/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #ifndef OPENSSL_HEADER_EVP_H #define OPENSSL_HEADER_EVP_H #include #include // IWYU pragma: export #include // OpenSSL included digest, cipher, and object functions in this header so we // include them for users that still expect that. #include #include #include #include #include #include #if defined(__cplusplus) extern "C" { #endif // EVP abstracts over public/private key algorithms. // Public key objects. // // An |EVP_PKEY| object represents a public or private key. A given object may // be used concurrently on multiple threads by non-mutating functions, provided // no other thread is concurrently calling a mutating function. Unless otherwise // documented, functions which take a |const| pointer are non-mutating and // functions which take a non-|const| pointer are mutating. // EVP_PKEY_new creates a new, empty public-key object and returns it or NULL // on allocation failure. OPENSSL_EXPORT EVP_PKEY *EVP_PKEY_new(void); // EVP_PKEY_free frees all data referenced by |pkey| and then frees |pkey| // itself. OPENSSL_EXPORT void EVP_PKEY_free(EVP_PKEY *pkey); // EVP_PKEY_up_ref increments the reference count of |pkey| and returns one. It // does not mutate |pkey| for thread-safety purposes and may be used // concurrently. OPENSSL_EXPORT int EVP_PKEY_up_ref(EVP_PKEY *pkey); // EVP_PKEY_is_opaque returns one if |pkey| is opaque. Opaque keys are backed by // custom implementations which do not expose key material and parameters. It is // an error to attempt to duplicate, export, or compare an opaque key. OPENSSL_EXPORT int EVP_PKEY_is_opaque(const EVP_PKEY *pkey); // EVP_PKEY_cmp compares |a| and |b| and returns one if they are equal, zero if // not and a negative number on error. // // WARNING: this differs from the traditional return value of a "cmp" // function. OPENSSL_EXPORT int EVP_PKEY_cmp(const EVP_PKEY *a, const EVP_PKEY *b); // EVP_PKEY_copy_parameters sets the parameters of |to| to equal the parameters // of |from|. It returns one on success and zero on error. OPENSSL_EXPORT int EVP_PKEY_copy_parameters(EVP_PKEY *to, const EVP_PKEY *from); // EVP_PKEY_missing_parameters returns one if |pkey| is missing needed // parameters or zero if not, or if the algorithm doesn't take parameters. OPENSSL_EXPORT int EVP_PKEY_missing_parameters(const EVP_PKEY *pkey); // EVP_PKEY_size returns the maximum size, in bytes, of a signature signed by // |pkey|. For an RSA key, this returns the number of bytes needed to represent // the modulus. For an EC key, this returns the maximum size of a DER-encoded // ECDSA signature. For a Dilithium key, this returns the signature byte size. OPENSSL_EXPORT int EVP_PKEY_size(const EVP_PKEY *pkey); // EVP_PKEY_bits returns the "size", in bits, of |pkey|. For an RSA key, this // returns the bit length of the modulus. For an EC key, this returns the bit // length of the group order. For a Dilithium key, this returns the bit length // of the public key. OPENSSL_EXPORT int EVP_PKEY_bits(const EVP_PKEY *pkey); // EVP_PKEY_id returns the type of |pkey|, which is one of the |EVP_PKEY_*| // values. OPENSSL_EXPORT int EVP_PKEY_id(const EVP_PKEY *pkey); // EVP_PKEY_type returns |nid| if |nid| is a known key type and |NID_undef| // otherwise. OPENSSL_EXPORT int EVP_PKEY_type(int nid); // EVP_MD_get0_name returns the short name of |md| OPENSSL_EXPORT const char *EVP_MD_get0_name(const EVP_MD *md); // EVP_MD_name calls |EVP_MD_get0_name| OPENSSL_EXPORT const char *EVP_MD_name(const EVP_MD *md); // Getting and setting concrete public key types. // // The following functions get and set the underlying public key in an // |EVP_PKEY| object. The |set1| functions take an additional reference to the // underlying key and return one on success or zero if |key| is NULL. The // |assign| functions adopt the caller's reference and return one on success or // zero if |key| is NULL. The |get1| functions return a fresh reference to the // underlying object or NULL if |pkey| is not of the correct type. The |get0| // functions behave the same but return a non-owning pointer. // // The |get0| and |get1| functions take |const| pointers and are thus // non-mutating for thread-safety purposes, but mutating functions on the // returned lower-level objects are considered to also mutate the |EVP_PKEY| and // may not be called concurrently with other operations on the |EVP_PKEY|. OPENSSL_EXPORT int EVP_PKEY_set1_RSA(EVP_PKEY *pkey, RSA *key); OPENSSL_EXPORT int EVP_PKEY_assign_RSA(EVP_PKEY *pkey, RSA *key); OPENSSL_EXPORT RSA *EVP_PKEY_get0_RSA(const EVP_PKEY *pkey); OPENSSL_EXPORT RSA *EVP_PKEY_get1_RSA(const EVP_PKEY *pkey); OPENSSL_EXPORT int EVP_PKEY_set1_DSA(EVP_PKEY *pkey, DSA *key); OPENSSL_EXPORT int EVP_PKEY_assign_DSA(EVP_PKEY *pkey, DSA *key); OPENSSL_EXPORT DSA *EVP_PKEY_get0_DSA(const EVP_PKEY *pkey); OPENSSL_EXPORT DSA *EVP_PKEY_get1_DSA(const EVP_PKEY *pkey); OPENSSL_EXPORT int EVP_PKEY_set1_EC_KEY(EVP_PKEY *pkey, EC_KEY *key); OPENSSL_EXPORT int EVP_PKEY_assign_EC_KEY(EVP_PKEY *pkey, EC_KEY *key); OPENSSL_EXPORT EC_KEY *EVP_PKEY_get0_EC_KEY(const EVP_PKEY *pkey); OPENSSL_EXPORT EC_KEY *EVP_PKEY_get1_EC_KEY(const EVP_PKEY *pkey); OPENSSL_EXPORT int EVP_PKEY_set1_DH(EVP_PKEY *pkey, DH *key); OPENSSL_EXPORT int EVP_PKEY_assign_DH(EVP_PKEY *pkey, DH *key); OPENSSL_EXPORT DH *EVP_PKEY_get0_DH(const EVP_PKEY *pkey); OPENSSL_EXPORT DH *EVP_PKEY_get1_DH(const EVP_PKEY *pkey); #define EVP_PKEY_NONE NID_undef #define EVP_PKEY_RSA NID_rsaEncryption #define EVP_PKEY_RSA_PSS NID_rsassaPss #define EVP_PKEY_EC NID_X9_62_id_ecPublicKey #define EVP_PKEY_ED25519 NID_ED25519 #define EVP_PKEY_X25519 NID_X25519 #define EVP_PKEY_HKDF NID_hkdf #define EVP_PKEY_HMAC NID_hmac #define EVP_PKEY_DH NID_dhKeyAgreement #ifdef ENABLE_DILITHIUM #define EVP_PKEY_DILITHIUM3 NID_DILITHIUM3_R3 #endif #define EVP_PKEY_KEM NID_kem // EVP_PKEY_set_type sets the type of |pkey| to |type|. It returns one if // successful or zero if the |type| argument is not one of the |EVP_PKEY_*| // values. If |pkey| is NULL, it simply reports whether the type is known. OPENSSL_EXPORT int EVP_PKEY_set_type(EVP_PKEY *pkey, int type); // EVP_PKEY_cmp_parameters compares the parameters of |a| and |b|. It returns // one if they match, zero if not, or a negative number of on error. // // WARNING: the return value differs from the usual return value convention. OPENSSL_EXPORT int EVP_PKEY_cmp_parameters(const EVP_PKEY *a, const EVP_PKEY *b); // ASN.1 functions // EVP_parse_public_key decodes a DER-encoded SubjectPublicKeyInfo structure // (RFC 5280) from |cbs| and advances |cbs|. It returns a newly-allocated // |EVP_PKEY| or NULL on error. If the key is an EC key, the curve is guaranteed // to be set. // // The caller must check the type of the parsed public key to ensure