/* Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #ifndef OPENSSL_HEADER_PEM_H #define OPENSSL_HEADER_PEM_H #include #include #include #include #include #include #include #include // For compatibility with open-iscsi, which assumes that it can get // |OPENSSL_malloc| from pem.h or err.h #include #ifdef __cplusplus extern "C" { #endif #define PEM_BUFSIZE 1024 #define PEM_STRING_X509_OLD "X509 CERTIFICATE" #define PEM_STRING_X509 "CERTIFICATE" #define PEM_STRING_X509_PAIR "CERTIFICATE PAIR" #define PEM_STRING_X509_TRUSTED "TRUSTED CERTIFICATE" #define PEM_STRING_X509_REQ_OLD "NEW CERTIFICATE REQUEST" #define PEM_STRING_X509_REQ "CERTIFICATE REQUEST" #define PEM_STRING_X509_CRL "X509 CRL" #define PEM_STRING_EVP_PKEY "ANY PRIVATE KEY" #define PEM_STRING_PUBLIC "PUBLIC KEY" #define PEM_STRING_RSA "RSA PRIVATE KEY" #define PEM_STRING_RSA_PUBLIC "RSA PUBLIC KEY" #ifdef ENABLE_DILITHIUM #define PEM_STRING_DILITHIUM3 "DILITHIUM3 PRIVATE KEY" #define PEM_STRING_DILITHIUM3_PUBLIC "DILITHIUM3 PUBLIC KEY" #endif #define PEM_STRING_DSA "DSA PRIVATE KEY" #define PEM_STRING_DSA_PUBLIC "DSA PUBLIC KEY" #define PEM_STRING_EC "EC PRIVATE KEY" #define PEM_STRING_PKCS7 "PKCS7" #define PEM_STRING_PKCS7_SIGNED "PKCS #7 SIGNED DATA" #define PEM_STRING_PKCS8 "ENCRYPTED PRIVATE KEY" #define PEM_STRING_PKCS8INF "PRIVATE KEY" #define PEM_STRING_DHPARAMS "DH PARAMETERS" #define PEM_STRING_SSL_SESSION "SSL SESSION PARAMETERS" #define PEM_STRING_DSAPARAMS "DSA PARAMETERS" #define PEM_STRING_ECDSA_PUBLIC "ECDSA PUBLIC KEY" #define PEM_STRING_ECPARAMETERS "EC PARAMETERS" #define PEM_STRING_ECPRIVATEKEY "EC PRIVATE KEY" #define PEM_STRING_PARAMETERS "PARAMETERS" #define PEM_STRING_CMS "CMS" // enc_type is one off #define PEM_TYPE_ENCRYPTED 10 #define PEM_TYPE_MIC_ONLY 20 #define PEM_TYPE_MIC_CLEAR 30 #define PEM_TYPE_CLEAR 40 // These macros make the PEM_read/PEM_write functions easier to maintain and // write. Now they are all implemented with either: // IMPLEMENT_PEM_rw(...) or IMPLEMENT_PEM_rw_cb(...) #define IMPLEMENT_PEM_read_fp(name, type, str, asn1) \ static void *pem_read_##name##_d2i(void **x, const unsigned char **inp, \ long len) { \ return d2i_##asn1((type **)x, inp, len); \ } \ OPENSSL_EXPORT type *PEM_read_##name(FILE *fp, type **x, \ pem_password_cb *cb, void *u) { \ return (type *)PEM_ASN1_read(pem_read_##name##_d2i, str, fp, (void **)x, \ cb, u); \ } #define IMPLEMENT_PEM_write_fp(name, type, str, asn1) \ static int pem_write_##name##_i2d(const void *x, unsigned char **outp) { \ return i2d_##asn1((type *)x, outp); \ } \ OPENSSL_EXPORT int PEM_write_##name(FILE *fp, type *x) { \ return PEM_ASN1_write(pem_write_##name##_i2d, str, fp, x, NULL, NULL, 0, \ NULL, NULL); \ } #define IMPLEMENT_PEM_write_fp_const(name, type, str, asn1) \ static int pem_write_##name##_i2d(const void *x, unsigned char **outp) { \ return i2d_##asn1((const type *)x, outp); \ } \ OPENSSL_EXPORT int PEM_write_##name(FILE *fp, const type *x) { \ return PEM_ASN1_write(pem_write_##name##_i2d, str, fp, (void *)x, NULL, \ NULL, 