/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include #include #include #include "internal.h" // X509_REQ_INFO is handled in an unusual way to get round invalid encodings. // Some broken certificate requests don't encode the attributes field if it // is empty. This is in violation of PKCS#10 but we need to tolerate it. We // do this by making the attributes field OPTIONAL then using the callback to // initialise it to an empty STACK. This means that the field will be // correctly encoded unless we NULL out the field. static int rinf_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, void *exarg) { X509_REQ_INFO *rinf = (X509_REQ_INFO *)*pval; if (operation == ASN1_OP_NEW_POST) { rinf->attributes = sk_X509_ATTRIBUTE_new_null(); if (!rinf->attributes) { return 0; } } if (operation == ASN1_OP_D2I_POST) { // The only defined CSR version is v1(0). For compatibility, we also accept // a hypothetical v3(2). Although not defined, older versions of certbot // use it. See https://github.com/certbot/certbot/pull/9334. long version = ASN1_INTEGER_get(rinf->version); if (version != X509_REQ_VERSION_1 && version != 2) { OPENSSL_PUT_ERROR(X509, X509_R_INVALID_VERSION); return 0; } } return 1; } ASN1_SEQUENCE_enc(X509_REQ_INFO, enc, rinf_cb) = { ASN1_SIMPLE(X509_REQ_INFO, version, ASN1_INTEGER), ASN1_SIMPLE(X509_REQ_INFO, subject, X509_NAME), ASN1_SIMPLE(X509_REQ_INFO, pubkey, X509_PUBKEY), // This isn't really OPTIONAL but it gets around invalid encodings. ASN1_IMP_SET_OF_OPT(X509_REQ_INFO, attributes, X509_ATTRIBUTE, 0), } ASN1_SEQUENCE_END_enc(X509_REQ_INFO, X509_REQ_INFO) IMPLEMENT_ASN1_FUNCTIONS(X509_REQ_INFO) ASN1_SEQUENCE(X509_REQ) = { ASN1_SIMPLE(X509_REQ, req_info, X509_REQ_INFO), ASN1_SIMPLE(X509_REQ, sig_alg, X509_ALGOR), ASN1_SIMPLE(X509_REQ, signature, ASN1_BIT_STRING), } ASN1_SEQUENCE_END(X509_REQ) IMPLEMENT_ASN1_FUNCTIONS(X509_REQ) IMPLEMENT_ASN1_DUP_FUNCTION(X509_REQ)