it is // suitable and validate other desired key properties such as RSA modulus size // or EC curve. OPENSSL_EXPORT EVP_PKEY *EVP_parse_public_key(CBS *cbs); // EVP_marshal_public_key marshals |key| as a DER-encoded SubjectPublicKeyInfo // structure (RFC 5280) and appends the result to |cbb|. It returns one on // success and zero on error. OPENSSL_EXPORT int EVP_marshal_public_key(CBB *cbb, const EVP_PKEY *key); // EVP_parse_private_key decodes a DER-encoded PrivateKeyInfo structure (RFC // 5208) from |cbs| and advances |cbs|. It returns a newly-allocated |EVP_PKEY| // or NULL on error. // // The caller must check the type of the parsed private key to ensure it is // suitable and validate other desired key properties such as RSA modulus size // or EC curve. In particular, RSA private key operations scale cubicly, so // applications accepting RSA private keys from external sources may need to // bound key sizes (use |EVP_PKEY_bits| or |RSA_bits|) to avoid a DoS vector. // // A PrivateKeyInfo ends with an optional set of attributes. These are not // processed and so this function will silently ignore any trailing data in the // structure. OPENSSL_EXPORT EVP_PKEY *EVP_parse_private_key(CBS *cbs); // EVP_marshal_private_key marshals |key| as a DER-encoded PrivateKeyInfo // structure (RFC 5208) and appends the result to |cbb|. It returns one on // success and zero on error. OPENSSL_EXPORT int EVP_marshal_private_key(CBB *cbb, const EVP_PKEY *key); // EVP_marshal_private_key_v2 marshals |key| as a DER-encoded // OneAsymmetricKey (RFC 5958) and appends the result to |cbb|. It returns one // on success and zero on error. // // Ed25519 and x25119 are the only private key that supports marshaling as a v2 // PKCS8 structure. All other private key types will return // UNSUPPORTED_ALGORITHM error. OPENSSL_EXPORT int EVP_marshal_private_key_v2(CBB *cbb, const EVP_PKEY *key); // Raw keys // // Some keys types support a "raw" serialization. Currently the only supported // raw formats are X25519 and Ed25519, where the formats are those specified in // RFC 7748 and RFC 8032, respectively. Note the RFC 8032 private key format // is the 32-byte prefix of |ED25519_sign|'s 64-byte private key. // For Dilithium the public key and private key formats are those specified // in draft-ietf-lamps-dilithium-certificates-00 and the Dilithium specification. // EVP_PKEY_new_raw_private_key returns a newly allocated |EVP_PKEY| wrapping a // private key of the specified type. It returns NULL on error. OPENSSL_EXPORT EVP_PKEY *EVP_PKEY_new_raw_private_key(int type, ENGINE *unused, const uint8_t *in, size_t len); // EVP_PKEY_new_raw_public_key returns a newly allocated |EVP_PKEY| wrapping a // public key of the specified type. It returns NULL on error. OPENSSL_EXPORT EVP_PKEY *EVP_PKEY_new_raw_public_key(int type, ENGINE *unused, const uint8_t *in, size_t len); // EVP_PKEY_get_raw_private_key outputs the private key for |pkey| in raw form. // If |out| is NULL, it sets |*out_len| to the size of the raw private key. // Otherwise, it writes at most |*out_len| bytes to |out| and sets |*out_len| to // the number of bytes written. // // It returns one on success and zero if |pkey| has no private key, the key // type does not support a raw format, or the buffer is too small. OPENSSL_EXPORT int EVP_PKEY_get_raw_private_key(const EVP_PKEY *pkey, uint8_t *out, size_t *out_len); // EVP_PKEY_get_raw_public_key outputs the public key for |pkey| in raw form. // If |out| is NULL, it sets |*out_len| to the size of the raw public key. // Otherwise, it writes at most |*out_len| bytes to |out| and sets |*out_len| to // the number of bytes written. // // It returns one on success and zero if |pkey| has no public key, the key // type does not support a raw format, or the buffer is too small. OPENSSL_EXPORT int EVP_PKEY_get_raw_public_key(const EVP_PKEY *pkey, uint8_t *out, size_t *out_len); // Signing // EVP_DigestSignInit sets up |ctx| for a signing operation with |type| and // |pkey|. The |ctx| argument must have been initialised with // |EVP_MD_CTX_init|. If |pctx| is not NULL, the |EVP_PKEY_CTX| of the signing // operation will be written to |*pctx|; this can be used to set alternative // signing options. // // For single-shot signing algorithms which do not use a pre-hash, such as // Ed25519 and Dilithium, |type| should be NULL. The |EVP_MD_CTX| itself is // unused but is present so the API is uniform. See |EVP_DigestSign|. // // This function does not mutate |pkey| for thread-safety purposes and may be // used concurrently with other non-mutating functions on |pkey|. // // It returns one on success, or zero on error. OPENSSL_EXPORT int EVP_DigestSignInit(EVP_MD_CTX *ctx, EVP_PKEY_CTX **pctx, const EVP_MD *type, ENGINE *e, EVP_PKEY *pkey); // EVP_DigestSignUpdate appends |len| bytes from |data| to the data which will // be signed in |EVP_DigestSignFinal|. It returns one. // // This function performs a streaming signing operation and will fail for // signature algorithms which do not support this. Use |EVP_DigestSign| for a // single-shot operation. OPENSSL_EXPORT int EVP_DigestSignUpdate(EVP_MD_CTX *ctx, const void *data, size_t len); // EVP_DigestSignFinal signs the data that has been included by one or more // calls to |EVP_DigestSignUpdate|. If |out_sig| is NULL then |*out_sig_len| is // set to the maximum number of output bytes. Otherwise, on entry, // |*out_sig_len| must contain the length of the |out_sig| buffer. If the call // is successful, the signature is written to |out_sig| and |*out_sig_len| is // set to its length. // // This function performs a streaming signing operation and will fail for // signature algorithms which do not support this. Use |EVP_DigestSign| for a // single-shot operation. // // It returns one on success, or zero on error. OPENSSL_EXPORT int EVP_DigestSignFinal(EVP_MD_CTX *ctx, uint8_t *out_sig, size_t *out_sig_len); // EVP_DigestSign signs |data_len| bytes from |data| using |ctx|. If |out_sig| // is NULL then |*out_sig_len| is set to the maximum number of output // bytes. Otherwise, on entry, |*out_sig_len| must contain the length of the // |out_sig| buffer. If the call is successful, the signature is written to // |out_sig| and |*out_sig_len| is set to its length. // // It returns one on success and zero on error. OPENSSL_EXPORT int EVP_DigestSign(EVP_MD_CTX *ctx, uint8_t *out_sig, size_t *out_sig_len, const uint8_t *data, size_t data_len); // Verifying // EVP_DigestVerifyInit sets up |ctx| for a signature verification operation // with |type| and |pkey|. The |ctx| argument must have been initialised with // |EVP_MD_CTX_init|. If |pctx| is not NULL, the |EVP_PKEY_CTX| of the signing // operation will be written to |*pctx|; this can be used to set alternative // signing