrypt((int)max_out, in, out, rsa, padding); if(ret < 0) { *out_len = 0; return 0; } *out_len = ret; return 1; } if (rsa->n == NULL || rsa->e == NULL) { OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING); return 0; } if (!is_public_component_of_rsa_key_good(rsa)) { return 0; } const unsigned rsa_size = RSA_size(rsa); BIGNUM *f, *result; uint8_t *buf = NULL; BN_CTX *ctx = NULL; int i, ret = 0; if (max_out < rsa_size) { OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL); return 0; } ctx = BN_CTX_new(); if (ctx == NULL) { goto err; } BN_CTX_start(ctx); f = BN_CTX_get(ctx); result = BN_CTX_get(ctx); buf = OPENSSL_malloc(rsa_size); if (!f || !result || !buf) { goto err; } switch (padding) { case RSA_PKCS1_PADDING: i = rsa_padding_add_PKCS1_type_2(buf, rsa_size, in, in_len); break; case RSA_PKCS1_OAEP_PADDING: // Use the default parameters: SHA-1 for both hashes and no label. i = RSA_padding_add_PKCS1_OAEP_mgf1(buf, rsa_size, in, in_len, NULL, 0, NULL, NULL); break; case RSA_NO_PADDING: i = RSA_padding_add_none(buf, rsa_size, in, in_len); break; default: OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE); goto err; } if (i <= 0) { goto err; } if (BN_bin2bn(buf, rsa_size, f) == NULL) { goto err; } if (BN_ucmp(f, rsa->n) >= 0) { // usually the padding functions would catch this OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS); goto err; } if (!BN_MONT_CTX_set_locked(&rsa->mont_n, &rsa->lock, rsa->n, ctx) || !BN_mod_exp_mont(result, f, rsa->e, &rsa->mont_n->N, ctx, rsa->mont_n)) { goto err; } // put in leading 0 bytes if the number is less than the length of the // modulus if (!BN_bn2bin_padded(out, rsa_size, result)) { OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); goto err; } *out_len = rsa_size; ret = 1; err: if (ctx != NULL) { BN_CTX_end(ctx); BN_CTX_free(ctx); } OPENSSL_free(buf); return ret; } static int rsa_default_decrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, const uint8_t *in, size_t in_len, int padding) { const unsigned rsa_size = RSA_size(rsa); uint8_t *buf = NULL; int ret = 0; if (max_out < rsa_size) { OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL); return 0; } if (padding == RSA_NO_PADDING) { buf = out; } else { // Allocate a temporary buffer to hold the padded plaintext. buf = OPENSSL_malloc(rsa_size); if (buf == NULL) { goto err; } } if (in_len != rsa_size) { OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_LEN_NOT_EQUAL_TO_MOD_LEN); goto err; } if (!rsa_private_transform(rsa, buf, in, rsa_size)) { goto err; } switch (padding) { case RSA_PKCS1_PADDING: ret = rsa_padding_check_PKCS1_type_2(out, out_len, rsa_size, buf, rsa_size); break; case RSA_PKCS1_OAEP_PADDING: // Use the default parameters: SHA-1 for both hashes and no label. ret = RSA_padding_check_PKCS1_OAEP_mgf1(out, out_len, rsa_size, buf, rsa_size, NULL, 0, NULL, NULL); break; case RSA_NO_PADDING: *out_len = rsa_size; ret = 1; break; default: OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE); goto err; } CONSTTIME_DECLASSIFY(&ret, sizeof(ret)); if (!ret) { OPENSSL_PUT_ERROR(RSA, RSA_R_PADDING_CHECK_FAILED); } else { CONSTTIME_DECLASSIFY(out, *out_len); } err: if (padding != RSA_NO_PADDING) { OPENSSL_free(buf); } return ret; } int RSA_decrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, const uint8_t *in, size_t in_len, int padding) { if (rsa->meth && rsa->meth->decrypt) { // In OpenSSL, the RSA_METHOD |decrypt| operation does not directly take // and initialize an |out_len| parameter. Instead, it returns the number // of bytes written to |out| or a negative number for error. Our wrapping // functions like |RSA_decrypt| diverge from this paradigm and expect // an |out_len| parameter. To remain compatible with this new paradigm and // OpenSSL, we initialize |out_len| based on the return value here. int ret = rsa->meth->decrypt((int)max_out, in, out, rsa, padding); if(ret < 0) { *out_len = 0; return 0; } *out_len = ret; return 1; } return rsa_default_decrypt(rsa, out_len, out, max_out, in, in_len, padding); } int RSA_private_decrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa, int padding) { size_t out_len; if (!RSA_decrypt(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) { return -1; } if (out_len > INT_MAX) { OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW); return -1; } return (int)out_len; } int RSA_public_decrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa, int padding) { size_t out_len; if (!RSA_verify_raw(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) { return -1; } if (out_len > INT_MAX) { OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW); return -1; } return (int)out_len; }