/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * ECC cipher suite support in OpenSSL originally developed by * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. */ /* ==================================================================== * Copyright 2005 Nokia. All rights reserved. * * The portions of the attached software ("Contribution") is developed by * Nokia Corporation and is licensed pursuant to the OpenSSL open source * license. * * The Contribution, originally written by Mika Kousa and Pasi Eronen of * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites * support (see RFC 4279) to OpenSSL. * * No patent licenses or other rights except those expressly stated in * the OpenSSL open source license shall be deemed granted or received * expressly, by implication, estoppel, or otherwise. * * No assurances are provided by Nokia that the Contribution does not * infringe the patent or other intellectual property rights of any third * party or that the license provides you with all the necessary rights * to make use of the Contribution. * * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR * OTHERWISE. */ #ifndef OPENSSL_HEADER_SSL_H #define OPENSSL_HEADER_SSL_H #include #include #include #include #include #include #include #include #include #if !defined(OPENSSL_WINDOWS) #include #endif // Forward-declare struct timeval. On Windows, it is defined in winsock2.h and // Windows headers define too many macros to be included in public headers. // However, only a forward declaration is needed. struct timeval; #if defined(__cplusplus) extern "C" { #endif #if defined(__cplusplus) // enums can be predeclared, but only in C++ and only if given an explicit type. // C doesn't support setting an explicit type for enums thus a #define is used // to do this only for C++. However, the ABI type between C and C++ need to have // equal sizes, which is confirmed in a unittest. #define BORINGSSL_ENUM_INT : int enum ssl_early_data_reason_t BORINGSSL_ENUM_INT; enum ssl_encryption_level_t BORINGSSL_ENUM_INT; enum ssl_private_key_result_t BORINGSSL_ENUM_INT; enum ssl_renegotiate_mode_t BORINGSSL_ENUM_INT; enum ssl_select_cert_result_t BORINGSSL_ENUM_INT; enum ssl_select_cert_result_t BORINGSSL_ENUM_INT; enum ssl_ticket_aead_result_t BORINGSSL_ENUM_INT; enum ssl_verify_result_t BORINGSSL_ENUM_INT; #else #define BORINGSSL_ENUM_INT #endif // SSL implementation. // SSL contexts. // // |SSL_CTX| objects manage shared state and configuration between multiple TLS // or DTLS connections. Whether the connections are TLS or DTLS is selected by // an |SSL_METHOD| on creation. // // |SSL_CTX| are reference-counted and may be shared by connections across // multiple threads. Once shared, functions which change the |SSL_CTX|'s // configuration may not be used. // TLS_method is the |SSL_METHOD| used for TLS connections. OPENSSL_EXPORT const SSL_METHOD *TLS_method(void); // DTLS_method is the |SSL_METHOD| used for DTLS connections. OPENSSL_EXPORT const SSL_METHOD *DTLS_method(void); // TLS_with_buffers_method is like |TLS_method|, but avoids all use of // crypto/x509. All client connections created with |TLS_with_buffers_method| // will fail unless a certificate verifier is installed with // |SSL_set_custom_verify| or |SSL_CTX_set_custom_verify|. OPENSSL_EXPORT const SSL_METHOD *TLS_with_buffers_method(void); // DTLS_with_buffers_method is like |DTLS_method|, but avoids all use of // crypto/x509. OPENSSL_EXPORT const SSL_METHOD *DTLS_with_buffers_method(void); // SSL_CTX_new returns a newly-allocated |SSL_CTX| with default settings or NULL // on error. OPENSSL_EXPORT SSL_CTX *SSL_CTX_new(const SSL_METHOD *method); // SSL_CTX_up_ref increments the reference count of |ctx|. It returns one. OPENSSL_EXPORT int SSL_CTX_up_ref(SSL_CTX *ctx); // SSL_CTX_free releases memory associated with |ctx|. OPENSSL_EXPORT void SSL_CTX_free(SSL_CTX *ctx); // SSL connections. // // An |SSL| object represents a single TLS or DTLS connection. Although the // shared |SSL_CTX| is thread-safe, an |SSL| is not thread-safe and may only be // used on one thread at a time. // SSL_new returns a newly-allocated |SSL| using |ctx| or NULL on error. The new // connection inherits settings from |ctx| at the time of creation. Settings may // also be individually configured on the connection. // // On creation, an |SSL| is not configured to be either a client or server. Call // |SSL_set_connect_state| or |SSL_set_accept_state| to set this. OPENSSL_EXPORT SSL *SSL_new(SSL_CTX *ctx); // SSL_free releases memory associated with |ssl|. OPENSSL_EXPORT void SSL_free(SSL *ssl); // SSL_get_SSL_CTX returns the |SSL_CTX| associated with |ssl|. If // |SSL_set_SSL_CTX| is called, it returns the new |SSL_CTX|, not the initial // one. OPENSSL_EXPORT SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl); // SSL_set_connect_state configures |ssl| to be a client. OPENSSL_EXPORT void SSL_set_connect_state(SSL *ssl); // SSL_set_accept_state configures |ssl| to be a server. OPENSSL_EXPORT void SSL_set_accept_state(SSL *ssl); // SSL_is_server returns one if |ssl| is configured as a server and zero // otherwise. OPENSSL_EXPORT int SSL_is_server(const SSL *ssl); // SSL_is_dtls returns one if |ssl| is a DTLS connection and zero otherwise. OPENSSL_EXPORT int SSL_is_dtls(const SSL *ssl); // SSL_set_bio configures |ssl| to read from |rbio| and write to |wbio|. |ssl| // takes ownership of the two |BIO|s. If |rbio| and |wbio| are the same, |ssl| // only takes ownership of one reference. // // In DTLS, |rbio| must be non-blocking to properly handle timeouts and // retransmits. // // If |rbio| is the same as the currently configured |BIO| for reading, that // side is left untouched and is not freed. // // If |wbio| is the same as the currently configured |BIO| for writing AND |ssl| // is not currently configured to read from and write to the same |BIO|, that // side is left untouched and is not freed. This asymmetry is present for // historical reasons. // // Due to the very complex historical behavior of this function, calling this // function if |ssl| already has |BIO|s configured is deprecated. Prefer // |SSL_set0_rbio| and |SSL_set0_wbio| instead. OPENSSL_EXPORT void SSL_set_bio(SSL *ssl, BIO *rbio, BIO *wbio); // SSL_set0_rbio configures |ssl| to read from |rbio|. It takes ownership of // |rbio|. // // Note that, although this function and |SSL_set0_wbio| may be called on the // same |BIO|, each call takes a reference. Use |BIO_up_ref| to balance this. OPENSSL_EXPORT void SSL_set0_rbio(SSL *ssl, BIO *rbio); // SSL_set0_wbio configures |ssl| to write to |wbio|. It takes ownership of // |wbio|. // // Note that, although this function and |SSL_set0_rbio| may be called on the // same |BIO|, each call takes a reference. Use |BIO_up_ref| to balance this. OPENSSL_EXPORT void SSL_set0_wbio(SSL *ssl, BIO *wbio); // SSL_get_rbio returns the |BIO| that |ssl| reads from. OPENSSL_EXPORT BIO *SSL_get_rbio(const SSL *ssl); // SSL_get_wbio returns the |BIO| that |ssl| writes to. OPENSSL_EXPORT BIO *SSL_get_wbio(const SSL *ssl); // SSL_get_fd calls |SSL_get_rfd|. OPENSSL_EXPORT int SSL_get_fd(const SSL *ssl); // SSL_get_rfd returns the file descriptor that |ssl| is configured to read // from. If |ssl|'s read |BIO| is not configured or doesn't wrap a file // descriptor then it returns -1. // // Note: On Windows, this may return either a file descriptor or a socket (cast // to int), depending on whether |ssl| was configured with a file descriptor or // socket |BIO|. OPENSSL_EXPORT int SSL_get_rfd(const SSL *ssl); // SSL_get_wfd returns the file descriptor that |ssl| is configured to write // to. If |ssl|'s write |BIO| is not configured or doesn't wrap a file // descriptor then it returns -1. // // Note: On Windows, this may return either a file descriptor or a socket (cast // to int), depending on whether |ssl| was configured with a file descriptor or // socket |BIO|. OPENSSL_EXPORT int SSL_get_wfd(const SSL *ssl); #if !defined(OPENSSL_NO_SOCK) // SSL_set_fd configures |ssl| to read from and write to |fd|. It returns one // on success and zero on allocation error. The caller retains ownership of // |fd|. // // On Windows, |fd| is cast to a |SOCKET| and used with Winsock APIs. OPENSSL_EXPORT int SSL_set_fd(SSL *ssl, int fd); // SSL_set_rfd configures |ssl| to read from |fd|. It returns one on success and // zero on allocation error. The caller retains ownership of |fd|. // // On Windows, |fd| is cast to a |SOCKET| and used with Winsock APIs. OPENSSL_EXPORT int SSL_set_rfd(SSL *ssl, int fd); // SSL_set_wfd configures |ssl| to write to |fd|. It returns one on success and // zero on allocation error. The caller retains ownership of |fd|. // // On Windows, |fd| is cast to a |SOCKET| and used with Winsock APIs. OPENSSL_EXPORT int SSL_set_wfd(SSL *ssl, int fd); #endif // !OPENSSL_NO_SOCK // SSL_do_handshake continues the current handshake. If there is none or the // handshake has completed or False Started, it returns one. Otherwise, it // returns <= 0. The caller should pass the value into |SSL_get_error| to // determine how to proceed. // // In DTLS, the caller must drive retransmissions. Whenever |SSL_get_error| // signals |SSL_ERROR_WANT_READ|, use |DTLSv1_get_timeout| to determine the // current timeout. If it expires before the next retry, call // |DTLSv1_handle_timeout|. Note that DTLS handshake retransmissions use fresh // sequence numbers, so it is not sufficient to replay packets at the transport. // // TODO(davidben): Ensure 0 is only returned on transport EOF. // https://crbug.com/466303. OPENSSL_EXPORT int SSL_do_handshake(SSL *ssl); // SSL_connect configures |ssl| as a client, if unconfigured, and calls // |SSL_do_handshake|. OPENSSL_EXPORT int SSL_connect(SSL *ssl); // SSL_accept configures |ssl| as a server, if unconfigured, and calls // |SSL_do_handshake|. OPENSSL_EXPORT int SSL_accept(SSL *ssl); // SSL_read reads up to |num| bytes from |ssl| into |buf|. It implicitly runs // any pending handshakes, including renegotiations when enabled. On success, it // returns the number of bytes read. Otherwise, it returns <= 0. The caller // should pass the value into |SSL_get_error| to determine how to proceed. // // TODO(davidben): Ensure 0 is only returned on transport EOF. // https://crbug.com/466303. OPENSSL_EXPORT int SSL_read(SSL *ssl, void *buf, int num); // SSL_read_ex reads up to |num| bytes from |ssl| into |buf|. It is similar to // |SSL_read|, but instead of returning the number of bytes read, it returns // 1 on success or 0 for failure. The number of bytes actually read is stored in // |read_bytes|. // // This is only maintained for OpenSSL compatibility. Use |SSL_read| instead. OPENSSL_EXPORT int SSL_read_ex(SSL *ssl, void *buf, size_t num, size_t *read_bytes); // SSL_peek behaves like |SSL_read| but does not consume any bytes returned. OPENSSL_EXPORT int SSL_peek(SSL *ssl, void *buf, int num); // SSL_peek_ex reads up to |num| bytes from |ssl| into |buf|. It is similar to // |SSL_peek|, but instead of returning the number of bytes read, it returns // 1 on success or 0 for failure. The number of bytes actually read is stored in // |read_bytes|. // // This is only maintained for OpenSSL compatibility. Use |SSL_peek| instead. OPENSSL_EXPORT int SSL_peek_ex(SSL *ssl, void *buf, size_t num, size_t *read_bytes); // SSL_pending returns the number of buffered, decrypted bytes available for // read in |ssl|. It does not read from the transport. // // In DTLS, it is possible for this function to return zero while there is // buffered, undecrypted data from the transport in |ssl|. For example, // |SSL_read| may read a datagram with two records, decrypt the first, and leave // the second buffered for a subsequent call to |SSL_read|. Callers that wish to // detect this case can use |SSL_has_pending|. OPENSSL_EXPORT int SSL_pending(const SSL *ssl); // SSL_has_pending returns one if |ssl| has buffered, decrypted bytes available // for read, or if |ssl| has buffered data from the transport that has not yet // been decrypted. If |ssl| has neither, this function returns