options. // // For single-shot signing algorithms which do not use a pre-hash, such as // Ed25519 and Dilithium, |type| should be NULL. The |EVP_MD_CTX| itself is // unused but is present so the API is uniform. See |EVP_DigestVerify|. // // This function does not mutate |pkey| for thread-safety purposes and may be // used concurrently with other non-mutating functions on |pkey|. // // It returns one on success, or zero on error. OPENSSL_EXPORT int EVP_DigestVerifyInit(EVP_MD_CTX *ctx, EVP_PKEY_CTX **pctx, const EVP_MD *type, ENGINE *e, EVP_PKEY *pkey); // EVP_DigestVerifyUpdate appends |len| bytes from |data| to the data which // will be verified by |EVP_DigestVerifyFinal|. It returns one. // // This function performs streaming signature verification and will fail for // signature algorithms which do not support this. Use |EVP_PKEY_verify_message| // for a single-shot verification. OPENSSL_EXPORT int EVP_DigestVerifyUpdate(EVP_MD_CTX *ctx, const void *data, size_t len); // EVP_DigestVerifyFinal verifies that |sig_len| bytes of |sig| are a valid // signature for the data that has been included by one or more calls to // |EVP_DigestVerifyUpdate|. It returns one on success and zero otherwise. // // This function performs streaming signature verification and will fail for // signature algorithms which do not support this. Use |EVP_PKEY_verify_message| // for a single-shot verification. OPENSSL_EXPORT int EVP_DigestVerifyFinal(EVP_MD_CTX *ctx, const uint8_t *sig, size_t sig_len); // EVP_DigestVerify verifies that |sig_len| bytes from |sig| are a valid // signature for |data|. It returns one on success or zero on error. OPENSSL_EXPORT int EVP_DigestVerify(EVP_MD_CTX *ctx, const uint8_t *sig, size_t sig_len, const uint8_t *data, size_t len); // Signing (old functions) // EVP_SignInit_ex configures |ctx|, which must already have been initialised, // for a fresh signing operation using the hash function |type|. It returns one // on success and zero otherwise. // // (In order to initialise |ctx|, either obtain it initialised with // |EVP_MD_CTX_create|, or use |EVP_MD_CTX_init|.) OPENSSL_EXPORT int EVP_SignInit_ex(EVP_MD_CTX *ctx, const EVP_MD *type, ENGINE *impl); // EVP_SignInit is a deprecated version of |EVP_SignInit_ex|. // // TODO(fork): remove. OPENSSL_EXPORT int EVP_SignInit(EVP_MD_CTX *ctx, const EVP_MD *type); // EVP_SignUpdate appends |len| bytes from |data| to the data which will be // signed in |EVP_SignFinal|. OPENSSL_EXPORT int EVP_SignUpdate(EVP_MD_CTX *ctx, const void *data, size_t len); // EVP_SignFinal signs the data that has been included by one or more calls to // |EVP_SignUpdate|, using the key |pkey|, and writes it to |sig|. On entry, // |sig| must point to at least |EVP_PKEY_size(pkey)| bytes of space. The // actual size of the signature is written to |*out_sig_len|. // // It returns one on success and zero otherwise. // // It does not modify |ctx|, thus it's possible to continue to use |ctx| in // order to sign a longer message. It also does not mutate |pkey| for // thread-safety purposes and may be used concurrently with other non-mutating // functions on |pkey|. OPENSSL_EXPORT int EVP_SignFinal(const EVP_MD_CTX *ctx, uint8_t *sig, unsigned int *out_sig_len, EVP_PKEY *pkey); // Verifying (old functions) // EVP_VerifyInit_ex configures |ctx|, which must already have been // initialised, for a fresh signature verification operation using the hash // function |type|. It returns one on success and zero otherwise. // // (In order to initialise |ctx|, either obtain it initialised with // |EVP_MD_CTX_create|, or use |EVP_MD_CTX_init|.) OPENSSL_EXPORT int EVP_VerifyInit_ex(EVP_MD_CTX *ctx, const EVP_MD *type, ENGINE *impl); // EVP_VerifyInit is a deprecated version of |EVP_VerifyInit_ex|. // // TODO(fork): remove. OPENSSL_EXPORT int EVP_VerifyInit(EVP_MD_CTX *ctx, const EVP_MD *type); // EVP_VerifyUpdate appends |len| bytes from |data| to the data which will be // signed in |EVP_VerifyFinal|. OPENSSL_EXPORT int EVP_VerifyUpdate(EVP_MD_CTX *ctx, const void *data, size_t len); // EVP_VerifyFinal verifies that |sig_len| bytes of |sig| are a valid // signature, by |pkey|, for the data that has been included by one or more // calls to |EVP_VerifyUpdate|. // // It returns one on success and zero otherwise. // // It does not modify |ctx|, thus it's possible to continue to use |ctx| in // order to verify a longer message. It also does not mutate |pkey| for // thread-safety purposes and may be used concurrently with other non-mutating // functions on |pkey|. OPENSSL_EXPORT int EVP_VerifyFinal(EVP_MD_CTX *ctx, const uint8_t *sig, size_t sig_len, EVP_PKEY *pkey); // Printing // EVP_PKEY_print_public prints a textual representation of the public key in // |pkey| to |out|. Returns one on success or zero otherwise. OPENSSL_EXPORT int EVP_PKEY_print_public(BIO *out, const EVP_PKEY *pkey, int indent, ASN1_PCTX *pctx); // EVP_PKEY_print_private prints a textual representation of the private key in // |pkey| to |out|. Returns one on success or zero otherwise. OPENSSL_EXPORT int EVP_PKEY_print_private(BIO *out, const EVP_PKEY *pkey, int indent, ASN1_PCTX *pctx); // EVP_PKEY_print_params prints a textual representation of the parameters in // |pkey| to |out|. Returns one on success or zero otherwise. OPENSSL_EXPORT int EVP_PKEY_print_params(BIO *out, const EVP_PKEY *pkey, int indent, ASN1_PCTX *pctx); // Password stretching. // // Password stretching functions take a low-entropy password and apply a slow // function that results in a key suitable for use in symmetric // cryptography. #define PKCS5_SALT_LEN 8 // PKCS5_PBKDF2_HMAC computes |iterations| iterations of PBKDF2 of |password| // and |salt|, using |digest|, and outputs |key_len| bytes to |out_key|. It // returns one on success and zero on allocation failure or if |iterations| is // 0. It's recommended that |iterations| be set to a much higher number (at // least hundreds of thousands). OPENSSL_EXPORT int PKCS5_PBKDF2_HMAC(const char *password, size_t password_len, const uint8_t *salt, size_t salt_len, uint32_t iterations, const EVP_MD *digest, size_t key_len, uint8_t *out_key); // PKCS5_PBKDF2_HMAC_SHA1 is the same as PKCS5_PBKDF2_HMAC, but with |digest| // fixed to |EVP_sha1|. OPENSSL_EXPORT int PKCS5_PBKDF2_HMAC_SHA1(const char *password, size_t password_len, const uint8_t *salt, size_t salt_len, uint32_t iterations, size_t key_len, uint8_t *out_key); // EVP_PBE_scrypt expands |password| into a secret key of length |key_len| using // scrypt, as described in RFC 7914, and writes the result to |out_key|. It // returns one on success and zero on allocation failure, if the memory required // for the operation exceeds |max_mem|, or if any of the parameters are invalid // as described below. // // |N|, |r|, and |p| are as described