0, NULL, NULL); \ } #define IMPLEMENT_PEM_write_cb_fp(name, type, str, asn1) \ static int pem_write_##name##_i2d(const void *x, unsigned char **outp) { \ return i2d_##asn1((type *)x, outp); \ } \ OPENSSL_EXPORT int PEM_write_##name( \ FILE *fp, type *x, const EVP_CIPHER *enc, unsigned char *kstr, int klen, \ pem_password_cb *cb, void *u) { \ return PEM_ASN1_write(pem_write_##name##_i2d, str, fp, x, enc, kstr, klen, \ cb, u); \ } #define IMPLEMENT_PEM_write_cb_fp_const(name, type, str, asn1) \ static int pem_write_##name##_i2d(const void *x, unsigned char **outp) { \ return i2d_##asn1((const type *)x, outp); \ } \ OPENSSL_EXPORT int PEM_write_##name( \ FILE *fp, type *x, const EVP_CIPHER *enc, unsigned char *kstr, int klen, \ pem_password_cb *cb, void *u) { \ return PEM_ASN1_write(pem_write_##name##_i2d, str, fp, x, enc, kstr, klen, \ cb, u); \ } #define IMPLEMENT_PEM_read_bio(name, type, str, asn1) \ static void *pem_read_bio_##name##_d2i(void **x, const unsigned char **inp, \ long len) { \ return d2i_##asn1((type **)x, inp, len); \ } \ OPENSSL_EXPORT type *PEM_read_bio_##name(BIO *bp, type **x, \ pem_password_cb *cb, void *u) { \ return (type *)PEM_ASN1_read_bio(pem_read_bio_##name##_d2i, str, bp, \ (void **)x, cb, u); \ } #define IMPLEMENT_PEM_write_bio(name, type, str, asn1) \ static int pem_write_bio_##name##_i2d(const void *x, unsigned char **outp) { \ return i2d_##asn1((type *)x, outp); \ } \ OPENSSL_EXPORT int PEM_write_bio_##name(BIO *bp, type *x) { \ return PEM_ASN1_write_bio(pem_write_bio_##name##_i2d, str, bp, x, NULL, \ NULL, 0, NULL, NULL); \ } #define IMPLEMENT_PEM_write_bio_const(name, type, str, asn1) \ static int pem_write_bio_##name##_i2d(const void *x, unsigned char **outp) { \ return i2d_##asn1((const type *)x, outp); \ } \ OPENSSL_EXPORT int PEM_write_bio_##name(BIO *bp, const type *x) { \ return PEM_ASN1_write_bio(pem_write_bio_##name##_i2d, str, bp, (void *)x, \ NULL, NULL, 0, NULL, NULL); \ } #define IMPLEMENT_PEM_write_cb_bio(name, type, str, asn1) \ static int pem_write_bio_##name##_i2d(const void *x, unsigned char **outp) { \ return i2d_##asn1((type *)x, outp); \ } \ OPENSSL_EXPORT int PEM_write_bio_##name( \ BIO *bp, type *x, const EVP_CIPHER *enc, unsigned char *kstr, int klen, \ pem_password_cb *cb, void *u) { \ return PEM_ASN1_write_bio(pem_write_bio_##name##_i2d, str, bp, x, enc, \ kstr, klen, cb, u); \ } #define IMPLEMENT_PEM_write_cb_bio_const(name, type, str, asn1) \ static int pem_write_bio_##name##_i2d(const void *x, unsigned char **outp) { \ return i2d_##asn1((const type *)x, outp); \ } \ OPENSSL_EXPORT int PEM_write_bio_##name( \ BIO *bp, type *x, const EVP_CIPHER *enc, unsigned char *kstr, int klen, \ pem_password_cb *cb, void *u) { \ return PEM_ASN1_write_bio(pem_write_bio_##name##_i2d, str, bp, (void *)x, \ enc, kstr, klen, cb, u); \ } #define IMPLEMENT_PEM_write(name, type, str, asn1) \ IMPLEMENT_PEM_write_bio(name, type, str, asn1) \ IMPLEMENT_PEM_write_fp(name, type, str, asn1) #define IMPLEMENT_PEM_write_const(name, type, str, asn1) \ IMPLEMENT_PEM_write_bio_const(name, type, str, asn1) \ IMPLEMENT_PEM_write_fp_const(name, type, str, asn1) #define IMPLEMENT_PEM_write_cb(name, type, str, asn1) \ IMPLEMENT_PEM_write_cb_bio(name, type, str, asn1) \ IMPLEMENT_PEM_write_cb_fp(name, type, str, asn1) #define IMPLEMENT_PEM_write_cb_const(name, type, str, asn1) \ IMPLEMENT_PEM_write_cb_bio_const(name, type, str, asn1) \ IMPLEMENT_PEM_write_cb_fp_const(name, type, str, asn1) #define IMPLEMENT_PEM_read(name, type, str, asn1) \ IMPLEMENT_PEM_read_bio(name, type, str, asn1) \ IMPLEMENT_PEM_read_fp(name, type, str, asn1) #define IMPLEMENT_PEM_rw(name, type, str, asn1) \ IMPLEMENT_PEM_read(name, type, str, asn1) \ IMPLEMENT_PEM_write(name, type, str, asn1) #define IMPLEMENT_PEM_rw_const(name, type, str, asn1) \ IMPLEMENT_PEM_read(name, type, str, asn1) \ IMPLEMENT_PEM_write_const(name, type, str, asn1) #define IMPLEMENT_PEM_rw_cb(name, type, str, asn1) \ IMPLEMENT_PEM_read(name, type, str, asn1) \ IMPLEMENT_PEM_write_cb(name, type, str, asn1) // These are the same except they are for the declarations #define DECLARE_PEM_read_fp(name, type) \ OPENSSL_EXPORT type *PEM_read_##name(FILE *fp, type **x, \ pem_password_cb *cb, void *u); #define DECLARE_PEM_write_fp(name, type) \ OPENSSL_EXPORT int PEM_write_##name(FILE *fp, type *x); #define DECLARE_PEM_write_fp_const(name, type) \ OPENSSL_EXPORT int PEM_write_##name(FILE *fp, const type *x); #define DECLARE_PEM_write_cb_fp(name, type) \ OPENSSL_EXPORT int PEM_write_##name( \ FILE *fp, type *x, const EVP_CIPHER *enc, unsigned char *kstr, int klen, \ pem_password_cb *cb, void *u); #define DECLARE_PEM_read_bio(name, type) \ OPENSSL_EXPORT type *PEM_read_bio_##name(BIO *bp, type **x, \ pem_password_cb *cb, void *u); #define DECLARE_PEM_write_bio(name, type) \ OPENSSL_EXPORT int PEM_write_bio_##name(BIO *bp, type *x); #define DECLARE_PEM_write_bio_const(name, type) \ OPENSSL_EXPORT int PEM_write_bio_##name(BIO *bp, const type *x); #define DECLARE_PEM_write_cb_bio(name, type) \ OPENSSL_EXPORT int PEM_write_bio_##name( \ BIO *bp, type *x, const EVP_CIPHER *enc, unsigned char *kstr, int klen, \ pem_password_cb *cb, void *u); #define DECLARE_PEM_write(name, type) \ DECLARE_PEM_write_bio(name, type) \ DECLARE_PEM_write_fp(name, type) #define DECLARE_PEM_write_const(name, type) \ DECLARE_PEM_write_bio_const(name, type) \ DECLARE_PEM_write_fp_const(name, type) #define DECLARE_PEM_write_cb(name, type) \ DECLARE_PEM_write_cb_bio(name, type) \ DECLARE_PEM_write_cb_fp(name, type) #define DECLARE_PEM_read(name, type) \ DECLARE_PEM_read_bio(name, type) \ DECLARE_PEM_read_fp(name, type) #define DECLARE_PEM_rw(name, type) \ DECLARE_PEM_read(name, type) \ DECLARE_PEM_write(name, type) #define DECLARE_PEM_rw_const(name, type) \ DECLARE_PEM_read(name, type) \ DECLARE_PEM_write_const(name, type) #define DECLARE_PEM_rw_cb(name, type) \ DECLARE_PEM_read(name, type) \ DECLARE_PEM_write_cb(name, type) // "userdata": new with OpenSSL 0.9.4 typedef int pem_password_cb(char *buf, int size, int rwflag, void *userdata); OPENSSL_EXPORT