zero. // // If read-ahead has been enabled with |SSL_CTX_set_read_ahead| or // |SSL_set_read_ahead|, the behavior of |SSL_pending| will change, it may return // 1 and a call to |SSL_read| to return no data. This can happen when a partial // record has been read but can not be decrypted without more data from the read // BIO. // // In DTLS, it is possible for this function to return one while |SSL_pending| // returns zero. For example, |SSL_read| may read a datagram with two records, // decrypt the first, and leave the second buffered for a subsequent call to // |SSL_read|. // // As a result, if this function returns one, the next call to |SSL_read| may // still fail, read from the transport, or both. The buffered, undecrypted data // may be invalid or incomplete. OPENSSL_EXPORT int SSL_has_pending(const SSL *ssl); // SSL_write writes up to |num| bytes from |buf| into |ssl|. It implicitly runs // any pending handshakes, including renegotiations when enabled. On success, it // returns the number of bytes written. Otherwise, it returns <= 0. The caller // should pass the value into |SSL_get_error| to determine how to proceed. // // In TLS, a non-blocking |SSL_write| differs from non-blocking |write| in that // a failed |SSL_write| still commits to the data passed in. When retrying, the // caller must supply the original write buffer (or a larger one containing the // original as a prefix). By default, retries will fail if they also do not // reuse the same |buf| pointer. This may be relaxed with // |SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER|, but the buffer contents still must be // unchanged. // // By default, in TLS, |SSL_write| will not return success until all |num| bytes // are written. This may be relaxed with |SSL_MODE_ENABLE_PARTIAL_WRITE|. It // allows |SSL_write| to complete with a partial result when only part of the // input was written in a single record. // // In DTLS, neither |SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER| and // |SSL_MODE_ENABLE_PARTIAL_WRITE| do anything. The caller may retry with a // different buffer freely. A single call to |SSL_write| only ever writes a // single record in a single packet, so |num| must be at most // |SSL3_RT_MAX_PLAIN_LENGTH|. // // TODO(davidben): Ensure 0 is only returned on transport EOF. // https://crbug.com/466303. OPENSSL_EXPORT int SSL_write(SSL *ssl, const void *buf, int num); // SSL_write_ex writes up to |num| bytes from |buf| into |ssl|. It is similar to // |SSL_write|, but instead of returning the number of bytes written, it returns // 1 on success or 0 for failure. The number bytes actually written is stored in // |written|. // // This is only maintained for OpenSSL compatibility. Use |SSL_write| instead. OPENSSL_EXPORT int SSL_write_ex(SSL *s, const void *buf, size_t num, size_t *written); // SSL_KEY_UPDATE_REQUESTED indicates that the peer should reply to a KeyUpdate // message with its own, thus updating traffic secrets for both directions on // the connection. #define SSL_KEY_UPDATE_REQUESTED 1 // SSL_KEY_UPDATE_NOT_REQUESTED indicates that the peer should not reply with // its own KeyUpdate message. #define SSL_KEY_UPDATE_NOT_REQUESTED 0 // SSL_KEY_UPDATE_NONE should not be set by the user and is only used to // indicate that there isn't a pending key operation. OpenSSL indicates that -1 // is used, so that it will be an invalid value for the on-the-wire protocol // when calling |SSL_key_update|. #define SSL_KEY_UPDATE_NONE -1 // SSL_key_update queues a TLS 1.3 KeyUpdate message to be sent on |ssl| // if one is not already queued. The |request_type| argument must be either // |SSL_KEY_UPDATE_REQUESTED| or |SSL_KEY_UPDATE_NOT_REQUESTED|. This function // requires that |ssl| have completed a TLS >= 1.3 handshake. It returns one on // success or zero on error. // // If |request_type| is set to |SSL_KEY_UPDATE_NOT_REQUESTED|, then the sending // keys for this connection will be updated and the peer will be informed of the // change. // If |request_type| is set to |SSL_KEY_UPDATE_REQUESTED|, then the sending keys // for this connection will be updated and the peer will be informed of the // change along with a request for the peer to additionally update its sending // keys. RFC: https://datatracker.ietf.org/doc/html/rfc8446#section-4.6.3 // // Note that this function does not _send_ the message itself. The next call to // |SSL_write| will cause the message to be sent. |SSL_write| may be called with // a zero length to flush a KeyUpdate message when no application data is // pending. OPENSSL_EXPORT int SSL_key_update(SSL *ssl, int request_type); // SSL_get_key_update_type returns the state of the pending key operation in // |ssl|. The type of pending key operation will be either // |SSL_KEY_UPDATE_REQUESTED| or |SSL_KEY_UPDATE_NOT_REQUESTED| if there is one, // and |SSL_KEY_UPDATE_NONE| otherwise. This can be used to indicate whether // a key update operation has been scheduled but not yet performed. OPENSSL_EXPORT int SSL_get_key_update_type(const SSL *ssl); // SSL_shutdown shuts down |ssl|. It runs in two stages. First, it sends // close_notify and returns zero or one on success or -1 on failure. Zero // indicates that close_notify was sent, but not received, and one additionally // indicates that the peer's close_notify had already been received. // // To then wait for the peer's close_notify, run |SSL_shutdown| to completion a // second time. This returns 1 on success and -1 on failure. Application data // is considered a fatal error at this point. To process or discard it, read // until close_notify with |SSL_read| instead. // // In both cases, on failure, pass the return value into |SSL_get_error| to // determine how to proceed. // // Most callers should stop at the first stage. Reading for close_notify is // primarily used for uncommon protocols where the underlying transport is // reused after TLS completes. Additionally, DTLS uses an unordered transport // and is unordered, so the second stage is a no-op in DTLS. OPENSSL_EXPORT int SSL_shutdown(SSL *ssl); // SSL_CTX_set_quiet_shutdown sets quiet shutdown on |ctx| to |mode|. If // enabled, |SSL_shutdown| will not send a close_notify alert or wait for one // from the peer. It will instead synchronously return one. OPENSSL_EXPORT void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode); // SSL_CTX_get_quiet_shutdown returns whether quiet shutdown is enabled for // |ctx|. OPENSSL_EXPORT int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx); // SSL_set_quiet_shutdown sets quiet shutdown on |ssl| to |mode|. If enabled, // |SSL_shutdown| will not send a close_notify alert or wait for one from the // peer. It will instead synchronously return one. OPENSSL_EXPORT void SSL_set_quiet_shutdown(SSL *ssl, int mode); // SSL_get_quiet_shutdown returns whether quiet shutdown is enabled for // |ssl|. OPENSSL_EXPORT int SSL_get_quiet_shutdown(const SSL *ssl); // SSL_get_error returns a |SSL_ERROR_*| value for the most recent operation on // |ssl|. It should be called after an operation failed to determine whether the // error was fatal and, if not, when to retry. OPENSSL_EXPORT int SSL_get_error(const SSL *ssl, int ret_code); // SSL_ERROR_NONE indicates the operation succeeded. #define SSL_ERROR_NONE 0 // SSL_ERROR_SSL indicates the operation failed within the library. The caller // may inspect the error queue for more information. #define SSL_ERROR_SSL 1 // SSL_ERROR_WANT_READ indicates the operation failed attempting to read from // the transport. The caller may retry the operation when the transport is ready // for reading. // // If signaled by a DTLS handshake, the caller must also call // |DTLSv1_get_timeout| and |DTLSv1_handle_timeout| as appropriate. See // |SSL_do_handshake|. #define SSL_ERROR_WANT_READ 2 // SSL_ERROR_WANT_WRITE indicates the operation failed attempting to write to // the transport. The caller may retry the operation when the transport is ready // for writing. #define SSL_ERROR_WANT_WRITE 3 // SSL_ERROR_WANT_X509_LOOKUP indicates the operation failed in calling the // |cert_cb| or |client_cert_cb|. The caller may retry the operation when the // callback is ready to return a certificate or one has been configured // externally. // // See also |SSL_CTX_set_cert_cb| and |SSL_CTX_set_client_cert_cb|. #define SSL_ERROR_WANT_X509_LOOKUP 4 // SSL_ERROR_SYSCALL indicates the operation failed externally to the library. // The caller should consult the system-specific error mechanism. This is // typically |errno| but may be something custom if using a custom |BIO|. It // may also be signaled if the transport returned EOF, in which case the // operation's return value will be zero. #define SSL_ERROR_SYSCALL 5 // SSL_ERROR_ZERO_RETURN indicates the operation failed because the connection // was cleanly shut down with a close_notify alert. #define SSL_ERROR_ZERO_RETURN 6 // SSL_ERROR_WANT_CONNECT indicates the operation failed attempting to connect // the transport (the |BIO| signaled |BIO_RR_CONNECT|). The caller may retry the // operation when the transport is ready. #define SSL_ERROR_WANT_CONNECT 7 // SSL_ERROR_WANT_ACCEPT indicates the operation failed attempting to accept a // connection from the transport (the |BIO| signaled |BIO_RR_ACCEPT|). The // caller may retry the operation when the transport is ready. // // TODO(davidben): Remove this. It's used by accept BIOs which are bizarre. #define SSL_ERROR_WANT_ACCEPT 8 // SSL_ERROR_WANT_CHANNEL_ID_LOOKUP is never used. // // TODO(davidben): Remove this. Some callers reference it when stringifying // errors. They should use |SSL_error_description| instead. #define SSL_ERROR_WANT_CHANNEL_ID_LOOKUP 9 // SSL_ERROR_PENDING_SESSION indicates the operation failed because the session // lookup callback indicated the session was unavailable. The caller may retry // the operation when lookup has completed. // // See also |SSL_CTX_sess_set_get_cb| and |SSL_magic_pending_session_ptr|. #define SSL_ERROR_PENDING_SESSION 11 // SSL_ERROR_PENDING_CERTIFICATE indicates the operation failed because the // early callback indicated certificate lookup was incomplete. The caller may // retry the operation when lookup has completed. // // See also |SSL_CTX_set_select_certificate_cb|. #define SSL_ERROR_PENDING_CERTIFICATE 12 // SSL_ERROR_WANT_PRIVATE_KEY_OPERATION indicates the operation failed because // a private key operation was unfinished. The caller may retry the operation // when the private key operation is complete. // // See also |SSL_set_private_key_method| and // |SSL_CTX_set_private_key_method|. #define SSL_ERROR_WANT_PRIVATE_KEY_OPERATION 13 // SSL_ERROR_PENDING_TICKET indicates that a ticket decryption is pending. The // caller may retry the operation when the decryption is ready. // // See also |SSL_CTX_set_ticket_aead_method|. #define SSL_ERROR_PENDING_TICKET 14 // SSL_ERROR_EARLY_DATA_REJECTED indicates that early data was rejected. The // caller should treat this as a connection failure and retry any operations // associated with the rejected early data. |SSL_reset_early_data_reject| may be // used to reuse the underlying connection for the retry. #define SSL_ERROR_EARLY_DATA_REJECTED 15 // SSL_ERROR_WANT_CERTIFICATE_VERIFY indicates the operation failed because // certificate verification was incomplete. The caller may retry the operation // when certificate verification is complete. // // See also |SSL_CTX_set_custom_verify|. #define SSL_ERROR_WANT_CERTIFICATE_VERIFY 16 #define SSL_ERROR_HANDOFF 17 #define SSL_ERROR_HANDBACK 18 // SSL_ERROR_WANT_RENEGOTIATE indicates the operation is pending a response to // a renegotiation request from the server. The caller may call // |SSL_renegotiate| to schedule a renegotiation and retry the operation. // // See also |ssl_renegotiate_explicit|. #define SSL_ERROR_WANT_RENEGOTIATE 19 // SSL_ERROR_HANDSHAKE_HINTS_READY indicates the handshake has progressed enough // for |SSL_serialize_handshake_hints| to be called. See also // |SSL_request_handshake_hints|. #define SSL_ERROR_HANDSHAKE_HINTS_READY 20 // SSL_error_description