in RFC 7914 section 6. They determine the // cost of the operation. If |max_mem| is zero, a defult limit of 32MiB will be // used. // // The parameters are considered invalid under any of the following conditions: // - |r| or |p| are zero // - |p| > (2^30 - 1) / |r| // - |N| is not a power of two // - |N| > 2^32 // - |N| > 2^(128 * |r| / 8) OPENSSL_EXPORT int EVP_PBE_scrypt(const char *password, size_t password_len, const uint8_t *salt, size_t salt_len, uint64_t N, uint64_t r, uint64_t p, size_t max_mem, uint8_t *out_key, size_t key_len); // Public key contexts. // // |EVP_PKEY_CTX| objects hold the context of an operation (e.g. signing or // encrypting) that uses a public key. // EVP_PKEY_CTX_new allocates a fresh |EVP_PKEY_CTX| for use with |pkey|. It // returns the context or NULL on error. OPENSSL_EXPORT EVP_PKEY_CTX *EVP_PKEY_CTX_new(EVP_PKEY *pkey, ENGINE *e); // EVP_PKEY_CTX_new_id allocates a fresh |EVP_PKEY_CTX| for a key of type |id| // (e.g. |EVP_PKEY_HMAC|). This can be used for key generation where // |EVP_PKEY_CTX_new| can't be used because there isn't an |EVP_PKEY| to pass // it. It returns the context or NULL on error. OPENSSL_EXPORT EVP_PKEY_CTX *EVP_PKEY_CTX_new_id(int id, ENGINE *e); // EVP_PKEY_CTX_free frees |ctx| and the data it owns. OPENSSL_EXPORT void EVP_PKEY_CTX_free(EVP_PKEY_CTX *ctx); // EVP_PKEY_CTX_dup allocates a fresh |EVP_PKEY_CTX| and sets it equal to the // state of |ctx|. It returns the fresh |EVP_PKEY_CTX| or NULL on error. OPENSSL_EXPORT EVP_PKEY_CTX *EVP_PKEY_CTX_dup(EVP_PKEY_CTX *ctx); // EVP_PKEY_CTX_get0_pkey returns the |EVP_PKEY| associated with |ctx|. OPENSSL_EXPORT EVP_PKEY *EVP_PKEY_CTX_get0_pkey(EVP_PKEY_CTX *ctx); // EVP_PKEY_sign_init initialises an |EVP_PKEY_CTX| for a signing operation. It // should be called before |EVP_PKEY_sign|. // // It returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_sign_init(EVP_PKEY_CTX *ctx); // EVP_PKEY_sign signs |digest_len| bytes from |digest| using |ctx|. If |sig| is // NULL, the maximum size of the signature is written to |out_sig_len|. // Otherwise, |*sig_len| must contain the number of bytes of space available at // |sig|. If sufficient, the signature will be written to |sig| and |*sig_len| // updated with the true length. This function will fail for signature // algorithms like Ed25519 and Dilithium that do not support signing pre-hashed // inputs. // // WARNING: |digest| must be the output of some hash function on the data to be // signed. Passing unhashed inputs will not result in a secure signature scheme. // Use |EVP_DigestSignInit| to sign an unhashed input. // // WARNING: Setting |sig| to NULL only gives the maximum size of the // signature. The actual signature may be smaller. // // It returns one on success or zero on error. (Note: this differs from // OpenSSL, which can also return negative values to indicate an error. ) OPENSSL_EXPORT int EVP_PKEY_sign(EVP_PKEY_CTX *ctx, uint8_t *sig, size_t *sig_len, const uint8_t *digest, size_t digest_len); // EVP_PKEY_verify_init initialises an |EVP_PKEY_CTX| for a signature // verification operation. It should be called before |EVP_PKEY_verify|. // // It returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_verify_init(EVP_PKEY_CTX *ctx); // EVP_PKEY_verify verifies that |sig_len| bytes from |sig| are a valid // signature for |digest|. This function will fail for signature // algorithms like Ed25519 and Dilithium that do not support signing pre-hashed // inputs. // // WARNING: |digest| must be the output of some hash function on the data to be // verified. Passing unhashed inputs will not result in a secure signature // scheme. Use |EVP_DigestVerifyInit| to verify a signature given the unhashed // input. // // It returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_verify(EVP_PKEY_CTX *ctx, const uint8_t *sig, size_t sig_len, const uint8_t *digest, size_t digest_len); // EVP_PKEY_encrypt_init initialises an |EVP_PKEY_CTX| for an encryption // operation. It should be called before |EVP_PKEY_encrypt|. // // It returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_encrypt_init(EVP_PKEY_CTX *ctx); // EVP_PKEY_encrypt encrypts |in_len| bytes from |in|. If |out| is NULL, the // maximum size of the ciphertext is written to |out_len|. Otherwise, |*out_len| // must contain the number of bytes of space available at |out|. If sufficient, // the ciphertext will be written to |out| and |*out_len| updated with the true // length. // // WARNING: Setting |out| to NULL only gives the maximum size of the // ciphertext. The actual ciphertext may be smaller. // // It returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_encrypt(EVP_PKEY_CTX *ctx, uint8_t *out, size_t *out_len, const uint8_t *in, size_t in_len); // EVP_PKEY_decrypt_init initialises an |EVP_PKEY_CTX| for a decryption // operation. It should be called before |EVP_PKEY_decrypt|. // // It returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_decrypt_init(EVP_PKEY_CTX *ctx); // EVP_PKEY_decrypt decrypts |in_len| bytes from |in|. If |out| is NULL, the // maximum size of the plaintext is written to |out_len|. Otherwise, |*out_len| // must contain the number of bytes of space available at |out|. If sufficient, // the ciphertext will be written to |out| and |*out_len| updated with the true // length. // // WARNING: Setting |out| to NULL only gives the maximum size of the // plaintext. The actual plaintext may be smaller. // // It returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_decrypt(EVP_PKEY_CTX *ctx, uint8_t *out, size_t *out_len, const uint8_t *in, size_t in_len); // EVP_PKEY_verify_recover_init initialises an |EVP_PKEY_CTX| for a public-key // decryption operation. It should be called before |EVP_PKEY_verify_recover|. // // Public-key decryption is a very obscure operation that is only implemented // by RSA keys. It is effectively a signature verification operation that // returns the signed message directly. It is almost certainly not what you // want. // // It returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_verify_recover_init(EVP_PKEY_CTX *ctx); // EVP_PKEY_verify_recover decrypts |sig_len| bytes from |sig|. If |out| is // NULL, the maximum size of the plaintext is written to |out_len|. Otherwise, // |*out_len| must contain the number of bytes of space available at |out|. If // sufficient, the ciphertext will be written to |out| and |*out_len| updated // with the true length. // // WARNING: Setting |out| to NULL only gives the maximum size of the // plaintext. The actual plaintext may be smaller. // // See the warning about this operation in |EVP_PKEY_verify_recover_init|. It // is probably not what you want. // // It returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_verify_recover(EVP_PKEY_CTX *ctx, uint8_t *out, size_t *out_len, const uint8_t *sig, size_t siglen); // EVP_PKEY_derive_init initialises an |EVP_PKEY_CTX| for a key derivation // operation. It should be called before |EVP_PKEY_derive_set_peer| and // |EVP_PKEY_derive|. // // It returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_derive_init(EVP_PKEY_CTX *ctx); // EVP_PKEY_derive_set_peer sets the peer's key to be used for key derivation // by |ctx| to |peer|. It should be called after |EVP_PKEY_derive_init|. (For // example, this is used to set the peer's key in (EC)DH.) It returns one on // success and zero on error. OPENSSL_EXPORT int EVP_PKEY_derive_set_peer(EVP_PKEY_CTX *ctx, EVP_PKEY *peer); // EVP_PKEY_derive derives a shared key from |ctx|. If |key| is non-NULL then, // on entry, |out_key_len| must contain the amount of space at |key|. If // sufficient then the shared key will be written to |key| and |*out_key_len| // will be set to the length. If |key| is NULL then |out_key_len| will be set to // the maximum length. // // WARNING: Setting |out| to NULL only gives the maximum size of the key. The // actual key may be smaller. // // It returns one on success and zero on error. OPENSSL_EXPORT int EVP_PKEY_derive(EVP_PKEY_CTX *ctx, uint8_t *key, size_t *out_key_len); // EVP_PKEY_keygen_init initialises an |EVP_PKEY_CTX| for a key generation // operation. It should be called before |EVP_PKEY_keygen|. // // It returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_keygen_init(EVP_PKEY_CTX *ctx); // EVP_PKEY_keygen performs a key generation operation using the values from // |ctx|. If |*out_pkey| is non-NULL, it overwrites |*out_pkey| with the // resulting key. Otherwise, it sets |*out_pkey| to a newly-allocated |EVP_PKEY| // containing the result. It returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY **out_pkey); // EVP_PKEY_encapsulate is an operation defined for a KEM (Key Encapsulation // Mechanism). For the KEM specified in |ctx|, the function: // 1. generates a random value and writes it to |shared_secret|, // 2. encapsulates the shared secret, producing the ciphertext, by using // the public key in |ctx|, and writes the ciphertext to |ciphertext|, // 3. writes the length of |ciphertext| and |shared_secret| to // |ciphertext_len| and |shared_secret_len|. // // The function requires that output buffers, |ciphertext| and |shared_secret|, // be either both NULL or both non-NULL. Otherwise, a failure is returned. // // If both |ciphertext| and |shared_secret| are NULL it is assumed that // the caller is doing a size check: the function will write the size of // the ciphertext and the shared secret in |ciphertext_len| and // |shared_secret_len| and return successfully. // // If both |ciphertext| and |shared_secret| are not NULL it is assumed that // the caller is performing the actual operation. The function will check // additionally if the lengths of the output buffers, |ciphertext_len| and // |shared_secret_len|, are large enough for the KEM. // // NOTE: no allocation is done in the function, the caller is expected to // provide large enough |ciphertext| and |shared_secret| buffers. // // It returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_encapsulate(EVP_PKEY_CTX *ctx /* IN */, uint8_t *ciphertext /* OUT */, size_t *ciphertext_len /* OUT */, uint8_t *shared_secret /* OUT */, size_t *shared_secret_len /* OUT */); // EVP_PKEY_decapsulate is an operation defined for a KEM (Key Encapsulation // Mechanism). For the KEM specified in |ctx|, the function: // 1. decapsulates the shared secret from the given |ciphertext| using the // secret key configured in |ctx| and writes it to |shared_secret|, // 2. writes the length of |shared_secret| to |shared_secret_len|. // // If the given |shared_secret| is NULL it is assumed that the caller is doing // a size check: the function will write the size of the shared secret in // |shared_secret_len| and return successfully. // // If |shared_secret| is non-NULL it is assumed that the caller is performing // the actual operation. The functions will check additionally if the length of // the output buffer |shared_secret_len| is large enough for the KEM. // // NOTE: no allocation is done in the function, the caller is expected to // provide large enough |shared_secret| buffer. // // It returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_decapsulate(EVP_PKEY_CTX *ctx /* IN */, uint8_t *shared_secret /* OUT */, size_t *shared_secret_len /* OUT */, const uint8_t *ciphertext /* IN */, size_t ciphertext_len /* IN */); // EVP_PKEY_paramgen_init initialises an |EVP_PKEY_CTX| for a parameter // generation operation. It should be called before |EVP_PKEY_paramgen|. // // It returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_paramgen_init(EVP_PKEY_CTX *ctx); // EVP_PKEY_paramgen performs a parameter generation using the values from // |ctx|. If |*out_pkey| is non-NULL, it overwrites |*out_pkey| with the // resulting parameters, but no key. Otherwise, it sets |*out_pkey| to a // newly-allocated |EVP_PKEY| containing the result. It returns one on success // or zero on error. OPENSSL_EXPORT int EVP_PKEY_paramgen(EVP_PKEY_CTX *ctx, EVP_PKEY **out_pkey); // Generic control functions. // EVP_PKEY_CTX_set_signature_md sets |md| as the digest to be used in a // signature operation. It returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_CTX_set_signature_md(EVP_PKEY_CTX *ctx, const EVP_MD *md); // EVP_PKEY_CTX_get_signature_md sets |*out_md| to the digest to be used in a // signature operation. It returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_CTX_get_signature_md(EVP_PKEY_CTX *ctx, const EVP_MD **out_md); // RSA specific control functions. // EVP_PKEY_CTX_set_rsa_padding sets the padding type to use. It should be one // of the |RSA_*_PADDING| values. Returns one on success or zero on error. By // default, the padding is |RSA_PKCS1_PADDING|. OPENSSL_EXPORT int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int padding); // EVP_PKEY_CTX_get_rsa_padding sets |*out_padding| to the current padding // value, which is one of the |RSA_*_PADDING| values. Returns one on success or // zero on error. OPENSSL_EXPORT int EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX *ctx, int *out_padding); // EVP_PKEY_CTX_set_rsa_pss_saltlen sets the length of the salt in a PSS-padded // signature. A value of -1 cause the salt to be the same length as the digest // in the signature. A value of -2 causes the salt to be the maximum length // that will fit when signing and recovered from the signature when verifying. // Otherwise the value gives the size of the salt in bytes. // // If unsure, use -1. // // Returns one on success or zero on error. // // TODO(davidben): The default is currently -2. Switch it to -1. OPENSSL_EXPORT