/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #ifndef OPENSSL_HEADER_CIPHER_H #define OPENSSL_HEADER_CIPHER_H #include #if defined(__cplusplus) extern "C" { #endif // Ciphers. // Cipher primitives. // // The following functions return |EVP_CIPHER| objects that implement the named // cipher algorithm. OPENSSL_EXPORT const EVP_CIPHER *EVP_rc4(void); OPENSSL_EXPORT const EVP_CIPHER *EVP_des_cbc(void); OPENSSL_EXPORT const EVP_CIPHER *EVP_des_ecb(void); OPENSSL_EXPORT const EVP_CIPHER *EVP_des_ede(void); OPENSSL_EXPORT const EVP_CIPHER *EVP_des_ede3(void); OPENSSL_EXPORT const EVP_CIPHER *EVP_des_ede_cbc(void); OPENSSL_EXPORT const EVP_CIPHER *EVP_des_ede3_cbc(void); OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_128_ecb(void); OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_128_cbc(void); OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_128_ctr(void); OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_128_ofb(void); OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_256_ecb(void); OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_256_cbc(void); OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_256_ctr(void); OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_256_ofb(void); OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_256_xts(void); // EVP_aes_256_wrap implements AES-256 in Key Wrap mode. OpenSSL 1.1.1 required // |EVP_CIPHER_CTX_FLAG_WRAP_ALLOW| to be set with |EVP_CIPHER_CTX_set_flags|, // in order for |EVP_aes_256_wrap| to work. This is not required in AWS-LC and // they are no-op flags maintained for compatibility. OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_256_wrap(void); // EVP_enc_null returns a 'cipher' that passes plaintext through as // ciphertext. OPENSSL_EXPORT const EVP_CIPHER *EVP_enc_null(void); // EVP_rc2_cbc returns a cipher that implements 128-bit RC2 in CBC mode. OPENSSL_EXPORT const EVP_CIPHER *EVP_rc2_cbc(void); // EVP_rc2_40_cbc returns a cipher that implements 40-bit RC2 in CBC mode. This // is obviously very, very weak and is included only in order to read PKCS#12 // files, which often encrypt the certificate chain using this cipher. It is // deliberately not exported. const EVP_CIPHER *EVP_rc2_40_cbc(void); // EVP_chacha20_poly1305 returns a cipher that implements chacha20-poly1305 as // described in RFC 8439. This cipher implementation is added for // compatibility. Consumers should use |EVP_aead_chacha20_poly1305| instead. // Callers are advised that the maximum amount of data that can be encrypted // using chacha20-poly1305 is 256GB. OPENSSL_EXPORT const EVP_CIPHER *EVP_chacha20_poly1305(void); // EVP_get_cipherbynid returns the cipher corresponding to the given NID, or // NULL if no such cipher is known. Note using this function links almost every // cipher implemented by BoringSSL into the binary, whether the caller uses them // or not. Size-conscious callers, such as client software, should not use this // function. OPENSSL_EXPORT const EVP_CIPHER *EVP_get_cipherbynid(int nid); // Cipher context allocation. // // An |EVP_CIPHER_CTX| represents the state of an encryption or decryption in // progress. // EVP_CIPHER_CTX_init initialises an, already allocated, |EVP_CIPHER_CTX|. OPENSSL_EXPORT void EVP_CIPHER_CTX_init(EVP_CIPHER_CTX *ctx); // EVP_CIPHER_CTX_new allocates a fresh |EVP_CIPHER_CTX|, calls // |EVP_CIPHER_CTX_init| and returns it, or NULL on allocation