returns a string representation of |err|, where |err| // is one of the |SSL_ERROR_*| constants returned by |SSL_get_error|, or NULL // if the value is unrecognized. OPENSSL_EXPORT const char *SSL_error_description(int err); // SSL_set_mtu sets the |ssl|'s MTU in DTLS to |mtu|. It returns one on success // and zero on failure. OPENSSL_EXPORT int SSL_set_mtu(SSL *ssl, unsigned mtu); // DTLSv1_set_initial_timeout_duration sets the initial duration for a DTLS // handshake timeout. // // This duration overrides the default of 1 second, which is the strong // recommendation of RFC 6347 (see section 4.2.4.1). However, there may exist // situations where a shorter timeout would be beneficial, such as for // time-sensitive applications. OPENSSL_EXPORT void DTLSv1_set_initial_timeout_duration(SSL *ssl, unsigned duration_ms); // DTLSv1_get_timeout queries the next DTLS handshake timeout. If there is a // timeout in progress, it sets |*out| to the time remaining and returns one. // Otherwise, it returns zero. // // When the timeout expires, call |DTLSv1_handle_timeout| to handle the // retransmit behavior. // // NOTE: This function must be queried again whenever the handshake state // machine changes, including when |DTLSv1_handle_timeout| is called. OPENSSL_EXPORT int DTLSv1_get_timeout(const SSL *ssl, struct timeval *out); // DTLSv1_handle_timeout is called when a DTLS handshake timeout expires. If no // timeout had expired, it returns 0. Otherwise, it retransmits the previous // flight of handshake messages and returns 1. If too many timeouts had expired // without progress or an error occurs, it returns -1. // // The caller's external timer should be compatible with the one |ssl| queries // within some fudge factor. Otherwise, the call will be a no-op, but // |DTLSv1_get_timeout| will return an updated timeout. // // If the function returns -1, checking if |SSL_get_error| returns // |SSL_ERROR_WANT_WRITE| may be used to determine if the retransmit failed due // to a non-fatal error at the write |BIO|. However, the operation may not be // retried until the next timeout fires. // // WARNING: This function breaks the usual return value convention. // // TODO(davidben): This |SSL_ERROR_WANT_WRITE| behavior is kind of bizarre. OPENSSL_EXPORT int DTLSv1_handle_timeout(SSL *ssl); // Protocol versions. #define DTLS1_VERSION_MAJOR 0xfe #define SSL3_VERSION_MAJOR 0x03 #define SSL3_VERSION 0x0300 #define TLS1_VERSION 0x0301 #define TLS1_1_VERSION 0x0302 #define TLS1_2_VERSION 0x0303 #define TLS1_3_VERSION 0x0304 #define DTLS1_VERSION 0xfeff #define DTLS1_2_VERSION 0xfefd // SSL_CTX_set_min_proto_version sets the minimum protocol version for |ctx| to // |version|. If |version| is zero, the default minimum version is used. It // returns one on success and zero if |version| is invalid. OPENSSL_EXPORT int SSL_CTX_set_min_proto_version(SSL_CTX *ctx, uint16_t version); // SSL_CTX_set_max_proto_version sets the maximum protocol version for |ctx| to // |version|. If |version| is zero, the default maximum version is used. It // returns one on success and zero if |version| is invalid. OPENSSL_EXPORT int SSL_CTX_set_max_proto_version(SSL_CTX *ctx, uint16_t version); // SSL_CTX_get_min_proto_version returns the minimum protocol version for |ctx|. // If |ctx| is configured to use the default minimum version, 0 is returned. OPENSSL_EXPORT uint16_t SSL_CTX_get_min_proto_version(const SSL_CTX *ctx); // SSL_CTX_get_max_proto_version returns the maximum protocol version for |ctx|. // If |ctx| is configured to use the default maximum version, 0 is returned. OPENSSL_EXPORT uint16_t SSL_CTX_get_max_proto_version(const SSL_CTX *ctx); // SSL_set_min_proto_version sets the minimum protocol version for |ssl| to // |version|. If |version| is zero, the default minimum version is used. It // returns one on success and zero if |version| is invalid. OPENSSL_EXPORT int SSL_set_min_proto_version(SSL *ssl, uint16_t version); // SSL_set_max_proto_version sets the maximum protocol version for |ssl| to // |version|. If |version| is zero, the default maximum version is used. It // returns one on success and zero if |version| is invalid. OPENSSL_EXPORT int SSL_set_max_proto_version(SSL *ssl, uint16_t version); // SSL_get_min_proto_version returns the minimum protocol version for |ssl|. If // the connection's configuration has been shed or |ssl| is configured to use // the default min version, 0 is returned. OPENSSL_EXPORT uint16_t SSL_get_min_proto_version(const SSL *ssl); // SSL_get_max_proto_version returns the maximum protocol version for |ssl|. If // the connection's configuration has been shed or |ssl| is configured to use // the default max version, 0 is returned. OPENSSL_EXPORT uint16_t SSL_get_max_proto_version(const SSL *ssl); // SSL_version returns the TLS or DTLS protocol version used by |ssl|, which is // one of the |*_VERSION| values. (E.g. |TLS1_2_VERSION|.) Before the version // is negotiated, the result is undefined. OPENSSL_EXPORT int SSL_version(const SSL *ssl); // Options. // // Options configure protocol behavior. // SSL_OP_NO_QUERY_MTU, in DTLS, disables querying the MTU from the underlying // |BIO|. Instead, the MTU is configured with |SSL_set_mtu|. #define SSL_OP_NO_QUERY_MTU 0x00001000L // SSL_OP_NO_TICKET disables session ticket support (RFC 5077). #define SSL_OP_NO_TICKET 0x00004000L // SSL_OP_CIPHER_SERVER_PREFERENCE configures servers to select ciphers and // ECDHE curves according to the server's preferences instead of the // client's. #define SSL_OP_CIPHER_SERVER_PREFERENCE 0x00400000L // The following flags toggle individual protocol versions. This is deprecated. // Use |SSL_CTX_set_min_proto_version| and |SSL_CTX_set_max_proto_version| // instead. #define SSL_OP_NO_TLSv1 0x04000000L #define SSL_OP_NO_TLSv1_2 0x08000000L #define SSL_OP_NO_TLSv1_1 0x10000000L #define SSL_OP_NO_TLSv1_3 0x20000000L #define SSL_OP_NO_DTLSv1 SSL_OP_NO_TLSv1 #define SSL_OP_NO_DTLSv1_2 SSL_OP_NO_TLSv1_2 // SSL_CTX_set_options enables all options set in |options| (which should be one // or more of the |SSL_OP_*| values, ORed together) in |ctx|. It returns a // bitmask representing the resulting enabled options. OPENSSL_EXPORT uint32_t SSL_CTX_set_options(SSL_CTX *ctx, uint32_t options); // SSL_CTX_clear_options disables all options set in |options| (which should be // one or more of the |SSL_OP_*| values, ORed together) in |ctx|. It returns a // bitmask representing the resulting enabled options. OPENSSL_EXPORT uint32_t SSL_CTX_clear_options(SSL_CTX *ctx, uint32_t options); // SSL_CTX_get_options returns a bitmask of |SSL_OP_*| values that represent all // the options enabled for |ctx|. OPENSSL_EXPORT uint32_t SSL_CTX_get_options(const SSL_CTX *ctx); // SSL_set_options enables all options set in |options| (which should be one or // more of the |SSL_OP_*| values, ORed together) in |ssl|. It returns a bitmask // representing the resulting enabled options. OPENSSL_EXPORT uint32_t SSL_set_options(SSL *ssl, uint32_t options); // SSL_clear_options disables all options set in |options| (which should be one // or more of the |SSL_OP_*| values, ORed together) in |ssl|. It returns a // bitmask representing the resulting enabled options. OPENSSL_EXPORT uint32_t SSL_clear_options(SSL *ssl, uint32_t options); // SSL_get_options returns a bitmask of |SSL_OP_*| values that represent all the // options enabled for |ssl|. OPENSSL_EXPORT uint32_t SSL_get_options(const SSL *ssl); // Modes. // // Modes configure API behavior. // SSL_MODE_ENABLE_PARTIAL_WRITE, in TLS, allows |SSL_write| to complete with a // partial result when the only part of the input was written in a single // record. In DTLS, it does nothing. #define SSL_MODE_ENABLE_PARTIAL_WRITE 0x00000001L // SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER, in TLS, allows retrying an incomplete // |SSL_write| with a different buffer. However, |SSL_write| still assumes the // buffer contents are unchanged. This is not the default to avoid the // misconception that non-blocking |SSL_write| behaves like non-blocking // |write|. In DTLS, it does nothing. #define SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER 0x00000002L // SSL_MODE_NO_AUTO_CHAIN disables automatically building a certificate chain // before sending certificates to the peer. This flag is set (and the feature // disabled) by default. // By default, OpenSSL automatically builds a certificate chain on the fly if // there is no certificate chain explicitly provided. This feature is called // Auto-Chaining. Auto-Chaining can be turned off in OpenSSL by setting the // |SSL_MODE_NO_AUTO_CHAIN| flag for the SSL connection. AWS-LC has this flag // turned on (auto-chaining off) by default. This forces the certificate chain // to be explicit, and no longer results in unexpected certificate chains being // sent back to clients. This may cause issues for services migrating to AWS-LC, // if the service had been reliant on the default behavior. Services should // restructure their certificate chains to not use the default auto-chaining // behavior from OpenSSL when porting to AWS-LC. We highly recommend not to // re-enable Auto-Chaining, but if a consumer had been relying on this default // behavior, they can temporarily revert back with |SSL_[CTX_]clear_mode|. // However, it is generally expected of AWS-LC consumers to structure their // certificate chains to not rely on auto-chaining. #define SSL_MODE_NO_AUTO_CHAIN 0x00000008L // SSL_MODE_ENABLE_FALSE_START allows clients to send application data before // receipt of ChangeCipherSpec and Finished. This mode enables full handshakes // to 'complete' in one RTT. See RFC 7918. // // When False Start is enabled, |SSL_do_handshake| may succeed before the // handshake has completely finished. |SSL_write| will function at this point, // and |SSL_read| will transparently wait for the final handshake leg before // returning application data. To determine if False Start occurred or when the // handshake is completely finished, see |SSL_in_false_start|, |SSL_in_init|, // and |SSL_CB_HANDSHAKE_DONE| from |SSL_CTX_set_info_callback|. #define SSL_MODE_ENABLE_FALSE_START 0x00000080L // SSL_MODE_CBC_RECORD_SPLITTING causes multi-byte CBC records in TLS 1.0 to be // split in two: the first record will contain a single byte and the second will // contain the remainder. This effectively randomises the IV and prevents BEAST // attacks. #define SSL_MODE_CBC_RECORD_SPLITTING 0x00000100L // SSL_MODE_NO_SESSION_CREATION will cause any attempts to create a session to // fail with SSL_R_SESSION_MAY_NOT_BE_CREATED. This can be used to enforce that // session resumption is used for a given SSL*. #define SSL_MODE_NO_SESSION_CREATION 0x00000200L // SSL_MODE_SEND_FALLBACK_SCSV sends TLS_FALLBACK_SCSV in the ClientHello. // To be set only by applications that reconnect with a downgraded protocol // version; see RFC 7507 for details. // // DO NOT ENABLE THIS if your application attempts a normal handshake. Only use // this in explicit fallback retries, following the guidance in RFC 7507. #define SSL_MODE_SEND_FALLBACK_SCSV 0x00000400L // SSL_CTX_set_mode enables all modes set in |mode| (which should be one or more // of the |SSL_MODE_*| values, ORed together) in |ctx|. It returns a bitmask // representing the resulting enabled modes. OPENSSL_EXPORT uint32_t SSL_CTX_set_mode(SSL_CTX *ctx, uint32_t mode); // SSL_CTX_clear_mode disables all modes set in |mode| (which should be one or // more of the |SSL_MODE_*| values, ORed together) in |ctx|. It returns a // bitmask representing the resulting enabled modes. OPENSSL_EXPORT uint32_t SSL_CTX_clear_mode(SSL_CTX *ctx, uint32_t mode); // SSL_CTX_get_mode returns a bitmask of |SSL_MODE_*| values that represent all // the modes enabled for |ssl|. OPENSSL_EXPORT uint32_t SSL_CTX_get_mode(const SSL_CTX *ctx); // SSL_set_mode enables all modes set in |mode| (which should be one or more of // the |SSL_MODE_*| values, ORed together) in |ssl|. It returns a bitmask // representing the resulting enabled modes. OPENSSL_EXPORT uint32_t SSL_set_mode(SSL *ssl, uint32_t