int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int salt_len); // EVP_PKEY_CTX_get_rsa_pss_saltlen sets |*out_salt_len| to the salt length of // a PSS-padded signature. See the documentation for // |EVP_PKEY_CTX_set_rsa_pss_saltlen| for details of the special values that it // can take. // // Returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_CTX_get_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int *out_salt_len); // EVP_PKEY_CTX_set_rsa_keygen_bits sets the size of the desired RSA modulus, // in bits, for key generation. Returns one on success or zero on // error. OPENSSL_EXPORT int EVP_PKEY_CTX_set_rsa_keygen_bits(EVP_PKEY_CTX *ctx, int bits); // EVP_PKEY_CTX_set_rsa_keygen_pubexp sets |e| as the public exponent for key // generation. Returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *e); // EVP_PKEY_CTX_set_rsa_oaep_md sets |md| as the digest used in OAEP padding. // Returns one on success or zero on error. If unset, the default is SHA-1. // Callers are recommended to overwrite this default. // // TODO(davidben): Remove the default and require callers specify this. OPENSSL_EXPORT int EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD *md); // EVP_PKEY_CTX_get_rsa_oaep_md sets |*out_md| to the digest function used in // OAEP padding. Returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD **out_md); // EVP_PKEY_CTX_set_rsa_mgf1_md sets |md| as the digest used in MGF1. Returns // one on success or zero on error. // // If unset, the default is the signing hash for |RSA_PKCS1_PSS_PADDING| and the // OAEP hash for |RSA_PKCS1_OAEP_PADDING|. Callers are recommended to use this // default and not call this function. OPENSSL_EXPORT int EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md); // EVP_PKEY_CTX_get_rsa_mgf1_md sets |*out_md| to the digest function used in // MGF1. Returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD **out_md); // EVP_PKEY_CTX_set0_rsa_oaep_label sets |label_len| bytes from |label| as the // label used in OAEP. DANGER: On success, this call takes ownership of |label| // and will call |OPENSSL_free| on it when |ctx| is destroyed. // // Returns one on success or zero on error. OPENSSL_EXPORT int EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX *ctx, uint8_t *label, size_t label_len); // EVP_PKEY_CTX_get0_rsa_oaep_label sets |*out_label| to point to the internal // buffer containing the OAEP label (which may be NULL) and returns the length // of the label or a negative value on error. // // WARNING: the return value differs from the usual return value convention. OPENSSL_EXPORT int EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX *ctx, const uint8_t **out_label); // EC specific control functions. // EVP_PKEY_CTX_set_ec_paramgen_curve_nid sets the curve used for // |EVP_PKEY_keygen| or |EVP_PKEY_paramgen| operations to |nid|. It returns one // on success and zero on error. OPENSSL_EXPORT int EVP_PKEY_CTX_set_ec_paramgen_curve_nid(EVP_PKEY_CTX *ctx, int nid); // KEM specific functions. // EVP_PKEY_CTX_kem_set_params sets in |ctx| the parameters associated with the // KEM defined by the given |nid|. It returns one on success and zero on error. OPENSSL_EXPORT int EVP_PKEY_CTX_kem_set_params(EVP_PKEY_CTX *ctx, int nid); // EVP_PKEY_kem_new_raw_public_key generates a new EVP_PKEY object of type // EVP_PKEY_KEM, initializes the KEM key based on |nid| and populates the // public key part of the KEM key with the contents of |in|. It returns the // pointer to the allocated PKEY on sucess and NULL on error. OPENSSL_EXPORT EVP_PKEY *EVP_PKEY_kem_new_raw_public_key( int nid, const uint8_t *in, size_t len); // EVP_PKEY_kem_new_raw_secret_key generates a new EVP_PKEY object of type // EVP_PKEY_KEM, initializes the KEM key based on |nid| and populates the // secret key part of the KEM key with the contents of |in|. It returns the // pointer to the allocated PKEY on sucess and NULL on error. OPENSSL_EXPORT EVP_PKEY *EVP_PKEY_kem_new_raw_secret_key( int nid, const uint8_t *in, size_t len); // EVP_PKEY_kem_new_raw_key generates a new EVP_PKEY object of type // EVP_PKEY_KEM, initializes the KEM key based on |nid| and populates the // public and secret key parts of the KEM key with the contents of |in_public| // and |in_secret|. It returns the pointer to the allocated PKEY on sucess and // NULL on error. OPENSSL_EXPORT EVP_PKEY *EVP_PKEY_kem_new_raw_key(int nid, const uint8_t *in_public, size_t len_public, const uint8_t *in_secret, size_t len_secret); // EVP_PKEY_kem_check_key validates that the public key in |key| corresponds // to the secret key in |key|. OPENSSL_EXPORT int EVP_PKEY_kem_check_key(EVP_PKEY *key); // Diffie-Hellman-specific control functions. // EVP_PKEY_CTX_set_dh_pad configures configures whether |ctx|, which must be an // |EVP_PKEY_derive| operation, configures the handling of leading zeros in the // Diffie-Hellman shared secret. If |pad| is zero, leading zeros are removed // from the secret. If |pad| is non-zero, the fixed-width shared secret is used // unmodified, as in PKCS #3. If this function is not called, the default is to // remove leading zeros. // // WARNING: The behavior when |pad| is zero leaks information about the shared // secret. This may result in side channel attacks such as // https://raccoon-attack.com/, particularly when the same private key is used // for multiple operations. OPENSSL_EXPORT int EVP_PKEY_CTX_set_dh_pad(EVP_PKEY_CTX *ctx, int pad); // ASN1 functions // EVP_PKEY_asn1_get_count returns the number of available // |EVP_PKEY_ASN1_METHOD| structures. OPENSSL_EXPORT int EVP_PKEY_asn1_get_count(void); // EVP_PKEY_asn1_get0 returns a pointer to an EVP_PKEY_ASN1_METHOD structure. // |idx| is the index value, which must be a non-negative value smaller than // the return value of |EVP_PKEY_asn1_get_count|. OPENSSL_EXPORT const EVP_PKEY_ASN1_METHOD *EVP_PKEY_asn1_get0(int idx); // EVP_PKEY_asn1_find finds an |EVP_PKEY_ASN1_METHOD| structure for the given // key |type|, e.g. |EVP_PKEY_EC| or |EVP_PKEY_RSA|. |pe| is ignored. OPENSSL_EXPORT const EVP_PKEY_ASN1_METHOD *EVP_PKEY_asn1_find(ENGINE **_pe, int type); // EVP_PKEY_asn1_find_str finds an |EVP_PKEY_ASN1_METHOD| structure by name. // |pe| is ignored. // |name| is the name of the key type to find, e.g, "RSA" or "EC". // |len| is the length of the name. OPENSSL_EXPORT const EVP_PKEY_ASN1_METHOD *EVP_PKEY_asn1_find_str( ENGINE **_pe, const char *name, int len); // EVP_PKEY_asn1_get0_info retrieves information about an |EVP_PKEY_ASN1_METHOD| // structure. // |ppkey_id| is a pointer to get the key type identifier. // |pkey_base_id| is a pointer to get the base key type. Value will be the same // as |ppkey_id|. // |ppkey_flags| is not supported. Value is set to 0 if pointer is not |NULL|. // |pinfo| is a pointer to get a text