failure. OPENSSL_EXPORT EVP_CIPHER_CTX *EVP_CIPHER_CTX_new(void); // EVP_CIPHER_CTX_cleanup frees any memory referenced by |ctx|. It returns // one. OPENSSL_EXPORT int EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX *ctx); // EVP_CIPHER_CTX_free calls |EVP_CIPHER_CTX_cleanup| on |ctx| and then frees // |ctx| itself. OPENSSL_EXPORT void EVP_CIPHER_CTX_free(EVP_CIPHER_CTX *ctx); // EVP_CIPHER_CTX_copy sets |out| to be a duplicate of the current state of // |in|. The |out| argument must have been previously initialised. OPENSSL_EXPORT int EVP_CIPHER_CTX_copy(EVP_CIPHER_CTX *out, const EVP_CIPHER_CTX *in); // EVP_CIPHER_CTX_reset calls |EVP_CIPHER_CTX_cleanup| followed by // |EVP_CIPHER_CTX_init| and returns one. OPENSSL_EXPORT int EVP_CIPHER_CTX_reset(EVP_CIPHER_CTX *ctx); // Cipher context configuration. // EVP_CipherInit_ex configures |ctx| for a fresh encryption (or decryption, if // |enc| is zero) operation using |cipher|. If |ctx| has been previously // configured with a cipher then |cipher|, |key| and |iv| may be |NULL| and // |enc| may be -1 to reuse the previous values. The operation will use |key| // as the key and |iv| as the IV (if any). These should have the correct // lengths given by |EVP_CIPHER_key_length| and |EVP_CIPHER_iv_length|. It // returns one on success and zero on error. OPENSSL_EXPORT int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, ENGINE *engine, const uint8_t *key, const uint8_t *iv, int enc); // EVP_EncryptInit_ex calls |EVP_CipherInit_ex| with |enc| equal to one. OPENSSL_EXPORT int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, ENGINE *impl, const uint8_t *key, const uint8_t *iv); // EVP_DecryptInit_ex calls |EVP_CipherInit_ex| with |enc| equal to zero. OPENSSL_EXPORT int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, ENGINE *impl, const uint8_t *key, const uint8_t *iv); // Cipher operations. // EVP_EncryptUpdate encrypts |in_len| bytes from |in| to |out|. The number // of output bytes may be up to |in_len| plus the block length minus one and // |out| must have sufficient space. The number of bytes actually output is // written to |*out_len|. It returns one on success and zero otherwise. // // If |ctx| is an AEAD cipher, e.g. |EVP_aes_128_gcm|, and |out| is NULL, this // function instead adds |in_len| bytes from |in| to the AAD and sets |*out_len| // to |in_len|. The AAD must be fully specified in this way before this function // is used to encrypt plaintext. OPENSSL_EXPORT int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len, const uint8_t *in, int in_len); // EVP_EncryptFinal_ex writes at most a block of ciphertext to |out| and sets // |*out_len| to the number of bytes written. If padding is enabled (the // default) then standard padding is applied to create the final block. If // padding is disabled (with |EVP_CIPHER_CTX_set_padding|) then any partial // block remaining will cause an error. The function returns one on success and // zero otherwise. OPENSSL_EXPORT int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len); // EVP_DecryptUpdate decrypts |in_len| bytes from |in| to |out|. The number of // output bytes may be up to |in_len| plus the block length minus one and |out| // must have sufficient space. The number of bytes actually output is written // to |*out_len|. It returns one on success and zero otherwise. // // If |ctx| is an AEAD cipher, e.g. |EVP_aes_128_gcm|, and |out| is NULL, this // function instead adds |in_len| bytes from |in| to the AAD and sets |*out_len| // to |in_len|. The AAD must be fully specified in this way before this function // is used to decrypt ciphertext. OPENSSL_EXPORT int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len, const uint8_t *in, int in_len); // EVP_DecryptFinal_ex writes at most a block of ciphertext to |out| and sets // |*out_len| to the number of bytes written. If padding is enabled (the // default) then padding is removed from the final block. // // WARNING: it is unsafe to call this function with unauthenticated // ciphertext if padding is enabled. OPENSSL_EXPORT int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len); // EVP_CipherUpdate calls either |EVP_EncryptUpdate| or |EVP_DecryptUpdate| // depending on how |ctx| has been setup. OPENSSL_EXPORT int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len, const uint8_t *in, int in_len); // EVP_CipherFinal_ex calls either |EVP_EncryptFinal_ex| or // |EVP_DecryptFinal_ex| depending on how |ctx| has been setup. OPENSSL_EXPORT int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len); // Cipher context accessors. // EVP_CIPHER_CTX_cipher returns the |EVP_CIPHER| underlying |ctx|, or NULL if // none has been set. OPENSSL_EXPORT const EVP_CIPHER *EVP_CIPHER_CTX_cipher( const EVP_CIPHER_CTX *ctx); // EVP_CIPHER_CTX_nid returns a NID identifying the |EVP_CIPHER| underlying // |ctx| (e.g. |NID_aes_128_gcm|). It will crash if no cipher has been // configured. OPENSSL_EXPORT int EVP_CIPHER_CTX_nid(const EVP_CIPHER_CTX *ctx); // EVP_CIPHER_CTX_encrypting returns one if |ctx| is configured for encryption // and zero otherwise. OPENSSL_EXPORT int EVP_CIPHER_CTX_encrypting(const EVP_CIPHER_CTX *ctx); // EVP_CIPHER_CTX_block_size returns the block size, in bytes, of the cipher // underlying |ctx|, or one if the cipher is a stream cipher. It will crash if // no cipher has been configured. OPENSSL_EXPORT unsigned EVP_CIPHER_CTX_block_size(const EVP_CIPHER_CTX *ctx); // EVP_CIPHER_CTX_key_length returns the key size, in bytes, of the cipher // underlying |ctx| or zero if no cipher has been configured. OPENSSL_EXPORT unsigned EVP_CIPHER_CTX_key_length(const EVP_CIPHER_CTX *ctx); // EVP_CIPHER_CTX_iv_length returns the IV size, in bytes, of the cipher // underlying |ctx|. It will crash if no cipher has been configured. OPENSSL_EXPORT unsigned EVP_CIPHER_CTX_iv_length(const EVP_CIPHER_CTX *ctx); // EVP_CIPHER_CTX_get_app_data returns the opaque, application data pointer for // |ctx|, or NULL if none has been set. OPENSSL_EXPORT void *EVP_CIPHER_CTX_get_app_data(const EVP_CIPHER_CTX *ctx); // EVP_CIPHER_CTX_set_app_data sets the opaque, application data pointer for // |ctx| to |data|. OPENSSL_EXPORT void EVP_CIPHER_CTX_set_app_data(EVP_CIPHER_CTX *ctx, void *data); // EVP_CIPHER_CTX_flags returns a value which is the OR of zero or more // |EVP_CIPH_*| flags. It will crash if no cipher has been configured. OPENSSL_EXPORT uint32_t EVP_CIPHER_CTX_flags(const EVP_CIPHER_CTX *ctx); // EVP_CIPHER_CTX_mode returns one of the |EVP_CIPH_*| cipher mode values // enumerated below. It will crash if no cipher has been configured. OPENSSL_EXPORT uint32_t EVP_CIPHER_CTX_mode(const EVP_CIPHER_CTX *ctx); // EVP_CIPHER_CTX_ctrl is an |ioctl| like function. The |command| argument // should be one of the |EVP_CTRL_*| values. The |arg| and |ptr| arguments