mode); // SSL_clear_mode disables all modes set in |mode| (which should be one or more // of the |SSL_MODE_*| values, ORed together) in |ssl|. It returns a bitmask // representing the resulting enabled modes. OPENSSL_EXPORT uint32_t SSL_clear_mode(SSL *ssl, uint32_t mode); // SSL_get_mode returns a bitmask of |SSL_MODE_*| values that represent all the // modes enabled for |ssl|. OPENSSL_EXPORT uint32_t SSL_get_mode(const SSL *ssl); // SSL_CTX_set0_buffer_pool sets a |CRYPTO_BUFFER_POOL| that will be used to // store certificates. This can allow multiple connections to share // certificates and thus save memory. // // The SSL_CTX does not take ownership of |pool| and the caller must ensure // that |pool| outlives |ctx| and all objects linked to it, including |SSL|, // |X509| and |SSL_SESSION| objects. Basically, don't ever free |pool|. OPENSSL_EXPORT void SSL_CTX_set0_buffer_pool(SSL_CTX *ctx, CRYPTO_BUFFER_POOL *pool); // Configuring certificates and private keys. // // These functions configure the connection's leaf certificate, private key, and // certificate chain. The certificate chain is ordered leaf to root (as sent on // the wire) but does not include the leaf. Both client and server certificates // use these functions. // // Certificates and keys may be configured before the handshake or dynamically // in the early callback and certificate callback. // SSL_CTX_use_certificate sets |ctx|'s leaf certificate to |x509|. It returns // one on success and zero on failure. OPENSSL_EXPORT int SSL_CTX_use_certificate(SSL_CTX *ctx, X509 *x509); // SSL_use_certificate sets |ssl|'s leaf certificate to |x509|. It returns one // on success and zero on failure. OPENSSL_EXPORT int SSL_use_certificate(SSL *ssl, X509 *x509); // SSL_CTX_use_PrivateKey sets |ctx|'s private key to |pkey|. It returns one on // success and zero on failure. OPENSSL_EXPORT int SSL_CTX_use_PrivateKey(SSL_CTX *ctx, EVP_PKEY *pkey); // SSL_use_PrivateKey sets |ssl|'s private key to |pkey|. It returns one on // success and zero on failure. OPENSSL_EXPORT int SSL_use_PrivateKey(SSL *ssl, EVP_PKEY *pkey); // SSL_CTX_set0_chain sets |ctx|'s certificate chain, excluding the leaf, to // |chain|. On success, it returns one and takes ownership of |chain|. // Otherwise, it returns zero. OPENSSL_EXPORT int SSL_CTX_set0_chain(SSL_CTX *ctx, STACK_OF(X509) *chain); // SSL_CTX_set1_chain sets |ctx|'s certificate chain, excluding the leaf, to // |chain|. It returns one on success and zero on failure. The caller retains // ownership of |chain| and may release it freely. OPENSSL_EXPORT int SSL_CTX_set1_chain(SSL_CTX *ctx, STACK_OF(X509) *chain); // SSL_set0_chain sets |ssl|'s certificate chain, excluding the leaf, to // |chain|. On success, it returns one and takes ownership of |chain|. // Otherwise, it returns zero. OPENSSL_EXPORT int SSL_set0_chain(SSL *ssl, STACK_OF(X509) *chain); // SSL_set1_chain sets |ssl|'s certificate chain, excluding the leaf, to // |chain|. It returns one on success and zero on failure. The caller retains // ownership of |chain| and may release it freely. OPENSSL_EXPORT int SSL_set1_chain(SSL *ssl, STACK_OF(X509) *chain); // SSL_CTX_add0_chain_cert appends |x509| to |ctx|'s certificate chain. On // success, it returns one and takes ownership of |x509|. Otherwise, it returns // zero. OPENSSL_EXPORT int SSL_CTX_add0_chain_cert(SSL_CTX *ctx, X509 *x509); // SSL_CTX_add1_chain_cert appends |x509| to |ctx|'s certificate chain. It // returns one on success and zero on failure. The caller retains ownership of // |x509| and may release it freely. OPENSSL_EXPORT int SSL_CTX_add1_chain_cert(SSL_CTX *ctx, X509 *x509); // SSL_add0_chain_cert appends |x509| to |ctx|'s certificate chain. On success, // it returns one and takes ownership of |x509|. Otherwise, it returns zero. OPENSSL_EXPORT int SSL_add0_chain_cert(SSL *ssl, X509 *x509); // SSL_CTX_add_extra_chain_cert calls |SSL_CTX_add0_chain_cert|. OPENSSL_EXPORT int SSL_CTX_add_extra_chain_cert(SSL_CTX *ctx, X509 *x509); // SSL_add1_chain_cert appends |x509| to |ctx|'s certificate chain. It returns // one on success and zero on failure. The caller retains ownership of |x509| // and may release it freely. OPENSSL_EXPORT int SSL_add1_chain_cert(SSL *ssl, X509 *x509); // The following flags are used for configuring |SSL_CTX_build_cert_chain| and // |SSL_build_cert_chain|. // SSL_BUILD_CHAIN_FLAG_UNTRUSTED treats any existing certificates as untrusted // CAs. This is mutually exclusive to |SSL_BUILD_CHAIN_FLAG_CHECK| and // |SSL_BUILD_CHAIN_FLAG_CHECK| will be prioritized to use the existing chain // certificates instead. #define SSL_BUILD_CHAIN_FLAG_UNTRUSTED 0x1 // SSL_BUILD_CHAIN_FLAG_NO_ROOT omits the root CA from the built chain. #define SSL_BUILD_CHAIN_FLAG_NO_ROOT 0x2 // SSL_BUILD_CHAIN_FLAG_CHECK uses only existing chain certificates to build the // chain (effectively sanity checking and rearranging them if necessary). This // is mutually exclusive to |SSL_BUILD_CHAIN_FLAG_UNTRUSTED| and // |SSL_BUILD_CHAIN_FLAG_CHECK| will be prioritized. #define SSL_BUILD_CHAIN_FLAG_CHECK 0x4 // SSL_BUILD_CHAIN_FLAG_IGNORE_ERROR ignores errors during certificate // verification, but still pushes the error onto the error queue. #define SSL_BUILD_CHAIN_FLAG_IGNORE_ERROR 0x8 // SSL_BUILD_CHAIN_FLAG_CLEAR_ERROR is only used when // |SSL_BUILD_CHAIN_FLAG_IGNORE_ERROR| is defined. It clears the error from the // error queue if certificate verification has failed. #define SSL_BUILD_CHAIN_FLAG_CLEAR_ERROR 0x10 // SSL_CTX_build_cert_chain builds the certificate chain for |ctx|. // Normally this uses the chain store or the verify store if the chain store is // not set. If the function is successful, the built chain will replace any // existing chain in |ctx|. // This function returns 1 on success and -1 on failure, unless // |SSL_BUILD_CHAIN_FLAG_IGNORE_ERROR| is set. If // |SSL_BUILD_CHAIN_FLAG_IGNORE_ERROR| is set, then this function returns 1 on // success, 2 if certificate verification has failed, and -1 on all other types // of failures. OPENSSL_EXPORT int SSL_CTX_build_cert_chain(SSL_CTX *ctx, int flags); // SSL_build_cert_chain is similar to |SSL_CTX_build_cert_chain|, but the // certificate chain is built for |ssl| instead. OPENSSL_EXPORT int SSL_build_cert_chain(SSL *ssl, int flags); // SSL_CTX_clear_chain_certs clears |ctx|'s certificate chain and returns // one. OPENSSL_EXPORT int SSL_CTX_clear_chain_certs(SSL_CTX *ctx); // SSL_CTX_clear_extra_chain_certs calls |SSL_CTX_clear_chain_certs|. OPENSSL_EXPORT int SSL_CTX_clear_extra_chain_certs(SSL_CTX *ctx); // SSL_clear_chain_certs clears |ssl|'s certificate chain and returns one. OPENSSL_EXPORT int SSL_clear_chain_certs(SSL *ssl); // SSL_CTX_set_cert_cb sets a callback that is called to select a certificate. // The callback returns one on success, zero on internal error, and a negative // number on failure or to pause the handshake. If the handshake is paused, // |SSL_get_error| will return |SSL_ERROR_WANT_X509_LOOKUP|. // // On the client, the callback may call |SSL_get0_certificate_types| and // |SSL_get_client_CA_list| for information on the server's certificate // request. // // On the server, the callback will be called after extensions have been // processed, but before the resumption decision has been made. This differs // from OpenSSL which handles resumption before selecting the certificate. OPENSSL_EXPORT void SSL_CTX_set_cert_cb(SSL_CTX *ctx, int (*cb)(SSL *ssl, void *arg), void *arg); // SSL_set_cert_cb sets a callback that is called to select a certificate. The // callback returns one on success, zero on internal error, and a negative // number on failure or to pause the handshake. If the handshake is paused, // |SSL_get_error| will return |SSL_ERROR_WANT_X509_LOOKUP|. // // On the client, the callback may call |SSL_get0_certificate_types| and // |SSL_get_client_CA_list| for information on the server's certificate // request. // // On the server, the callback will be called after extensions have been // processed, but before the resumption decision has been made. This differs // from OpenSSL which handles resumption before selecting the certificate. OPENSSL_EXPORT void SSL_set_cert_cb(SSL *ssl, int (*cb)(SSL *ssl, void *arg), void *arg); // SSL_get0_certificate_types, for a client, sets |*out_types| to an array // containing the client certificate types requested by a server. It returns the // length of the array. Note this list is always empty in TLS 1.3. The server // will instead send signature algorithms. See // |SSL_get0_peer_verify_algorithms|. // // The behavior of this function is undefined except during the callbacks set by // by |SSL_CTX_set_cert_cb| and |SSL_CTX_set_client_cert_cb| or when the // handshake is paused because of them. OPENSSL_EXPORT size_t SSL_get0_certificate_types(const SSL *ssl, const uint8_t **out_types); // SSL_get0_peer_verify_algorithms sets |*out_sigalgs| to an array containing // the signature algorithms the peer is able to verify. It returns the length of // the array. Note these values are only sent starting TLS 1.2 and only // mandatory starting TLS 1.3. If not sent, the empty array is returned. For the // historical client certificate types list, see |SSL_get0_certificate_types|. // // The behavior of this function is undefined except during the callbacks set by // by |SSL_CTX_set_cert_cb| and |SSL_CTX_set_client_cert_cb| or when the // handshake is paused because of them. OPENSSL_EXPORT size_t SSL_get0_peer_verify_algorithms(const SSL *ssl, const uint16_t **out_sigalgs); // SSL_get0_peer_delegation_algorithms sets |*out_sigalgs| to an array // containing the signature algorithms the peer is willing to use with delegated // credentials. It returns the length of the array. If not sent, the empty // array is returned. // // The behavior of this function is undefined except during the callbacks set by // by |SSL_CTX_set_cert_cb| and |SSL_CTX_set_client_cert_cb| or when the // handshake is paused because of them. OPENSSL_EXPORT size_t SSL_get0_peer_delegation_algorithms( const SSL *ssl, const uint16_t **out_sigalgs); // SSL_certs_clear resets the private key, leaf certificate, and certificate // chain of |ssl|. OPENSSL_EXPORT void SSL_certs_clear(SSL *ssl); // SSL_CTX_check_private_key returns one if the certificate and private key // configured in |ctx| are consistent and zero otherwise. OPENSSL_EXPORT int SSL_CTX_check_private_key(const SSL_CTX *ctx); // SSL_check_private_key returns one if the certificate and private key // configured in |ssl| are consistent and zero otherwise. OPENSSL_EXPORT int SSL_check_private_key(const SSL *ssl); // SSL_CTX_get0_certificate returns |ctx|'s leaf certificate. OPENSSL_EXPORT X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx); // SSL_get_certificate returns |ssl|'s leaf certificate. OPENSSL_EXPORT X509 *SSL_get_certificate(const SSL *ssl); // SSL_CTX_get0_privatekey returns |ctx|'s private key. OPENSSL_EXPORT EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx); // SSL_get_privatekey returns |ssl|'s private key. OPENSSL_EXPORT EVP_PKEY *SSL_get_privatekey(const SSL *ssl); // SSL_CTX_get0_chain_certs sets |*out_chain| to |ctx|'s certificate chain and // returns one. OPENSSL_EXPORT int SSL_CTX_get0_chain_certs(const SSL_CTX *ctx, STACK_OF(X509) **out_chain); // SSL_CTX_get_extra_chain_certs calls |SSL_CTX_get0_chain_certs|. OPENSSL_EXPORT int SSL_CTX_get_extra_chain_certs(const SSL_CTX *ctx, STACK_OF(X509) **out_chain); // SSL_get0_chain_certs sets |*out_chain| to |ssl|'s certificate chain and // returns one. OPENSSL_EXPORT int SSL_get0_chain_certs(const SSL *ssl, STACK_OF(X509) **out_chain); // SSL_CTX_set_signed_cert_timestamp_list sets the list of signed certificate // timestamps that is sent to clients that request it. The |list| argument must // contain one or more SCT structures serialised as a SignedCertificateTimestamp // List (see https://tools.ietf.org/html/rfc6962#section-3.3) – i.e. each SCT // is prefixed by a big-endian, uint16 length and the concatenation of one or // more such prefixed SCTs are themselves