description. // |ppem_str| is a pointer to get the PEM string name. // |ameth| is a pointer to the EVP_PKEY_ASN1_METHOD structure. OPENSSL_EXPORT int EVP_PKEY_asn1_get0_info(int *ppkey_id, int *pkey_base_id, int *ppkey_flags, const char **pinfo, const char **ppem_str, const EVP_PKEY_ASN1_METHOD *ameth); // Deprecated functions. // EVP_PKEY_RSA2 was historically an alternate form for RSA public keys (OID // 2.5.8.1.1), but is no longer accepted. #define EVP_PKEY_RSA2 NID_rsa // EVP_PKEY_X448 is defined for OpenSSL compatibility, but we do not support // X448 and attempts to create keys will fail. #define EVP_PKEY_X448 NID_X448 // EVP_PKEY_ED448 is defined for OpenSSL compatibility, but we do not support // Ed448 and attempts to create keys will fail. #define EVP_PKEY_ED448 NID_ED448 // EVP_MD_get_pkey_type returns the NID of the public key signing algorithm // associated with |md| and RSA. This does not return all potential signing // algorithms that could work with |md| and should not be used. OPENSSL_EXPORT int EVP_MD_get_pkey_type(const EVP_MD *md); // EVP_MD_pkey_type calls |EVP_MD_get_pkey_type|. OPENSSL_EXPORT int EVP_MD_pkey_type(const EVP_MD *md); OPENSSL_EXPORT void EVP_CIPHER_do_all_sorted( void (*callback)(const EVP_CIPHER *cipher, const char *name, const char *unused, void *arg), void *arg); OPENSSL_EXPORT void EVP_MD_do_all_sorted(void (*callback)(const EVP_MD *cipher, const char *name, const char *unused, void *arg), void *arg); // EVP_MD_do_all is the same as |EVP_MD_do_all_sorted|. We include both for // compatibility reasons. OPENSSL_EXPORT void EVP_MD_do_all(void (*callback)(const EVP_MD *cipher, const char *name, const char *unused, void *arg), void *arg); // i2d_PrivateKey marshals a private key from |key| to type-specific format, as // described in |i2d_SAMPLE|. // // RSA keys are serialized as a DER-encoded RSAPublicKey (RFC 8017) structure. // EC keys are serialized as a DER-encoded ECPrivateKey (RFC 5915) structure. // // Use |RSA_marshal_private_key| or |EC_KEY_marshal_private_key| instead. OPENSSL_EXPORT int i2d_PrivateKey(const EVP_PKEY *key, uint8_t **outp); // i2d_PublicKey marshals a public key from |key| to a type-specific format, as // described in |i2d_SAMPLE|. // // RSA keys are serialized as a DER-encoded RSAPublicKey (RFC 8017) structure. // EC keys are serialized as an EC point per SEC 1. // // Use |RSA_marshal_public_key| or |EC_POINT_point2cbb| instead. OPENSSL_EXPORT int i2d_PublicKey(const EVP_PKEY *key, uint8_t **outp); // d2i_PrivateKey parses a DER-encoded private key from |len| bytes at |*inp|, // as described in |d2i_SAMPLE|. The private key must have type |type|, // otherwise it will be rejected. // // This function tries to detect one of several formats. Instead, use // |EVP_parse_private_key| for a PrivateKeyInfo, |RSA_parse_private_key| for an // RSAPrivateKey, and |EC_parse_private_key| for an ECPrivateKey. OPENSSL_EXPORT EVP_PKEY *d2i_PrivateKey(int type, EVP_PKEY **out, const uint8_t **inp, long len); // d2i_AutoPrivateKey acts the same as |d2i_PrivateKey|, but detects the type // of the private key. // // This function tries to detect one of several formats. Instead, use // |EVP_parse_private_key| for a PrivateKeyInfo, |RSA_parse_private_key| for an // RSAPrivateKey, and |EC_parse_private_key| for an ECPrivateKey. OPENSSL_EXPORT EVP_PKEY *d2i_AutoPrivateKey(EVP_PKEY **out, const uint8_t **inp, long len); // d2i_PublicKey parses a public key from |len| bytes at |*inp| in a type- // specific format specified by |type|, as described in |d2i_SAMPLE|. // // The only supported value for |type| is |EVP_PKEY_RSA|, which parses a // DER-encoded RSAPublicKey (RFC 8017) structure. Parsing EC keys is not // supported by this function. // // Use |RSA_parse_public_key| instead. OPENSSL_EXPORT EVP_PKEY *d2i_PublicKey(int type, EVP_PKEY **out, const uint8_t **inp, long len); // EVP_PKEY_CTX_set_ec_param_enc returns one if |encoding| is // |OPENSSL_EC_NAMED_CURVE| or zero with an error otherwise. OPENSSL_EXPORT int EVP_PKEY_CTX_set_ec_param_enc(EVP_PKEY_CTX *ctx, int encoding); // EVP_PKEY_set1_tls_encodedpoint replaces |pkey| with a public key encoded by // |in|. It returns one on success and zero on error. |len| is the size of |in|. // Any value of |len| below 1 is interpreted as an invalid input and will result // in an error. // // This function only works on X25519 |EVP_PKEY_X25519| and EC |EVP_PKEY_EC| key // types. The supported curve for |EVP_PKEY_X25519| is Curve25519. The supported // curves for |EVP_PKEY_EC| are: NID_secp224r1, NID_X9_62_prime256v1, // NID_secp384r1, NID_secp521r1 // // For the EC key type, the EC point representation must be in // uncompressed form. OPENSSL_EXPORT int EVP_PKEY_set1_tls_encodedpoint(EVP_PKEY *pkey, const uint8_t *in, size_t len); // EVP_PKEY_get1_tls_encodedpoint sets |*out_ptr| to a newly-allocated buffer // containing the raw encoded public key for |pkey|. The caller must call // |OPENSSL_free| to release this buffer on success. The function returns the // length of the buffer on success and zero on error. // // This function only works on X25519 |EVP_PKEY_X25519| and EC |EVP_PKEY_EC| key // types. The supported curve for |EVP_PKEY_X25519| is Curve25519. The supported // curves for |EVP_PKEY_EC| are: NID_secp224r1, NID_X9_62_prime256v1, // NID_secp384r1, NID_secp521r1 // // For the EC key type, the EC point representation must be in // uncompressed form. OPENSSL_EXPORT size_t EVP_PKEY_get1_tls_encodedpoint(const EVP_PKEY *pkey, uint8_t **out_ptr); // EVP_PKEY_base_id calls |EVP_PKEY_id|. OPENSSL_EXPORT int EVP_PKEY_base_id(const EVP_PKEY *pkey); // EVP_PKEY_CTX_set_rsa_pss_keygen_md returns 0. OPENSSL_EXPORT int EVP_PKEY_CTX_set_rsa_pss_keygen_md(EVP_PKEY_CTX *ctx, const EVP_MD *md); // EVP_PKEY_CTX_set_rsa_pss_keygen_saltlen returns 0. OPENSSL_EXPORT int EVP_PKEY_CTX_set_rsa_pss_keygen_saltlen(EVP_PKEY_CTX *ctx, int salt_len); // EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md returns 0. OPENSSL_EXPORT int EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md); // i2d_PUBKEY marshals |pkey| as a DER-encoded SubjectPublicKeyInfo, as // described in |i2d_SAMPLE|. // // Use |EVP_marshal_public_key| instead. OPENSSL_EXPORT int i2d_PUBKEY(const EVP_PKEY *pkey, uint8_t **outp); // d2i_PUBKEY parses a DER-encoded SubjectPublicKeyInfo from |len| bytes at // |*inp|, as described in |d2i_SAMPLE|. // // Use |EVP_parse_public_key| instead. OPENSSL_EXPORT EVP_PKEY *d2i_PUBKEY(EVP_PKEY **out, const uint8_t **inp, long len); // i2d_RSA_PUBKEY marshals |rsa| as a DER-encoded SubjectPublicKeyInfo // structure, as described in |i2d_SAMPLE|. // // Use |EVP_marshal_public_key| instead. OPENSSL_EXPORT int i2d_RSA_PUBKEY(const RSA *rsa, uint8_t **outp); // d2i_RSA_PUBKEY parses an RSA public key as a