int PEM_get_EVP_CIPHER_INFO(char *header, EVP_CIPHER_INFO *cipher); OPENSSL_EXPORT int PEM_do_header(EVP_CIPHER_INFO *cipher, unsigned char *data, long *len, pem_password_cb *callback, void *u); // PEM_read_bio reads from |bp|, until the next PEM block. If one is found, it // returns one and sets |*name|, |*header|, and |*data| to newly-allocated // buffers containing the PEM type, the header block, and the decoded data, // respectively. |*name| and |*header| are NUL-terminated C strings, while // |*data| has |*len| bytes. The caller must release each of |*name|, |*header|, // and |*data| with |OPENSSL_free| when done. If no PEM block is found, this // function returns zero and pushes |PEM_R_NO_START_LINE| to the error queue. If // one is found, but there is an error decoding it, it returns zero and pushes // some other error to the error queue. OPENSSL_EXPORT int PEM_read_bio(BIO *bp, char **name, char **header, unsigned char **data, long *len); // PEM_write_bio writes a PEM block to |bp|, containing |len| bytes from |data| // as data. |name| and |hdr| are NUL-terminated C strings containing the PEM // type and header block, respectively. This function returns zero on error and // the number of bytes written on success. OPENSSL_EXPORT int PEM_write_bio(BIO *bp, const char *name, const char *hdr, const unsigned char *data, long len); // PEM_bytes_read_bio reads PEM-formatted data from |bp| for the data type given // in |name|. If a PEM block is found, it returns one and sets |*pnm| and // |*pdata| to newly-allocated buffers containing the PEM type and the decoded // data, respectively. |*pnm| is a NUL-terminated C string, while |*pdata| has // |*plen| bytes. The caller must release each of |*pnm| and |*pdata| with // |OPENSSL_free| when done. If no PEM block is found, this function returns // zero and pushes |PEM_R_NO_START_LINE| to the error queue. If one is found, // but there is an error decoding it, it returns zero and pushes some other // error to the error queue. |cb| is the callback to use when querying for // pass phrase used for encrypted PEM structures (normally only private keys) // and |u| is interpreted as the null terminated string to use as the // passphrase. OPENSSL_EXPORT int PEM_bytes_read_bio(unsigned char **pdata, long *plen, char **pnm, const char *name, BIO *bp, pem_password_cb *cb, void *u); OPENSSL_EXPORT void *PEM_ASN1_read_bio(d2i_of_void *d2i, const char *name, BIO *bp, void **x, pem_password_cb *cb, void *u); OPENSSL_EXPORT int PEM_ASN1_write_bio(i2d_of_void *i2d, const char *name, BIO *bp, void *x, const EVP_CIPHER *enc, unsigned char *kstr, int klen, pem_password_cb *cb, void *u); // PEM_X509_INFO_read_bio reads PEM blocks from |bp| and decodes any // certificates, CRLs, and private keys found. It returns a // |STACK_OF(X509_INFO)| structure containing the results, or NULL on error. // // If |sk| is NULL, the result on success will be a newly-allocated // |STACK_OF(X509_INFO)| structure which should be released with // |sk_X509_INFO_pop_free| and |X509_INFO_free| when done. // // If |sk| is non-NULL, it appends the results to |sk| instead and returns |sk| // on success. In this case, the caller retains ownership of |sk| in both // success and failure. OPENSSL_EXPORT STACK_OF(X509_INFO) *PEM_X509_INFO_read_bio( BIO *bp, STACK_OF(X509_INFO) *sk, pem_password_cb *cb, void *u); // PEM_X509_INFO_read behaves like |PEM_X509_INFO_read_bio| but reads from a // |FILE|. OPENSSL_EXPORT STACK_OF(X509_INFO) *PEM_X509_INFO_read(FILE *fp, STACK_OF(X509_INFO) *sk, pem_password_cb *cb, void *u); OPENSSL_EXPORT int PEM_read(FILE *fp, char **name, char **header, unsigned char **data, long *len); OPENSSL_EXPORT int PEM_write(FILE *fp, const char *name, const char *hdr, const unsigned char *data, long len); OPENSSL_EXPORT void *PEM_ASN1_read(d2i_of_void *d2i, const char *name, FILE *fp, void **x, pem_password_cb *cb, void *u); OPENSSL_EXPORT int PEM_ASN1_write(i2d_of_void *i2d, const char *name, FILE *fp, void *x, const EVP_CIPHER *enc, unsigned char *kstr, int klen, pem_password_cb *callback, void *u); // PEM_def_callback treats |userdata| as a string and copies it into |buf|, // assuming its |size| is sufficient. Returns the length of the string, or 0 // if there is not enough room. If either |buf| or |userdata| is NULL, 0 is // returned. Note that this is different from OpenSSL, which prompts for a // password. OPENSSL_EXPORT int PEM_def_callback(char *buf, int size, int rwflag, void *userdata); DECLARE_PEM_rw(X509, X509) DECLARE_PEM_rw(X509_AUX, X509) DECLARE_PEM_rw(X509_REQ, X509_REQ) DECLARE_PEM_write(X509_REQ_NEW, X509_REQ) DECLARE_PEM_rw(X509_CRL, X509_CRL) DECLARE_PEM_rw(PKCS7, PKCS7) DECLARE_PEM_rw(PKCS8, X509_SIG) DECLARE_PEM_rw(PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO) DECLARE_PEM_rw_cb(RSAPrivateKey, RSA) DECLARE_PEM_rw_const(RSAPublicKey, RSA) DECLARE_PEM_rw(RSA_PUBKEY, RSA) #ifndef OPENSSL_NO_DSA DECLARE_PEM_rw_cb(DSAPrivateKey, DSA) DECLARE_PEM_rw(DSA_PUBKEY, DSA) DECLARE_PEM_rw_const(DSAparams, DSA) #endif DECLARE_PEM_rw_cb(ECPrivateKey, EC_KEY) DECLARE_PEM_rw(EC_PUBKEY, EC_KEY) DECLARE_PEM_rw_const(DHparams, DH) DECLARE_PEM_rw_cb(PrivateKey, EVP_PKEY) DECLARE_PEM_rw(PUBKEY, EVP_PKEY) OPENSSL_EXPORT int PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, const EVP_PKEY *x, int nid, char *kstr, int klen, pem_password_cb *cb, void *u); OPENSSL_EXPORT int PEM_write_bio_PKCS8PrivateKey(BIO *, const EVP_PKEY *, const EVP_CIPHER *, char *, int, pem_password_cb *, void *); OPENSSL_EXPORT int i2d_PKCS8PrivateKey_bio(BIO *bp, const EVP_PKEY *x, const EVP_CIPHER *enc, char *kstr, int klen, pem_password_cb *cb, void *u); OPENSSL_EXPORT int i2d_PKCS8PrivateKey_nid_bio(BIO *bp, const EVP_PKEY *x, int nid, char *kstr, int klen, pem_password_cb *cb, void *u); OPENSSL_EXPORT EVP_PKEY *d2i_PKCS8PrivateKey_bio(BIO *bp, EVP_PKEY **x, pem_password_cb *cb, void *u); OPENSSL_EXPORT int i2d_PKCS8PrivateKey_fp(FILE *fp, const EVP_PKEY *x, const EVP_CIPHER *enc, char *kstr, int klen, pem_password_cb *cb, void *u); OPENSSL_EXPORT int