also prefixed by a uint16 length. It // returns one on success and zero on error. The caller retains ownership of // |list|. OPENSSL_EXPORT int SSL_CTX_set_signed_cert_timestamp_list(SSL_CTX *ctx, const uint8_t *list, size_t list_len); // SSL_set_signed_cert_timestamp_list sets the list of signed certificate // timestamps that is sent to clients that request is. The same format as the // one used for |SSL_CTX_set_signed_cert_timestamp_list| applies. The caller // retains ownership of |list|. OPENSSL_EXPORT int SSL_set_signed_cert_timestamp_list(SSL *ctx, const uint8_t *list, size_t list_len); // SSL_CTX_set_ocsp_response sets the OCSP response that is sent to clients // which request it. It returns one on success and zero on error. The caller // retains ownership of |response|. OPENSSL_EXPORT int SSL_CTX_set_ocsp_response(SSL_CTX *ctx, const uint8_t *response, size_t response_len); // SSL_set_ocsp_response sets the OCSP response that is sent to clients which // request it. It returns one on success and zero on error. The caller retains // ownership of |response|. OPENSSL_EXPORT int SSL_set_ocsp_response(SSL *ssl, const uint8_t *response, size_t response_len); // SSL_SIGN_* are signature algorithm values as defined in TLS 1.3. #define SSL_SIGN_RSA_PKCS1_SHA1 0x0201 #define SSL_SIGN_RSA_PKCS1_SHA256 0x0401 #define SSL_SIGN_RSA_PKCS1_SHA384 0x0501 #define SSL_SIGN_RSA_PKCS1_SHA512 0x0601 #define SSL_SIGN_ECDSA_SHA1 0x0203 #define SSL_SIGN_ECDSA_SECP256R1_SHA256 0x0403 #define SSL_SIGN_ECDSA_SECP384R1_SHA384 0x0503 #define SSL_SIGN_ECDSA_SECP521R1_SHA512 0x0603 #define SSL_SIGN_RSA_PSS_RSAE_SHA256 0x0804 #define SSL_SIGN_RSA_PSS_RSAE_SHA384 0x0805 #define SSL_SIGN_RSA_PSS_RSAE_SHA512 0x0806 #define SSL_SIGN_ED25519 0x0807 // SSL_SIGN_RSA_PKCS1_MD5_SHA1 is an internal signature algorithm used to // specify raw RSASSA-PKCS1-v1_5 with an MD5/SHA-1 concatenation, as used in TLS // before TLS 1.2. #define SSL_SIGN_RSA_PKCS1_MD5_SHA1 0xff01 // SSL_get_signature_algorithm_name returns a human-readable name for |sigalg|, // or NULL if unknown. If |include_curve| is one, the curve for ECDSA algorithms // is included as in TLS 1.3. Otherwise, it is excluded as in TLS 1.2. OPENSSL_EXPORT const char *SSL_get_signature_algorithm_name(uint16_t sigalg, int include_curve); // SSL_get_all_signature_algorithm_names outputs a list of possible strings // |SSL_get_signature_algorithm_name| may return in this version of BoringSSL. // It writes at most |max_out| entries to |out| and returns the total number it // would have written, if |max_out| had been large enough. |max_out| may be // initially set to zero to size the output. // // This function is only intended to help initialize tables in callers that want // possible strings pre-declared. This list would not be suitable to set a list // of supported features. It is in no particular order, and may contain // placeholder, experimental, or deprecated values that do not apply to every // caller. Future versions of BoringSSL may also return strings not in this // list, so this does not apply if, say, sending strings across services. OPENSSL_EXPORT size_t SSL_get_all_signature_algorithm_names(const char **out, size_t max_out); // SSL_get_signature_algorithm_key_type returns the key type associated with // |sigalg| as an |EVP_PKEY_*| constant or |EVP_PKEY_NONE| if unknown. OPENSSL_EXPORT int SSL_get_signature_algorithm_key_type(uint16_t sigalg); // SSL_get_signature_algorithm_digest returns the digest function associated // with |sigalg| or |NULL| if |sigalg| has no prehash (Ed25519) or is unknown. OPENSSL_EXPORT const EVP_MD *SSL_get_signature_algorithm_digest( uint16_t sigalg); // SSL_is_signature_algorithm_rsa_pss returns one if |sigalg| is an RSA-PSS // signature algorithm and zero otherwise. OPENSSL_EXPORT int SSL_is_signature_algorithm_rsa_pss(uint16_t sigalg); // SSL_CTX_set_signing_algorithm_prefs configures |ctx| to use |prefs| as the // preference list when signing with |ctx|'s private key. It returns one on // success and zero on error. |prefs| should not include the internal-only value // |SSL_SIGN_RSA_PKCS1_MD5_SHA1|. OPENSSL_EXPORT int SSL_CTX_set_signing_algorithm_prefs(SSL_CTX *ctx, const uint16_t *prefs, size_t num_prefs); // SSL_set_signing_algorithm_prefs configures |ssl| to use |prefs| as the // preference list when signing with |ssl|'s private key. It returns one on // success and zero on error. |prefs| should not include the internal-only value // |SSL_SIGN_RSA_PKCS1_MD5_SHA1|. OPENSSL_EXPORT int SSL_set_signing_algorithm_prefs(SSL *ssl, const uint16_t *prefs, size_t num_prefs); // Certificate and private key convenience functions. // SSL_CTX_set_chain_and_key sets the certificate chain and private key for a // TLS client or server. References to the given |CRYPTO_BUFFER| and |EVP_PKEY| // objects are added as needed. Exactly one of |privkey| or |privkey_method| // may be non-NULL. Returns one on success and zero on error. OPENSSL_EXPORT int SSL_CTX_set_chain_and_key( SSL_CTX *ctx, CRYPTO_BUFFER *const *certs, size_t num_certs, EVP_PKEY *privkey, const SSL_PRIVATE_KEY_METHOD *privkey_method); // SSL_set_chain_and_key sets the certificate chain and private key for a TLS // client or server. References to the given |CRYPTO_BUFFER| and |EVP_PKEY| // objects are added as needed. Exactly one of |privkey| or |privkey_method| // may be non-NULL. Returns one on success and zero on error. OPENSSL_EXPORT int SSL_set_chain_and_key( SSL *ssl, CRYPTO_BUFFER *const *certs, size_t num_certs, EVP_PKEY *privkey, const SSL_PRIVATE_KEY_METHOD *privkey_method); // SSL_get0_chain returns the list of |CRYPTO_BUFFER|s that were set by // |SSL_set_chain_and_key|, unless they have been discarded. Reference counts // are not incremented by this call. The return value may be |NULL| if no chain // has been set. // // (Note: if a chain was configured by non-|CRYPTO_BUFFER|-based functions then // the return value is undefined and, even if not NULL, the stack itself may // contain nullptrs. Thus you shouldn't mix this function with // non-|CRYPTO_BUFFER| functions for manipulating the chain.) // // There is no |SSL*| version of this function because connections discard // configuration after handshaking, thus making it of questionable utility. OPENSSL_EXPORT const STACK_OF(CRYPTO_BUFFER) *SSL_CTX_get0_chain( const SSL_CTX *ctx); // SSL_CTX_use_RSAPrivateKey sets |ctx|'s private key to |rsa|. It returns one // on success and zero on failure. OPENSSL_EXPORT int SSL_CTX_use_RSAPrivateKey(SSL_CTX *ctx, RSA *rsa); // SSL_use_RSAPrivateKey sets |ctx|'s private key to |rsa|. It returns one on // success and zero on failure. OPENSSL_EXPORT int SSL_use_RSAPrivateKey(SSL *ssl, RSA *rsa); // The following functions configure certificates or private keys but take as // input DER-encoded structures. They return one on success and zero on // failure. OPENSSL_EXPORT int SSL_CTX_use_certificate_ASN1(SSL_CTX *ctx, size_t der_len, const uint8_t *der); OPENSSL_EXPORT int SSL_use_certificate_ASN1(SSL *ssl, const uint8_t *der, size_t der_len); OPENSSL_EXPORT int SSL_CTX_use_PrivateKey_ASN1(int pk, SSL_CTX *ctx, const uint8_t *der, size_t der_len); OPENSSL_EXPORT int SSL_use_PrivateKey_ASN1(int type, SSL *ssl, const uint8_t *der, size_t der_len); OPENSSL_EXPORT int SSL_CTX_use_RSAPrivateKey_ASN1(SSL_CTX *ctx, const uint8_t *der, size_t der_len); OPENSSL_EXPORT int SSL_use_RSAPrivateKey_ASN1(SSL *ssl, const uint8_t *der, size_t der_len); // The following functions configure certificates or private keys but take as // input files to read from. They return one on success and zero on failure. The // |type| parameter is one of the |SSL_FILETYPE_*| values and determines whether // the file's contents are read as PEM or DER. #define SSL_FILETYPE_PEM 1 #define SSL_FILETYPE_ASN1 2 OPENSSL_EXPORT int SSL_CTX_use_RSAPrivateKey_file(SSL_CTX *ctx, const char *file, int type); OPENSSL_EXPORT int SSL_use_RSAPrivateKey_file(SSL *ssl, const char *file, int type); OPENSSL_EXPORT int SSL_CTX_use_certificate_file(SSL_CTX *ctx, const char *file, int type); OPENSSL_EXPORT int SSL_use_certificate_file(SSL *ssl, const char *file, int type); OPENSSL_EXPORT int SSL_CTX_use_PrivateKey_file(SSL_CTX *ctx, const char *file, int type); OPENSSL_EXPORT int SSL_use_PrivateKey_file(SSL *ssl, const char *file, int type); // SSL_CTX_use_certificate_chain_file configures certificates for |ctx|. It // reads the contents of |file| as a PEM-encoded leaf certificate followed // optionally by the certificate chain to send to the peer. It returns one on // success and zero on failure. OPENSSL_EXPORT int SSL_CTX_use_certificate_chain_file(SSL_CTX *ctx, const char *file); // SSL_CTX_use_certificate_chain_file configures certificates for |ssl|. It // reads the contents of |file| as a PEM-encoded leaf certificate followed // optionally by the certificate chain to send to the peer. It returns one on // success and zero on failure. OPENSSL_EXPORT int SSL_use_certificate_chain_file(SSL *ssl, const char *file); // SSL_CTX_set_default_passwd_cb sets the password callback for PEM-based // convenience functions called on |ctx|. OPENSSL_EXPORT void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb); // SSL_CTX_get_default_passwd_cb returns the callback set by // |SSL_CTX_set_default_passwd_cb|. OPENSSL_EXPORT pem_password_cb *SSL_CTX_get_default_passwd_cb( const SSL_CTX *ctx); // SSL_CTX_set_default_passwd_cb_userdata sets the userdata parameter for // |ctx|'s password callback. OPENSSL_EXPORT void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *data); // SSL_CTX_get_default_passwd_cb_userdata returns the userdata parameter set by // |SSL_CTX_set_default_passwd_cb_userdata|. OPENSSL_EXPORT void *SSL_CTX_get_default_passwd_cb_userdata(const SSL_CTX *ctx); // Custom private keys. enum ssl_private_key_result_t BORINGSSL_ENUM_INT { ssl_private_key_success, ssl_private_key_retry, ssl_private_key_failure, }; // ssl_private_key_method_st (aka |SSL_PRIVATE_KEY_METHOD|) describes private // key hooks. This is used to off-load signing operations to a custom, // potentially asynchronous, backend. Metadata about the key such as the type // and size are parsed out of the certificate. // // Callers that use this structure should additionally call // |SSL_set_signing_algorithm_prefs| or |SSL_CTX_set_signing_algorithm_prefs| // with the private key's capabilities. This ensures BoringSSL will select a // suitable signature algorithm for the private key. struct ssl_private_key_method_st { // sign signs the message |in| in using the specified signature algorithm. On // success, it returns |ssl_private_key_success| and writes at most |max_out| // bytes of signature data to |out| and sets |*out_len| to the number of bytes // written. On failure, it returns |ssl_private_key_failure|. If the operation // has not completed, it returns |ssl_private_key_retry|. |sign| should // arrange for the high-level operation on |ssl| to be retried when the // operation is completed. This will result in a call to |complete|. // // |signature_algorithm| is one of the |SSL_SIGN_*| values, as defined in TLS // 1.3. Note that, in TLS 1.2, ECDSA algorithms do not require that curve // sizes match hash sizes, so the curve portion of |SSL_SIGN_ECDSA_*| values // must be ignored. BoringSSL will internally handle the curve matching logic // where appropriate. // // It is an error to call |sign| while another private key operation is in // progress on |ssl|. enum ssl_private_key_result_t (*sign)(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out, uint16_t signature_algorithm, const uint8_t *in, size_t in_len); // decrypt decrypts |in_len| bytes of encrypted data from |in|. On success it // returns |ssl_private_key_success|, writes at most |max_out| bytes of // decrypted data to |out| and sets |*out_len| to the actual number of bytes // written. On failure it returns |ssl_private_key_failure|. If the operation // has not completed, it returns |ssl_private_key_retry|. The caller should // arrange for the high-level operation on |ssl| to be retried when