DER-encoded SubjectPublicKeyInfo // from |len| bytes at |*inp|, as described in |d2i_SAMPLE|. // SubjectPublicKeyInfo structures containing other key types are rejected. // // Use |EVP_parse_public_key| instead. OPENSSL_EXPORT RSA *d2i_RSA_PUBKEY(RSA **out, const uint8_t **inp, long len); // i2d_DSA_PUBKEY marshals |dsa| as a DER-encoded SubjectPublicKeyInfo, as // described in |i2d_SAMPLE|. // // Use |EVP_marshal_public_key| instead. OPENSSL_EXPORT int i2d_DSA_PUBKEY(const DSA *dsa, uint8_t **outp); // d2i_DSA_PUBKEY parses a DSA public key as a DER-encoded SubjectPublicKeyInfo // from |len| bytes at |*inp|, as described in |d2i_SAMPLE|. // SubjectPublicKeyInfo structures containing other key types are rejected. // // Use |EVP_parse_public_key| instead. OPENSSL_EXPORT DSA *d2i_DSA_PUBKEY(DSA **out, const uint8_t **inp, long len); // i2d_EC_PUBKEY marshals |ec_key| as a DER-encoded SubjectPublicKeyInfo, as // described in |i2d_SAMPLE|. // // Use |EVP_marshal_public_key| instead. OPENSSL_EXPORT int i2d_EC_PUBKEY(const EC_KEY *ec_key, uint8_t **outp); // d2i_EC_PUBKEY parses an EC public key as a DER-encoded SubjectPublicKeyInfo // from |len| bytes at |*inp|, as described in |d2i_SAMPLE|. // SubjectPublicKeyInfo structures containing other key types are rejected. // // Use |EVP_parse_public_key| instead. OPENSSL_EXPORT EC_KEY *d2i_EC_PUBKEY(EC_KEY **out, const uint8_t **inp, long len); // EVP_PKEY_assign sets the underlying key of |pkey| to |key|, which must be of // the given type. If successful, it returns one. If the |type| argument // is one of |EVP_PKEY_RSA|, |EVP_PKEY_DSA|, or |EVP_PKEY_EC| values it calls // the corresponding |EVP_PKEY_assign_*| functions (which should be used instead). // Otherwise, if |type| cannot be set via |EVP_PKEY_set_type| or if the key // is NULL, it returns zero. OPENSSL_EXPORT int EVP_PKEY_assign(EVP_PKEY *pkey, int type, void *key); // EVP_PKEY_new_mac_key is deprecated. It allocates a fresh |EVP_PKEY| of // |type|. Only |EVP_PKEY_HMAC| is supported. |mac_key| is used as the HMAC key, // NULL |mac_key| will result in a complete zero-key being used, but in that // case, the length must be zero. This returns the fresh |EVP_PKEY|, or NULL on // error. // // NOTE: Use |HMAC_CTX| directly instead. OPENSSL_EXPORT EVP_PKEY *EVP_PKEY_new_mac_key(int type, ENGINE *engine, const uint8_t *mac_key, size_t mac_key_len); // EVP_PKEY_get0 returns the consumed key. The type of value returned will be // one of the following, depending on the type of the |EVP_PKEY|: // |DH|, |DSA|, |EC_KEY|, or |RSA|. // // This function is provided only for compatibility with OpenSSL. // Prefer the use the typed |EVP_PKEY_get0_*| functions instead. OPENSSL_EXPORT OPENSSL_DEPRECATED void *EVP_PKEY_get0(const EVP_PKEY *pkey); // General No-op Functions [Deprecated]. // OpenSSL_add_all_algorithms does nothing. This has been deprecated since // OpenSSL 1.1.0. // // TODO (CryptoAlg-2398): Add |OPENSSL_DEPRECATED|. nginx defines -Werror and // depends on this. OPENSSL_EXPORT void OpenSSL_add_all_algorithms(void); // OPENSSL_add_all_algorithms_conf does nothing. This has been deprecated since // OpenSSL 1.1.0. OPENSSL_EXPORT OPENSSL_DEPRECATED void OPENSSL_add_all_algorithms_conf(void); // OpenSSL_add_all_ciphers does nothing. This has been deprecated since OpenSSL // 1.1.0. OPENSSL_EXPORT OPENSSL_DEPRECATED void OpenSSL_add_all_ciphers(void); // OpenSSL_add_all_digests does nothing. This has been deprecated since OpenSSL // 1.1.0. // // TODO (CryptoAlg-2398): Add |OPENSSL_DEPRECATED|. tpm2-tss defines -Werror and // depends on this. OPENSSL_EXPORT void OpenSSL_add_all_digests(void); // EVP_cleanup does nothing. This has been deprecated since OpenSSL 1.1.0. OPENSSL_EXPORT OPENSSL_DEPRECATED void EVP_cleanup(void); // EVP_PKEY_DSA No-ops [Deprecated]. // // |EVP_PKEY_DSA| is deprecated. It is currently still possible to parse DER // into a DSA |EVP_PKEY|, but signing or verifying with those objects will not // work. #define EVP_PKEY_DSA NID_dsa // EVP_PKEY_CTX_set_dsa_paramgen_bits returns zero. OPENSSL_EXPORT OPENSSL_DEPRECATED int EVP_PKEY_CTX_set_dsa_paramgen_bits( EVP_PKEY_CTX *ctx, int nbits); // EVP_PKEY_CTX_set_dsa_paramgen_q_bits returns zero. OPENSSL_EXPORT OPENSSL_DEPRECATED int EVP_PKEY_CTX_set_dsa_paramgen_q_bits( EVP_PKEY_CTX *ctx, int qbits); // EVP_PKEY_CTX_ctrl_str // EVP_PKEY_CTX_ctrl_str sets a parameter on |ctx| of type |type| to |value|. // This function is deprecated and should not be used in new code. // // WARNING: This function is difficult to use correctly. New code should use // the EVP_PKEY_CTX_set1_* or EVP_PKEY_CTX_set_* functions instead. // // |ctx| is the context to operate on. // |type| is the parameter type as a string. // |value| is the value to set. // // It returns 1 for success and 0 or a negative value for failure. OPENSSL_EXPORT OPENSSL_DEPRECATED int EVP_PKEY_CTX_ctrl_str(EVP_PKEY_CTX *ctx, const char *type, const char *value); // EVP_PKEY_CTX keygen no-ops [Deprecated]. typedef int EVP_PKEY_gen_cb(EVP_PKEY_CTX *ctx); // EVP_PKEY_CTX_set_cb is a no-op. OPENSSL_EXPORT OPENSSL_DEPRECATED void EVP_PKEY_CTX_set_cb(EVP_PKEY_CTX *ctx, EVP_PKEY_gen_cb *cb); // EVP_PKEY_CTX_set_app_data is a no-op. OPENSSL_EXPORT OPENSSL_DEPRECATED void EVP_PKEY_CTX_set_app_data(EVP_PKEY_CTX *ctx, void *data); // EVP_PKEY_CTX_get_app_data is a no-op. Return value is |NULL|. OPENSSL_EXPORT OPENSSL_DEPRECATED void *EVP_PKEY_CTX_get_app_data(EVP_PKEY_CTX *ctx); // EVP_PKEY_CTX_get_keygen_info is a no-op. Return value is 0. OPENSSL_EXPORT OPENSSL_DEPRECATED int EVP_PKEY_CTX_get_keygen_info(EVP_PKEY_CTX *ctx, int idx); // Preprocessor compatibility section (hidden). // // Historically, a number of APIs were implemented in OpenSSL as macros and // constants to 'ctrl' functions. To avoid breaking #ifdefs in consumers, this // section defines a number of legacy macros. // |BORINGSSL_PREFIX| already makes each of these symbols into macros, so there // is no need to define conflicting macros. #if !defined(BORINGSSL_PREFIX) #define EVP_PKEY_CTX_set_rsa_oaep_md EVP_PKEY_CTX_set_rsa_oaep_md #define EVP_PKEY_CTX_set0_rsa_oaep_label EVP_PKEY_CTX_set0_rsa_oaep_label #define EVP_MD_name EVP_MD_name #define EVP_MD_pkey_type EVP_MD_pkey_type #endif // Nodejs compatibility section (hidden). // // These defines exist for node.js, with the hope that we can eliminate the // need for them over time. #define EVPerr(function, reason) \ ERR_put_error(ERR_LIB_EVP, 0, reason, __FILE__, __LINE__) #if defined(__cplusplus) } // extern C extern "C++" { BSSL_NAMESPACE_BEGIN BORINGSSL_MAKE_DELETER(EVP_PKEY, EVP_PKEY_free) BORINGSSL_MAKE_UP_REF(EVP_PKEY, EVP_PKEY_up_ref) BORINGSSL_MAKE_DELETER(EVP_PKEY_CTX, EVP_PKEY_CTX_free) BSSL_NAMESPACE_END } // extern C++ #endif #endif // OPENSSL_HEADER_EVP_H