are // specific to the command in question. OPENSSL_EXPORT int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int command, int arg, void *ptr); // EVP_CIPHER_CTX_set_padding sets whether padding is enabled for |ctx| and // returns one. Pass a non-zero |pad| to enable padding (the default) or zero // to disable. OPENSSL_EXPORT int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *ctx, int pad); // EVP_CIPHER_CTX_set_key_length sets the key length for |ctx|. This is only // valid for ciphers that can take a variable length key. It returns one on // success and zero on error. OPENSSL_EXPORT int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *ctx, unsigned key_len); // Cipher accessors. // EVP_CIPHER_nid returns a NID identifying |cipher|. (For example, // |NID_aes_128_gcm|.) OPENSSL_EXPORT int EVP_CIPHER_nid(const EVP_CIPHER *cipher); // EVP_CIPHER_name returns the short name of |cipher|. OPENSSL_EXPORT const char *EVP_CIPHER_name(const EVP_CIPHER *cipher); // EVP_CIPHER_block_size returns the block size, in bytes, for |cipher|, or one // if |cipher| is a stream cipher. OPENSSL_EXPORT unsigned EVP_CIPHER_block_size(const EVP_CIPHER *cipher); // EVP_CIPHER_key_length returns the key size, in bytes, for |cipher|. If // |cipher| can take a variable key length then this function returns the // default key length and |EVP_CIPHER_flags| will return a value with // |EVP_CIPH_VARIABLE_LENGTH| set. OPENSSL_EXPORT unsigned EVP_CIPHER_key_length(const EVP_CIPHER *cipher); // EVP_CIPHER_iv_length returns the IV size, in bytes, of |cipher|, or zero if // |cipher| doesn't take an IV. OPENSSL_EXPORT unsigned EVP_CIPHER_iv_length(const EVP_CIPHER *cipher); // EVP_CIPHER_flags returns a value which is the OR of zero or more // |EVP_CIPH_*| flags. OPENSSL_EXPORT uint32_t EVP_CIPHER_flags(const EVP_CIPHER *cipher); // EVP_CIPHER_mode returns one of the cipher mode values enumerated below. OPENSSL_EXPORT uint32_t EVP_CIPHER_mode(const EVP_CIPHER *cipher); // Key derivation. // EVP_BytesToKey generates a key and IV for the cipher |type| by iterating // |md| |count| times using |data| and |salt|. On entry, the |key| and |iv| // buffers must have enough space to hold a key and IV for |type|. It returns // the length of the key on success or zero on error. OPENSSL_EXPORT int EVP_BytesToKey(const EVP_CIPHER *type, const EVP_MD *md, const uint8_t *salt, const uint8_t *data, size_t data_len, unsigned count, uint8_t *key, uint8_t *iv); // Cipher modes (for |EVP_CIPHER_mode|). #define EVP_CIPH_STREAM_CIPHER 0x0 #define EVP_CIPH_ECB_MODE 0x1 #define EVP_CIPH_CBC_MODE 0x2 #define EVP_CIPH_CFB_MODE 0x3 #define EVP_CIPH_OFB_MODE 0x4 #define EVP_CIPH_CTR_MODE 0x5 #define EVP_CIPH_GCM_MODE 0x6 #define EVP_CIPH_XTS_MODE 0x7 #define EVP_CIPH_CCM_MODE 0x8 // EVP_CIPH_FLAG_LENGTH_BITS buffers length in bits not bytes: CFB1 mode only. #define EVP_CIPH_FLAG_LENGTH_BITS 0x2000 // The following values are never returned from |EVP_CIPHER_mode| and are // included only to make it easier to compile code with BoringSSL. #define EVP_CIPH_OCB_MODE 0x9 #define EVP_CIPH_WRAP_MODE 0xa // Cipher flags (for |EVP_CIPHER_flags|). // EVP_CIPH_VARIABLE_LENGTH indicates that the cipher takes a variable length // key. #define EVP_CIPH_VARIABLE_LENGTH 0x40 // EVP_CIPH_ALWAYS_CALL_INIT indicates that the |init| function for the cipher // should always be called when initialising a new operation, even if