i2d_PKCS8PrivateKey_nid_fp(FILE *fp, const EVP_PKEY *x, int nid, char *kstr, int klen, pem_password_cb *cb, void *u); OPENSSL_EXPORT int PEM_write_PKCS8PrivateKey_nid(FILE *fp, const EVP_PKEY *x, int nid, char *kstr, int klen, pem_password_cb *cb, void *u); OPENSSL_EXPORT EVP_PKEY *d2i_PKCS8PrivateKey_fp(FILE *fp, EVP_PKEY **x, pem_password_cb *cb, void *u); OPENSSL_EXPORT int PEM_write_PKCS8PrivateKey(FILE *fp, const EVP_PKEY *x, const EVP_CIPHER *enc, char *kstr, int klen, pem_password_cb *cd, void *u); // PEM_read_bio_Parameters is a generic PEM deserialization function that // parses the public "parameters" in |bio| and returns a corresponding // |EVP_PKEY|. If |*pkey| is non-null, the original |*pkey| is freed and the // returned |EVP_PKEY| is also written to |*pkey|. |*pkey| must be either NULL // or an allocated value, passing in an uninitialized pointer is undefined // behavior. This is only supported with |EVP_PKEY_EC|, |EVP_PKEY_DH|, and // |EVP_PKEY_DSA|. OPENSSL_EXPORT EVP_PKEY *PEM_read_bio_Parameters(BIO *bio, EVP_PKEY **pkey); // PEM_write_bio_Parameters is a generic PEM serialization function that parses // the public "parameters" of |pkey| to |bio|. It returns 1 on success or 0 on // failure. This is only supported with |EVP_PKEY_EC|, |EVP_PKEY_DH|, and // |EVP_PKEY_DSA|. OPENSSL_EXPORT int PEM_write_bio_Parameters(BIO *bio, EVP_PKEY *pkey); // PEM_read_bio_ECPKParameters deserializes the PEM file written in |bio| // according to |ECPKParameters| in RFC 3279. It returns the |EC_GROUP| // corresponding to deserialized output and also writes it to |out_group|. Only // deserialization of namedCurves or explicitly-encoded versions of namedCurves // are supported. OPENSSL_EXPORT EC_GROUP *PEM_read_bio_ECPKParameters(BIO *bio, EC_GROUP **out_group, pem_password_cb *cb, void *u); // PEM_write_bio_ECPKParameters serializes |group| as a PEM file to |out| // according to |ECPKParameters| in RFC 3279. Only serialization of namedCurves // are supported. OPENSSL_EXPORT int PEM_write_bio_ECPKParameters(BIO *out, const EC_GROUP *group); // PEM_write_bio_PrivateKey_traditional calls |PEM_ASN1_write_bio| to write // out |x|'s private key in the "traditional" ASN1 format. Use // |PEM_write_bio_PrivateKey| instead. OPENSSL_EXPORT int PEM_write_bio_PrivateKey_traditional( BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc, unsigned char *kstr, int klen, pem_password_cb *cb, void *u); #ifdef __cplusplus } // extern "C" #endif #define PEM_R_BAD_BASE64_DECODE 100 #define PEM_R_BAD_DECRYPT 101 #define PEM_R_BAD_END_LINE 102 #define PEM_R_BAD_IV_CHARS 103 #define PEM_R_BAD_PASSWORD_READ 104 #define PEM_R_CIPHER_IS_NULL 105 #define PEM_R_ERROR_CONVERTING_PRIVATE_KEY 106 #define PEM_R_NOT_DEK_INFO 107 #define PEM_R_NOT_ENCRYPTED 108 #define PEM_R_NOT_PROC_TYPE 109 #define PEM_R_NO_START_LINE 110 #define PEM_R_READ_KEY 111 #define PEM_R_SHORT_HEADER 112 #define PEM_R_UNSUPPORTED_CIPHER 113 #define PEM_R_UNSUPPORTED_ENCRYPTION 114 #define PEM_R_PROBLEMS_GETTING_PASSWORD 115 #endif // OPENSSL_HEADER_PEM_H