the key // is NULL to indicate that the same key is being used. #define EVP_CIPH_ALWAYS_CALL_INIT 0x80 // EVP_CIPH_CUSTOM_IV indicates that the cipher manages the IV itself rather // than keeping it in the |iv| member of |EVP_CIPHER_CTX|. #define EVP_CIPH_CUSTOM_IV 0x100 // EVP_CIPH_CTRL_INIT indicates that EVP_CTRL_INIT should be used when // initialising an |EVP_CIPHER_CTX|. #define EVP_CIPH_CTRL_INIT 0x200 // EVP_CIPH_FLAG_CUSTOM_CIPHER indicates that the cipher manages blocking // itself. This causes EVP_(En|De)crypt_ex to be simple wrapper functions. #define EVP_CIPH_FLAG_CUSTOM_CIPHER 0x400 // EVP_CIPH_FLAG_AEAD_CIPHER specifies that the cipher is an AEAD. This is an // older version of the proper AEAD interface. See aead.h for the current // one. #define EVP_CIPH_FLAG_AEAD_CIPHER 0x800 // EVP_CIPH_CUSTOM_COPY indicates that the |ctrl| callback should be called // with |EVP_CTRL_COPY| at the end of normal |EVP_CIPHER_CTX_copy| // processing. #define EVP_CIPH_CUSTOM_COPY 0x1000 // EVP_CIPH_FLAG_NON_FIPS_ALLOW is meaningless. In OpenSSL it permits non-FIPS // algorithms in FIPS mode. But BoringSSL FIPS mode doesn't prohibit algorithms // (it's up the the caller to use the FIPS module in a fashion compliant with // their needs). Thus this exists only to allow code to compile. #define EVP_CIPH_FLAG_NON_FIPS_ALLOW 0 // Deprecated functions // EVP_aes_128/256_cbc_hmac_sha1/256 return |EVP_CIPHER| objects that implement // the named cipher algorithm. They are imported from OpenSSL to provide AES CBC // HMAC SHA stitch implementation. These methods are TLS specific. // // WARNING: these APIs usage can get wrong easily. Below functions include // details. // |aesni_cbc_hmac_sha1_cipher| and |aesni_cbc_hmac_sha256_cipher|. OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha1(void); OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha1(void); OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha256(void); OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha256(void); // EVP_CipherInit acts like EVP_CipherInit_ex except that |EVP_CIPHER_CTX_init| // is called on |cipher| first, if |cipher| is not NULL. OPENSSL_EXPORT int EVP_CipherInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, const uint8_t *key, const uint8_t *iv, int enc); // EVP_EncryptInit calls |EVP_CipherInit| with |enc| equal to one. OPENSSL_EXPORT int EVP_EncryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, const uint8_t *key, const uint8_t *iv); // EVP_DecryptInit calls |EVP_CipherInit| with |enc| equal to zero. OPENSSL_EXPORT int EVP_DecryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, const uint8_t *key, const uint8_t *iv); // EVP_CipherFinal calls |EVP_CipherFinal_ex|. OPENSSL_EXPORT int EVP_CipherFinal(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len); // EVP_EncryptFinal calls |EVP_EncryptFinal_ex|. OPENSSL_EXPORT int EVP_EncryptFinal(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len); // EVP_DecryptFinal calls |EVP_DecryptFinal_ex|. OPENSSL_EXPORT int EVP_DecryptFinal(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len); // EVP_Cipher historically exposed an internal implementation detail of |ctx| // and should not be used. Use |EVP_CipherUpdate| and |EVP_CipherFinal_ex| // instead. // // If |ctx|'s cipher does not have the |EVP_CIPH_FLAG_CUSTOM_CIPHER| flag, it // encrypts or decrypts |in_len| bytes from |in| and writes the resulting // |in_len| bytes to |out|. It returns one on success and zero on error. // |in_len| must be a multiple of the cipher's block size, or the behavior is // undefined. // // TODO(davidben): Rather than being undefined (it'll often round the length up // and likely read past the buffer), just fail the operation. // // If |ctx|'s cipher has the |EVP_CIPH_FLAG_CUSTOM_CIPHER| flag, it runs in one // of two modes: If |in| is non-NULL, it behaves like |EVP_CipherUpdate|. If // |in| is NULL, it behaves like |EVP_CipherFinal_ex|. In both cases, it returns // |*out_len| on success and -1 on error. // // WARNING: The two possible calling conventions of this function signal errors // incompatibly. In the first, zero indicates an error. In the second, zero // indicates success with zero bytes of output. OPENSSL_EXPORT int EVP_Cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, size_t in_len); // EVP_get_cipherbyname returns an |EVP_CIPHER| given a human readable name in // |name|, or NULL if the name is unknown. Note using this function links almost // every cipher implemented by BoringSSL into the binary, not just the ones the // caller requests. Size-conscious callers, such as client software, should not // use this function. OPENSSL_EXPORT const EVP_CIPHER *EVP_get_cipherbyname(const char *name); // These AEADs are deprecated AES-GCM implementations that set // |EVP_CIPH_FLAG_CUSTOM_CIPHER|. Use |EVP_aead_aes_128_gcm| and // |EVP_aead_aes_256_gcm| instead. // // WARNING: Although these APIs allow streaming an individual AES-GCM operation, // this is not secure. Until calling |EVP_DecryptFinal_ex|, the tag has not yet // been checked and output released by |EVP_DecryptUpdate| is unauthenticated // and easily manipulated by attackers. Callers must buffer the output and may // not act on it until the entire operation is complete. OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_128_gcm(void); OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_256_gcm(void); OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_128_ccm(void); OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_192_ccm(void); OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_256_ccm(void); // These are deprecated, 192-bit version of AES. OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_192_ecb(void); OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_192_cbc(void); OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_192_ctr(void); OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_192_gcm(void); OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_192_ofb(void); // EVP_des_ede3_ecb is an alias for |EVP_des_ede3|. Use the former instead. OPENSSL_EXPORT const EVP_CIPHER *EVP_des_ede3_ecb(void); // EVP_aes_128_cfb128 is deprecated. OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_128_cfb128(void); // EVP_aes_128_cfb is an alias for |EVP_aes_128_cfb128| and is deprecated. OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_128_cfb(void); // EVP_aes_128_cfb1 is deprecated. OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_128_cfb1(void); // EVP_aes_128_cfb8 is deprecated. OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_128_cfb8(void); // EVP_aes_192_cfb128 is deprecated. OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_192_cfb128(void); // EVP_aes_192_cfb is an alias for |EVP_aes_192_cfb128| and is deprecated. OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_192_cfb(void); // EVP_aes_192_cfb1 is deprecated. OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_192_cfb1(void); // EVP_aes_192_cfb8 is deprecated. OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_192_cfb8(void); // EVP_aes_256_cfb128 is deprecated. OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_256_cfb128(void); // EVP_aes_256_cfb is an alias for |EVP_aes_256_cfb128| and is deprecated. OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_256_cfb(void); // EVP_aes_256_cfb1 is deprecated. OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_256_cfb1(void); // EVP_aes_256_cfb8 is deprecated. OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_256_cfb8(void); // EVP_bf_ecb is Blowfish in ECB mode and is deprecated. OPENSSL_EXPORT const EVP_CIPHER *EVP_bf_ecb(void); // EVP_bf_cbc is Blowfish in CBC mode and is deprecated. OPENSSL_EXPORT const EVP_CIPHER *EVP_bf_cbc(void); // EVP_bf_cfb is Blowfish in 64-bit CFB mode and is deprecated. OPENSSL_EXPORT const EVP_CIPHER *EVP_bf_cfb(void); // EVP_cast5_ecb is CAST5 in ECB mode and is deprecated. OPENSSL_EXPORT OPENSSL_DEPRECATED const EVP_CIPHER *EVP_cast5_ecb(void); // EVP_cast5_cbc is CAST5 in CBC mode and is deprecated. OPENSSL_EXPORT OPENSSL_DEPRECATED const EVP_CIPHER *EVP_cast5_cbc(void); // General No-op Functions [Deprecated]. // EVP_CIPHER_CTX_set_flags does nothing. We strongly discourage doing // any additional configurations when consuming |EVP_CIPHER_CTX|. OPENSSL_EXPORT OPENSSL_DEPRECATED void EVP_CIPHER_CTX_set_flags( const EVP_CIPHER_CTX *ctx, uint32_t flags); // The following flags are related to |EVP_CIPHER_CTX_set_flags|. They // do nothing and are included only to make it easier to compile code // with AWS-LC. #define EVP_CIPHER_CTX_FLAG_WRAP_ALLOW 0 // EVP_add_cipher_alias does nothing and returns one. OPENSSL_EXPORT OPENSSL_DEPRECATED int EVP_add_cipher_alias(const char *a, const char *b); // Private functions. // EVP_CIPH_NO_PADDING disables padding in block ciphers. #define EVP_CIPH_NO_PADDING 0x800 // The following are |EVP_CIPHER_CTX_ctrl| commands. #define EVP_CTRL_INIT 0x0 #define EVP_CTRL_SET_KEY_LENGTH 0x1 #define EVP_CTRL_GET_RC2_KEY_BITS 0x2 #define EVP_CTRL_SET_RC2_KEY_BITS 0x3 #define EVP_CTRL_GET_RC5_ROUNDS 0x4 #define EVP_CTRL_SET_RC5_ROUNDS 0x5 #define EVP_CTRL_RAND_KEY 0x6 #define EVP_CTRL_PBE_PRF_NID 0x7 #define EVP_CTRL_COPY 0x8 #define EVP_CTRL_AEAD_SET_IVLEN 0x9 #define EVP_CTRL_AEAD_GET_TAG 0x10 #define EVP_CTRL_AEAD_SET_TAG 0x11 #define EVP_CTRL_AEAD_SET_IV_FIXED 0x12 #define EVP_CTRL_GCM_IV_GEN 0x13 #define EVP_CTRL_CCM_SET_L 0x14 #define EVP_CTRL_AEAD_SET_MAC_KEY 0x17 // EVP_CTRL_GCM_SET_IV_INV sets the GCM invocation field, decrypt only #define EVP_CTRL_GCM_SET_IV_INV 0x18 #define EVP_CTRL_GET_IVLEN 0x19 // The following constants are unused. #define EVP_GCM_TLS_FIXED_IV_LEN 4 #define EVP_GCM_TLS_EXPLICIT_IV_LEN 8 #define EVP_GCM_TLS_TAG_LEN 16 // The following are legacy aliases for AEAD |EVP_CIPHER_CTX_ctrl| values. #define EVP_CTRL_GCM_SET_IVLEN EVP_CTRL_AEAD_SET_IVLEN #define EVP_CTRL_GCM_GET_TAG EVP_CTRL_AEAD_GET_TAG #define EVP_CTRL_GCM_SET_TAG EVP_CTRL_AEAD_SET_TAG #define EVP_CTRL_GCM_SET_IV_FIXED EVP_CTRL_AEAD_SET_IV_FIXED #define EVP_MAX_KEY_LENGTH 64 #define EVP_MAX_IV_LENGTH 16 #define EVP_MAX_BLOCK_LENGTH 32 struct evp_cipher_ctx_st { // cipher contains the underlying cipher for this context. const EVP_CIPHER *cipher; // app_data is a pointer to opaque, user data. void *app_data; // application stuff // cipher_data points to the |cipher| specific state. void *cipher_data; // key_len contains the length of the key, which may differ from // |cipher->key_len| if the cipher can take a variable key length. unsigned key_len; // encrypt is one if encrypting and zero if decrypting. int encrypt; // flags contains the OR of zero or more |EVP_CIPH_*| flags, above. uint32_t flags; // oiv contains the original IV value. uint8_t oiv[EVP_MAX_IV_LENGTH]; // iv contains the current IV value, which may have been updated. uint8_t iv[EVP_MAX_IV_LENGTH]; // buf contains a partial block which is used by, for example, CTR mode to // store unused keystream bytes. uint8_t buf[EVP_MAX_BLOCK_LENGTH]; // buf_len contains the number of bytes of a partial block contained in // |buf|. int buf_len; // num contains the number of bytes of |iv| which are valid for modes that // manage partial blocks themselves. unsigned num; // final_used is non-zero if the |final| buffer contains plaintext. int final_used; uint8_t final[EVP_MAX_BLOCK_LENGTH]; // possible final block // Has this structure been rendered unusable by a failure. int poisoned; } /* EVP_CIPHER_CTX */; typedef struct evp_cipher_info_st { const EVP_CIPHER *cipher; unsigned char iv[EVP_MAX_IV_LENGTH]; } EVP_CIPHER_INFO; // AES-CBC stitch ctrl method constants // EVP_CTRL_AEAD_TLS1_AAD is a control command for |EVP_CIPHER_CTX_ctrl| to set // the length of the TLS additional authenticated data #define EVP_CTRL_AEAD_TLS1_AAD 0x16 // EVP_AEAD_TLS1_AAD_LEN is the length of the additional authenticated data from // RFC 5246. #define EVP_AEAD_TLS1_AAD_LEN 13 #if defined(__cplusplus) } // extern C #if !defined(BORINGSSL_NO_CXX) extern "C++" { BSSL_NAMESPACE_BEGIN BORINGSSL_MAKE_DELETER(EVP_CIPHER_CTX, EVP_CIPHER_CTX_free) using ScopedEVP_CIPHER_CTX = internal::StackAllocated; BSSL_NAMESPACE_END } // extern C++ #endif #endif #define CIPHER_R_AES_KEY_SETUP_FAILED 100 #define CIPHER_R_BAD_DECRYPT 101 #define CIPHER_R_BAD_KEY_LENGTH 102 #define CIPHER_R_BUFFER_TOO_SMALL 103 #define CIPHER_R_CTRL_NOT_IMPLEMENTED 104 #define CIPHER_R_CTRL_OPERATION_NOT_IMPLEMENTED 105 #define CIPHER_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH 106 #define CIPHER_R_INITIALIZATION_ERROR 107 #define CIPHER_R_INPUT_NOT_INITIALIZED 108 #define CIPHER_R_INVALID_AD_SIZE 109 #define CIPHER_R_INVALID_KEY_LENGTH 110 #define CIPHER_R_INVALID_NONCE_SIZE 111 #define CIPHER_R_INVALID_OPERATION 112 #define CIPHER_R_IV_TOO_LARGE 113 #define CIPHER_R_NO_CIPHER_SET 114 #define CIPHER_R_OUTPUT_ALIASES_INPUT 115 #define CIPHER_R_TAG_TOO_LARGE 116 #define CIPHER_R_TOO_LARGE 117 #define CIPHER_R_UNSUPPORTED_AD_SIZE 118 #define CIPHER_R_UNSUPPORTED_INPUT_SIZE 119 #define CIPHER_R_UNSUPPORTED_KEY_SIZE 120 #define CIPHER_R_UNSUPPORTED_NONCE_SIZE 121 #define CIPHER_R_UNSUPPORTED_TAG_SIZE 122 #define CIPHER_R_WRONG_FINAL_BLOCK_LENGTH 123 #define CIPHER_R_NO_DIRECTION_SET 124 #define CIPHER_R_INVALID_NONCE 125 #define CIPHER_R_XTS_DUPLICATED_KEYS 138 #define CIPHER_R_XTS_DATA_UNIT_IS_TOO_LARGE 139 #define CIPHER_R_CTRL_OPERATION_NOT_PERFORMED 140 #define CIPHER_R_SERIALIZATION_INVALID_EVP_AEAD_CTX 141 #define CIPHER_R_ALIGNMENT_CHANGED 142 #define CIPHER_R_SERIALIZATION_INVALID_SERDE_VERSION 143 #define CIPHER_R_SERIALIZATION_INVALID_CIPHER_ID 144 #endif // OPENSSL_HEADER_CIPHER_H