the // operation is completed, which will result in a call to |complete|. This // function only works with RSA keys and should perform a raw RSA decryption // operation with no padding. // // It is an error to call |decrypt| while another private key operation is in // progress on |ssl|. enum ssl_private_key_result_t (*decrypt)(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out, const uint8_t *in, size_t in_len); // complete completes a pending operation. If the operation has completed, it // returns |ssl_private_key_success| and writes the result to |out| as in // |sign|. Otherwise, it returns |ssl_private_key_failure| on failure and // |ssl_private_key_retry| if the operation is still in progress. // // |complete| may be called arbitrarily many times before completion, but it // is an error to call |complete| if there is no pending operation in progress // on |ssl|. enum ssl_private_key_result_t (*complete)(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out); }; // SSL_set_private_key_method configures a custom private key on |ssl|. // |key_method| must remain valid for the lifetime of |ssl|. Using custom // keys with the multiple certificate slots feature is not supported. OPENSSL_EXPORT void SSL_set_private_key_method( SSL *ssl, const SSL_PRIVATE_KEY_METHOD *key_method); // SSL_CTX_set_private_key_method configures a custom private key on |ctx|. // |key_method| must remain valid for the lifetime of |ctx|. OPENSSL_EXPORT void SSL_CTX_set_private_key_method( SSL_CTX *ctx, const SSL_PRIVATE_KEY_METHOD *key_method); // SSL_can_release_private_key returns one if |ssl| will no longer call into the // private key and zero otherwise. If the function returns one, the caller can // release state associated with the private key. // // NOTE: This function assumes the caller does not use |SSL_clear| to reuse // |ssl| for a second connection. If |SSL_clear| is used, BoringSSL may still // use the private key on the second connection. OPENSSL_EXPORT int SSL_can_release_private_key(const SSL *ssl); // Cipher suites. // // |SSL_CIPHER| objects represent cipher suites. DEFINE_CONST_STACK_OF(SSL_CIPHER) // SSL_get_cipher_by_value returns the structure representing a TLS cipher // suite based on its assigned number, or NULL if unknown. See // https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-4. OPENSSL_EXPORT const SSL_CIPHER *SSL_get_cipher_by_value(uint16_t value); // SSL_CIPHER_find returns a SSL_CIPHER structure which has the cipher ID stored in ptr or // NULL if unknown. The ptr parameter is a two element array of char, which stores the // two-byte TLS cipher ID (as allocated by IANA) in network byte order. SSL_CIPHER_find re-casts // |ptr| to uint16_t and calls |SSL_get_cipher_by_value| to get the SSL_CIPHER structure. OPENSSL_EXPORT const SSL_CIPHER *SSL_CIPHER_find(SSL *ssl, const unsigned char *ptr); // SSL_CIPHER_get_id returns |cipher|'s non-IANA id. This is not its // IANA-assigned number, which is called the "value" here, although it may be // cast to a |uint16_t| to get it. OPENSSL_EXPORT uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *cipher); // SSL_CIPHER_get_protocol_id returns |cipher|'s IANA-assigned number. OPENSSL_EXPORT uint16_t SSL_CIPHER_get_protocol_id(const SSL_CIPHER *cipher); // SSL_CIPHER_is_aead returns one if |cipher| uses an AEAD cipher. OPENSSL_EXPORT int SSL_CIPHER_is_aead(const SSL_CIPHER *cipher); // SSL_CIPHER_is_block_cipher returns one if |cipher| is a block cipher. OPENSSL_EXPORT int SSL_CIPHER_is_block_cipher(const SSL_CIPHER *cipher); // SSL_CIPHER_get_cipher_nid returns the NID for |cipher|'s bulk // cipher. Possible values are |NID_aes_128_gcm|, |NID_aes_256_gcm|, // |NID_chacha20_poly1305|, |NID_aes_128_cbc|, |NID_aes_256_cbc|, and // |NID_des_ede3_cbc|. OPENSSL_EXPORT int SSL_CIPHER_get_cipher_nid(const SSL_CIPHER *cipher); // SSL_CIPHER_get_digest_nid returns the NID for |cipher|'s HMAC if it is a // legacy cipher suite. For modern AEAD-based ciphers (see // |SSL_CIPHER_is_aead|), it returns |NID_undef|. // // Note this function only returns the legacy HMAC digest, not the PRF hash. OPENSSL_EXPORT int SSL_CIPHER_get_digest_nid(const SSL_CIPHER *cipher); // SSL_CIPHER_get_kx_nid returns the NID for |cipher|'s key exchange. This may // be |NID_kx_rsa|, |NID_kx_ecdhe|, or |NID_kx_psk| for TLS 1.2. In TLS 1.3, // cipher suites do not specify the key exchange, so this function returns // |NID_kx_any|. OPENSSL_EXPORT int SSL_CIPHER_get_kx_nid(const SSL_CIPHER *cipher); // SSL_CIPHER_get_auth_nid returns the NID for |cipher|'s authentication // type. This may be |NID_auth_rsa|, |NID_auth_ecdsa|, or |NID_auth_psk| for TLS // 1.2. In TLS 1.3, cipher suites do not specify authentication, so this // function returns |NID_auth_any|. OPENSSL_EXPORT int SSL_CIPHER_get_auth_nid(const SSL_CIPHER *cipher); // SSL_CIPHER_get_handshake_digest returns |cipher|'s PRF hash. If |cipher| // is a pre-TLS-1.2 cipher, it returns |EVP_md5_sha1| but note these ciphers use // SHA-256 in TLS 1.2. Other return values may be treated uniformly in all // applicable versions. OPENSSL_EXPORT const EVP_MD *SSL_CIPHER_get_handshake_digest( const SSL_CIPHER *cipher); // SSL_CIPHER_get_prf_nid behaves like |SSL_CIPHER_get_handshake_digest| but // returns the NID constant. Use |SSL_CIPHER_get_handshake_digest| instead. OPENSSL_EXPORT int SSL_CIPHER_get_prf_nid(const SSL_CIPHER *cipher); // SSL_CIPHER_get_min_version returns the minimum protocol version required // for |cipher|. OPENSSL_EXPORT uint16_t SSL_CIPHER_get_min_version(const SSL_CIPHER *cipher); // SSL_CIPHER_get_max_version returns the maximum protocol version that // supports |cipher|. OPENSSL_EXPORT uint16_t SSL_CIPHER_get_max_version(const SSL_CIPHER *cipher); // SSL_CIPHER_standard_name returns the standard IETF name for |cipher|. For // example, "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256". OPENSSL_EXPORT const char *SSL_CIPHER_standard_name(const SSL_CIPHER *cipher); // SSL_CIPHER_get_name returns the OpenSSL name of |cipher|. For example, // "ECDHE-RSA-AES128-GCM-SHA256". Callers are recommended to use // |SSL_CIPHER_standard_name| instead. OPENSSL_EXPORT const char *SSL_CIPHER_get_name(const SSL_CIPHER *cipher); // SSL_CIPHER_get_kx_name returns a string that describes the key-exchange // method used by |cipher|. For example, "ECDHE_ECDSA". TLS 1.3 AEAD-only // ciphers return the string "GENERIC". OPENSSL_EXPORT const char *SSL_CIPHER_get_kx_name(const SSL_CIPHER *cipher); // SSL_CIPHER_get_bits returns the strength, in bits, of |cipher|. If // |out_alg_bits| is not NULL, it writes the number of bits consumed by the // symmetric algorithm to |*out_alg_bits|. OPENSSL_EXPORT int SSL_CIPHER_get_bits(const SSL_CIPHER *cipher, int *out_alg_bits); // SSL_get_all_cipher_names outputs a list of possible strings // |SSL_CIPHER_get_name| may return in this version of BoringSSL. It writes at // most |max_out| entries to |out| and returns the total number it would have // written, if |max_out| had been large enough. |max_out| may be initially set // to zero to size the output. // // This function is only intended to help initialize tables in callers that want // possible strings pre-declared. This list would not be suitable to set a list // of supported features. It is in no particular order, and may contain // placeholder, experimental, or deprecated values that do not apply to every // caller. Future versions of BoringSSL may also return strings not in this // list, so this does not apply if, say, sending strings across services. OPENSSL_EXPORT size_t SSL_get_all_cipher_names(const char **out, size_t max_out); // SSL_get_all_standard_cipher_names outputs a list of possible strings // |SSL_CIPHER_standard_name| may return in this version of BoringSSL. It writes // at most |max_out| entries to |out| and returns the total number it would have // written, if |max_out| had been large enough. |max_out| may be initially set // to zero to size the output. // // This function is only intended to help initialize tables in callers that want // possible strings pre-declared. This list would not be suitable to set a list // of supported features. It is in no particular order, and may contain // placeholder, experimental, or deprecated values that do not apply to every // caller. Future versions of BoringSSL may also return strings not in this // list, so this does not apply if, say, sending strings across services. OPENSSL_EXPORT size_t SSL_get_all_standard_cipher_names(const char **out, size_t max_out); // Cipher suite configuration. // // OpenSSL uses a mini-language to configure cipher suites. The language // maintains an ordered list of enabled ciphers, along with an ordered list of // disabled but available ciphers. Initially, all ciphers are disabled with a // default ordering. The cipher string is then interpreted as a sequence of // directives, separated by colons, each of which modifies this state. // // Most directives consist of a one character or empty opcode followed by a // selector which matches a subset of available ciphers. // // Available opcodes are: // // - The empty opcode enables and appends all matching disabled ciphers to the // end of the enabled list. The newly appended ciphers are ordered relative to // each other matching their order in the disabled list. // // - |-| disables all matching enabled ciphers and prepends them to the disabled // list, with relative order from the enabled list preserved. This means the // most recently disabled ciphers get highest preference relative to other // disabled ciphers if re-enabled. // // - |+| moves all matching enabled ciphers to the end of the enabled list, with // relative order preserved. // // - |!| deletes all matching ciphers, enabled or not, from either list. Deleted // ciphers will not matched by future operations. // // A selector may be a specific cipher (using either the standard or OpenSSL // name for the cipher) or one or more rules separated by |+|. The final // selector matches the intersection of each rule. For instance, |AESGCM+aECDSA| // matches ECDSA-authenticated AES-GCM ciphers. // // Available cipher rules are: // // - |ALL| matches all ciphers. // // - |kRSA|, |kDHE|, |kECDHE|, and |kPSK| match ciphers using plain RSA, DHE, // ECDHE, and plain PSK key exchanges, respectively. Note that ECDHE_PSK is // matched by |kECDHE| and not |kPSK|. // // - |aRSA|, |aECDSA|, and |aPSK| match ciphers authenticated by RSA, ECDSA, and // a pre-shared key, respectively. // // - |RSA|, |DHE|, |ECDHE|, |PSK|, |ECDSA|, and |PSK| are aliases for the // corresponding |k*| or |a*| cipher rule. |RSA| is an alias for |kRSA|, not // |aRSA|. // // - |3DES|, |AES128|, |AES256|, |AES|, |AESGCM|, |CHACHA20| match ciphers // whose bulk cipher use the corresponding encryption scheme. Note that // |AES|, |AES128|, and |AES256| match both CBC and GCM ciphers. // // - |SHA1|, and its alias |SHA|, match legacy cipher suites using HMAC-SHA1. // // Although implemented, authentication-only ciphers match no rules and must be // explicitly selected by name. // // Deprecated cipher rules: // // - |kEDH|, |EDH|, |kEECDH|, and |EECDH| are legacy aliases for |kDHE|, |DHE|, // |kECDHE|, and |ECDHE|, respectively. // // - |HIGH| is an alias for |ALL|. // // - |FIPS| is an alias for |HIGH|. // // - |SSLv3| and |TLSv1| match ciphers available in TLS 1.1 or earlier. // |TLSv1_2| matches ciphers new in TLS 1.2. This is confusing and should not // be used. // // Unknown rules are silently ignored by legacy APIs, and rejected by APIs with // "strict" in the name, which should be preferred. Cipher lists can be long // and it's easy to commit typos. Strict functions will also reject the use of // spaces, semi-colons and commas as alternative separators. // // The special |@STRENGTH| directive will sort all enabled ciphers by strength. // // The |DEFAULT| directive, when appearing at the front of the string, expands // to the default ordering of available ciphers. // // If configuring a server, one may also configure equal-preference groups to // partially respect the client's preferences when // |SSL_OP_CIPHER_SERVER_PREFERENCE| is enabled. Ciphers in an equal-preference // group have equal priority and use the client order. This may be used to // enforce that AEADs are preferred but select AES-GCM vs. ChaCha20-Poly1305 // based on client preferences. An equal-preference is specified with square // brackets, combining multiple selectors separated by |. For example: // // [TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256|TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256] // // Once an equal-preference group is used, future directives must be // opcode-less. Inside an equal-preference group, spaces are not allowed. // // TLS 1.3 ciphers do not participate in this mechanism and instead have a // built-in preference order. Functions to set cipher lists do not affect TLS // 1.3, and functions to query the cipher list do not include TLS 1.3 // ciphers. // SSL_DEFAULT_CIPHER_LIST is the default cipher suite configuration. It is // substituted when a cipher string starts with 'DEFAULT'. #define SSL_DEFAULT_CIPHER_LIST "ALL" // SSL_CTX_set_strict_cipher_list configures the cipher list for |ctx|, // evaluating |str| as a cipher string and returning error if |str| contains // anything meaningless. It returns one on success and zero on failure. OPENSSL_EXPORT int SSL_CTX_set_strict_cipher_list(SSL_CTX *ctx, const char *str); // SSL_CTX_set_cipher_list configures the cipher list for |ctx|, evaluating // |str| as a cipher string. It returns one on success and zero on failure. // // Prefer to use |SSL_CTX_set_strict_cipher_list|. This function tolerates // garbage inputs, unless an empty cipher list results. However, an empty // string which also results in an empty cipher list, is allowed. This // behavior is strongly advised against and only meant for OpenSSL // compatibility. // // Note: this API only sets the TLSv1.2 and below ciphers. // Use |SSL_CTX_set_ciphersuites| to configure TLS 1.3 specific ciphers. OPENSSL_EXPORT int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str); // SSL_set_strict_cipher_list configures the cipher list for |ssl|, evaluating // |str| as a cipher string and returning error if |str| contains anything // meaningless. It returns one on success and zero on failure. OPENSSL_EXPORT int SSL_set_strict_cipher_list(SSL *ssl, const char *str); // SSL_CTX_set_ciphersuites configure the available TLSv1.3 ciphersuites for // |ctx|, evaluating |str| as a cipher string. It returns one on success and // zero on failure. OPENSSL_EXPORT int SSL_CTX_set_ciphersuites(SSL_CTX *ctx, const char *str); // SSL_set_ciphersuites sets the available TLSv1.3 ciphersuites on an |ssl|, // returning one on success and zero on failure. In OpenSSL, the only // difference between |SSL_CTX_set_ciphersuites| and |SSL_set_ciphersuites| is // that the latter copies the |SSL|'s |cipher_list| to its associated // |SSL_CONNECTION|. In AWS-LC, we track everything on the |ssl|'s |config| so // duplication is not necessary. OPENSSL_EXPORT int SSL_set_ciphersuites(SSL *ssl, const char *str); // SSL_set_cipher_list configures the cipher list for |ssl|, evaluating |str| as // a cipher string. It returns one on success and zero on failure. // // Prefer to use |SSL_set_strict_cipher_list|. This function tolerates garbage // inputs, unless an empty cipher list results. However, an empty string which // also results in an empty cipher list, is allowed. This behavior is strongly // advised against and only meant for OpenSSL compatibility. OPENSSL_EXPORT int SSL_set_cipher_list(SSL *ssl, const char *str); // SSL_CTX_get_ciphers returns the cipher list for |ctx|, in order of // preference. OPENSSL_EXPORT STACK_OF(SSL_CIPHER) *SSL_CTX_get_ciphers(const SSL_CTX *ctx); // SSL_CTX_cipher_in_group returns one if the |i|th cipher (see // |SSL_CTX_get_ciphers|) is in the same equipreference group as the one // following it and zero otherwise. OPENSSL_EXPORT int SSL_CTX_cipher_in_group(const SSL_CTX *ctx, size_t i); // SSL_get_ciphers returns the cipher list for |ssl|, in order of preference. OPENSSL_EXPORT STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *ssl); // Connection information. // SSL_is_init_finished returns one if |ssl| has completed its initial handshake // and has no pending handshake. It returns zero otherwise. OPENSSL_EXPORT int SSL_is_init_finished(const SSL *ssl); // SSL_in_init returns one if |ssl| has a pending handshake and zero // otherwise. OPENSSL_EXPORT int SSL_in_init(const SSL *ssl); // SSL_in_false_start returns one if |ssl| has a pending handshake that is in // False Start. |SSL_write| may be called at this point without waiting for the // peer, but |SSL_read| will complete the handshake before accepting application // data. // // See also |SSL_MODE_ENABLE_FALSE_START|. OPENSSL_EXPORT int SSL_in_false_start(const SSL *ssl); // SSL_get_peer_certificate returns the peer's leaf certificate or NULL if the // peer did not use certificates. The caller must call |X509_free| on the // result to release it. OPENSSL_EXPORT X509 *SSL_get_peer_certificate(const SSL *ssl); // SSL_get_peer_cert_chain returns the peer's certificate chain or NULL if // unavailable or the peer did not use certificates. This is the unverified list // of certificates as sent by the peer, not the final chain built during // verification. The caller does not take ownership of the result. // // WARNING: This function behaves differently between client and server. If // |ssl| is a server, the returned chain does not include the leaf certificate. // If a client, it does. OPENSSL_EXPORT STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *ssl); // SSL_get_peer_full_cert_chain returns the peer's certificate chain, or NULL if // unavailable or the peer did not use certificates. This is the unverified list // of certificates as sent by the peer, not the final chain built during // verification. The caller does not take ownership of the result. // // This is the same as |SSL_get_peer_cert_chain| except that this function // always returns the full chain, i.e. the first element of the return value // (if any) will be the leaf certificate. In contrast, // |SSL_get_peer_cert_chain| returns only the intermediate certificates if the // |ssl| is a server. OPENSSL_EXPORT STACK_OF(X509) *SSL_get_peer_full_cert_chain(const SSL *ssl); // SSL_get0_verified_chain returns the verified certificate chain of the peer // including the peer's end entity certificate. It must be called after a // session has been successfully established. If peer verification was not // successful (as indicated by |SSL_get_verify_result| not returning // |X509_V_OK|) the result will be null. If a verification callback was set with // |SSL_CTX_set_cert_verify_callback| or |SSL_set_custom_verify| // this function's behavior is undefined. OPENSSL_EXPORT STACK_OF(X509) *SSL_get0_verified_chain(const SSL *ssl); // SSL_get0_peer_certificates returns the peer's certificate chain, or NULL if // unavailable or the peer did not use certificates. This is the unverified list // of certificates as sent by the peer, not the final chain built during // verification. The caller does not take ownership of the result. // // This is the |CRYPTO_BUFFER| variant of |SSL_get_peer_full_cert_chain|. OPENSSL_EXPORT const STACK_OF(CRYPTO_BUFFER) *SSL_get0_peer_certificates( const SSL *ssl); // SSL_get0_signed_cert_timestamp_list sets |*out| and |*out_len| to point to // |*out_len| bytes of SCT information from the server. This is only valid if // |ssl| is a client. The SCT information is a SignedCertificateTimestampList // (including the two leading length bytes). // See https://tools.ietf.org/html/rfc6962#section-3.3 // If no SCT was received then |*out_len| will be zero on return. // // WARNING: the returned data is not guaranteed to be well formed. OPENSSL_EXPORT void SSL_get0_signed_cert_timestamp_list(const SSL *ssl, const uint8_t **out, size_t *out_len); // SSL_get0_ocsp_response sets |*out| and |*out_len| to point to |*out_len| // bytes of an OCSP response from the server. This is the DER encoding of an // OCSPResponse type as defined in RFC 2560. // // WARNING: the returned data is not guaranteed to be well formed. OPENSSL_EXPORT void SSL_get0_ocsp_response(const SSL *ssl, const uint8_t **out, size_t *out_len); // SSL_get_tls_unique writes at most |max_out| bytes of the tls-unique value // for |ssl| to |out| and sets |*out_len| to the number of bytes written. It // returns one on success or zero on error. In general |max_out| should be at // least 12. // // This function will always fail if the initial handshake has not completed. // The tls-unique value will change after a renegotiation but, since // renegotiations can be initiated by the server at any point, the higher-level // protocol must either leave them disabled or define states in which the // tls-unique value can be read. // // The tls-unique value is defined by // https://tools.ietf.org/html/rfc5929#section-3.1. Due to a weakness in the // TLS protocol, tls-unique is broken for resumed connections unless the // Extended Master Secret extension is negotiated. Thus this function will // return zero if |ssl| performed session resumption unless EMS was used when // negotiating the original session. OPENSSL_EXPORT int SSL_get_tls_unique(const SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out); // SSL_get_extms_support returns one if the Extended Master Secret extension or // TLS 1.3 was negotiated. Otherwise, it returns zero. OPENSSL_EXPORT int SSL_get_extms_support(const SSL *ssl); // SSL_get_current_cipher returns cipher suite used by |ssl|, or NULL if it has // not been negotiated yet. OPENSSL_EXPORT const SSL_CIPHER *SSL_get_current_cipher(const SSL *ssl); // SSL_get_client_ciphers returns the stack of ciphers offered by the client // during a handshake and that are supported by this library. If |ssl| is a // client or the handshake hasn't occurred yet, NULL is returned. The stack of // ciphers IS NOT de/serialized, so NULL will also be returned for deserialized // or transported |ssl|'s that haven't yet performed a new handshake. OPENSSL_EXPORT STACK_OF(SSL_CIPHER) *SSL_get_client_ciphers(const SSL *ssl); // SSL_client_hello_get0_ciphers provides access to the client ciphers field from the // Client Hello, optionally writing the result to an out pointer. It returns the field // length if successful, or 0 if |ssl| is a client or the handshake hasn't occurred yet. // |out| points to the raw bytes from the client hello message so it may contain invalid // or unsupported Cipher IDs. OPENSSL_EXPORT size_t SSL_client_hello_get0_ciphers(SSL *ssl, const unsigned char **out); // SSL_session_reused returns one if |ssl| performed an abbreviated handshake // and zero otherwise. // // TODO(davidben): Hammer down the semantics of this API while a handshake, // initial or renego, is in progress. OPENSSL_EXPORT int SSL_session_reused(const SSL *ssl); // SSL_get_secure_renegotiation_support returns one if the peer supports secure // renegotiation (RFC 5746) or TLS 1.3. Otherwise, it returns zero. OPENSSL_EXPORT int SSL_get_secure_renegotiation_support(const SSL *ssl); // SSL_export_keying_material exports a value derived from the master secret, as // specified in RFC 5705. It writes |out_len| bytes to |out| given a label and // optional context. (Since a zero length context is allowed, the |use_context| // flag controls whether a context is included.) // // It returns one on success and zero otherwise. OPENSSL_EXPORT int SSL_export_keying_material( SSL *ssl, uint8_t *out, size_t out_len, const char *label, size_t label_len, const uint8_t *context, size_t context_len, int use_context); // Custom extensions. // // The custom extension functions allow TLS extensions to be added to // ClientHello and ServerHello messages. // SSL_custom_ext_add_cb is a callback function that is called when the // ClientHello (for clients) or ServerHello (for servers) is constructed. In // the case of a server, this callback will only be called for a given // extension if the ClientHello contained that extension – it's not possible to // inject extensions into a ServerHello that the client didn't request. // // When called, |extension_value| will contain the extension number that is // being considered for addition (so that a single callback can handle multiple // extensions). If the callback wishes to include the extension, it must set // |*out| to point to |*out_len| bytes of extension contents and return one. In // this case, the corresponding |SSL_custom_ext_free_cb| callback will later be // called with the value of |*out| once that data has been copied. // // If the callback does not wish to add an extension it must return zero. // // Alternatively, the callback can abort the connection by setting // |*out_alert_value| to a TLS alert number and returning -1. typedef int (*SSL_custom_ext_add_cb)(SSL *ssl, unsigned extension_value, const uint8_t **out, size_t *out_len, int *out_alert_value, void *add_arg); // SSL_custom_ext_free_cb is a callback function that is called by AWS-LC iff // an |SSL_custom_ext_add_cb| callback previously returned one. In that case, // this callback is called and passed the |out| pointer that was returned by // the add callback. This is to free any dynamically allocated data created by // the add callback. typedef void (*SSL_custom_ext_free_cb)(SSL *ssl, unsigned extension_value, const uint8_t *out, void *add_arg); // SSL_custom_ext_parse_cb is a callback function that is called by AWS-LC to // parse an extension from the peer: that is from the ServerHello for a client // and from the ClientHello for a server. // // When called, |extension_value| will contain the extension number and the // contents of the extension are |contents_len| bytes at |contents|. // // The callback must return one to continue the handshake. Otherwise, if it // returns zero, a fatal alert with value |*out_alert_value| is sent and the // handshake is aborted. typedef int (*SSL_custom_ext_parse_cb)(SSL *ssl, unsigned extension_value, const uint8_t *contents, size_t contents_len, int *out_alert_value, void *parse_arg); // SSL_extension_supported returns one iff AWS-LC internally handles // extensions of type |extension_value|. This can be used to avoid registering // custom extension handlers for extensions that a future version of AWS-LC // may handle internally. OPENSSL_EXPORT int SSL_extension_supported(unsigned extension_value); // SSL_CTX_add_client_custom_ext registers callback functions for handling // custom TLS extensions for client connections. // // If |add_cb| is NULL then an empty extension will be added in each // ClientHello. Otherwise, see the comment for |SSL_custom_ext_add_cb| about // this callback. // // The |free_cb| may be NULL if |add_cb| doesn't dynamically allocate data that // needs to be freed. // // It returns one on success or zero on error. It's always an error to register // callbacks for the same extension twice, or to register callbacks for an // extension that AWS-LC handles internally. See |SSL_extension_supported| to // discover, at runtime, which extensions AWS-LC handles internally. OPENSSL_EXPORT int SSL_CTX_add_client_custom_ext( SSL_CTX *ctx, unsigned extension_value, SSL_custom_ext_add_cb add_cb, SSL_custom_ext_free_cb free_cb, void *add_arg, SSL_custom_ext_parse_cb parse_cb, void *parse_arg); // SSL_CTX_add_server_custom_ext is the same as // |SSL_CTX_add_client_custom_ext|, but for server connections. // // Unlike on the client side, if |add_cb| is NULL no extension will be added. // The |add_cb|, if any, will only be called if the ClientHello contained a // matching extension. OPENSSL_EXPORT int SSL_CTX_add_server_custom_ext( SSL_CTX *ctx, unsigned extension_value, SSL_custom_ext_add_cb add_cb, SSL_custom_ext_free_cb free_cb, void *add_arg, SSL_custom_ext_parse_cb parse_cb, void *parse_arg); // Sessions. // // An |SSL_SESSION| represents an SSL session that may be resumed in an // abbreviated handshake. It is reference-counted and immutable. Once // established, an |SSL_SESSION| may be shared by multiple |SSL| objects on // different threads and must not be modified. // // Note the TLS notion of "session" is not suitable for application-level // session state. It is an optional caching mechanism for the handshake. Not all // connections within an application-level session will reuse TLS sessions. TLS // sessions may be dropped by the client or ignored by the server at any time. DECLARE_PEM_rw(SSL_SESSION, SSL_SESSION) // SSL_SESSION_new returns a newly-allocated blank |SSL_SESSION| or NULL on // error. This may be useful when writing tests but should otherwise not be // used. OPENSSL_EXPORT SSL_SESSION *SSL_SESSION_new(const SSL_CTX *ctx); // SSL_SESSION_up_ref increments the reference count of |session| and returns // one. OPENSSL_EXPORT int SSL_SESSION_up_ref(SSL_SESSION *session); // SSL_SESSION_free decrements the reference count of |session|. If it reaches // zero, all data referenced by |session| and |session| itself are released. OPENSSL_EXPORT void SSL_SESSION_free(SSL_SESSION *session); // SSL_SESSION_to_bytes serializes |in| into a newly allocated buffer and sets // |*out_data| to that buffer and |*out_len| to its length. The caller takes // ownership of the buffer and must call |OPENSSL_free| when done. It returns // one on success and zero on error. OPENSSL_EXPORT int SSL_SESSION_to_bytes(const SSL_SESSION *in, uint8_t **out_data, size_t *out_len); // SSL_SESSION_to_bytes_for_ticket serializes |in|, but excludes the session // identification information, namely the session ID and ticket. OPENSSL_EXPORT int SSL_SESSION_to_bytes_for_ticket(const SSL_SESSION *in, uint8_t **out_data, size_t *out_len); // SSL_SESSION_from_bytes parses |in_len| bytes from |in| as an SSL_SESSION. It // returns a newly-allocated |SSL_SESSION| on success or NULL on error. OPENSSL_EXPORT SSL_SESSION *SSL_SESSION_from_bytes(const uint8_t *in, size_t in_len, const SSL_CTX *ctx); // SSL_SESSION_get_version returns a string describing the TLS or DTLS version // |session| was established at. For example, "TLSv1.2" or "DTLSv1". OPENSSL_EXPORT const char *SSL_SESSION_get_version(const SSL_SESSION *session); // SSL_SESSION_get_protocol_version returns the TLS or DTLS version |session| // was established at. OPENSSL_EXPORT uint16_t SSL_SESSION_get_protocol_version(const SSL_SESSION *session); // SSL_SESSION_set_protocol_version sets |session|'s TLS or DTLS version to // |version|. This may be useful when writing tests but should otherwise not be // used. It returns one on success and zero on error. OPENSSL_EXPORT int SSL_SESSION_set_protocol_version(SSL_SESSION *session, uint16_t version); // SSL_MAX_SSL_SESSION_ID_LENGTH is the maximum length of an SSL session ID. #define SSL_MAX_SSL_SESSION_ID_LENGTH 32 // SSL_SESSION_get_id returns a pointer to a buffer containing |session|'s // session ID and sets |*out_len| to its length. // // This function should only be used for implementing a TLS session cache. TLS // sessions are not suitable for application-level session state, and a session // ID is an implementation detail of the TLS resumption handshake mechanism. Not // all resumption flows use session IDs, and not all connections within an // application-level session will reuse TLS sessions. // // To determine if resumption occurred, use |SSL_session_reused| instead. // Comparing session IDs will not give the right result in all cases. // // As a workaround for some broken applications, BoringSSL sometimes synthesizes // arbitrary session IDs for non-ID-based sessions. This behavior may be // removed in the future. OPENSSL_EXPORT const uint8_t *SSL_SESSION_get_id(const SSL_SESSION *session, unsigned *out_len); // SSL_SESSION_set1_id sets |session|'s session ID to |sid|, It returns one on // success and zero on error. This function may be useful in writing tests but // otherwise should not be used. OPENSSL_EXPORT int SSL_SESSION_set1_id(SSL_SESSION *session, const uint8_t *sid, size_t sid_len); // SSL_SESSION_get_time returns the time at which |session| was established in // seconds since the UNIX epoch. OPENSSL_EXPORT uint64_t SSL_SESSION_get_time(const SSL_SESSION *session); // SSL_SESSION_get_timeout returns the lifetime of |session| in seconds. OPENSSL_EXPORT uint32_t SSL_SESSION_get_timeout(const SSL_SESSION *session); // SSL_SESSION_get0_peer returns the peer leaf certificate stored in // |session|. // // TODO(davidben): This should return a const X509 *. OPENSSL_EXPORT X509 *SSL_SESSION_get0_peer(const SSL_SESSION *session); // SSL_SESSION_get0_peer_certificates returns the peer certificate chain stored // in |session|, or NULL if the peer did not use certificates. This is the // unverified list of certificates as sent by the peer, not the final chain // built during verification. The caller does not take ownership of the result. OPENSSL_EXPORT const STACK_OF(CRYPTO_BUFFER) * SSL_SESSION_get0_peer_certificates(const SSL_SESSION *session); // SSL_SESSION_get0_signed_cert_timestamp_list sets |*out| and |*out_len| to // point to |*out_len| bytes of SCT information stored in |session|. This is // only valid for client sessions. The SCT information is a // SignedCertificateTimestampList (including the two leading length bytes). See // https://tools.ietf.org/html/rfc6962#section-3.3 If no SCT was received then // |*out_len| will be zero on return. // // WARNING: the returned data is not guaranteed to be well formed. OPENSSL_EXPORT void SSL_SESSION_get0_signed_cert_timestamp_list( const SSL_SESSION *session, const uint8_t **out, size_t *out_len); // SSL_SESSION_get0_ocsp_response sets |*out| and |*out_len| to point to // |*out_len| bytes of an OCSP response from the server. This is the DER // encoding of an OCSPResponse type as defined in RFC 2560. // // WARNING: the returned data is not guaranteed to be well formed. OPENSSL_EXPORT void SSL_SESSION_get0_ocsp_response(const SSL_SESSION *session, const uint8_t **out, size_t *out_len); // SSL_MAX_MASTER_KEY_LENGTH is the maximum length of a master secret. #define SSL_MAX_MASTER_KEY_LENGTH 48 // SSL_SESSION_get_master_key writes up to |max_out| bytes of |session|'s secret // to |out| and returns the number of bytes written. If |max_out| is zero, it // returns the size of the secret. OPENSSL_EXPORT size_t SSL_SESSION_get_master_key(const SSL_SESSION *session, uint8_t *out, size_t max_out); // SSL_SESSION_set_time sets |session|'s creation time to |time| and returns // |time|. This function may be useful in writing tests but otherwise should not // be used. OPENSSL_EXPORT uint64_t SSL_SESSION_set_time(SSL_SESSION *session, uint64_t time); // SSL_SESSION_set_timeout sets |session|'s timeout to |timeout| and returns // one. This function may be useful in writing tests but otherwise should not // be used. OPENSSL_EXPORT uint32_t SSL_SESSION_set_timeout(SSL_SESSION *session, uint32_t timeout); // SSL_SESSION_get0_id_context returns a pointer to a buffer containing // |session|'s session ID context (see |SSL_CTX_set_session_id_context|) and // sets |*out_len| to its length. OPENSSL_EXPORT const uint8_t *SSL_SESSION_get0_id_context( const SSL_SESSION *session, unsigned *out_len); // SSL_SESSION_set1_id_context sets |session|'s session ID context (see // |SSL_CTX_set_session_id_context|) to |sid_ctx|. It returns one on success and // zero on error. This function may be useful in writing tests but otherwise // should not be used. OPENSSL_EXPORT int SSL_SESSION_set1_id_context(SSL_SESSION *session, const uint8_t *sid_ctx, size_t sid_ctx_len); // SSL_SESSION_should_be_single_use returns one if |session| should be // single-use (TLS 1.3 and later) and zero otherwise. // // If this function returns one, clients retain multiple sessions and use each // only once. This prevents passive observers from correlating connections with // tickets. See RFC 8446, appendix C.4. If it returns zero, |session| cannot be // used without leaking a correlator. OPENSSL_EXPORT int SSL_SESSION_should_be_single_use(const SSL_SESSION *session); // SSL_SESSION_is_resumable returns one if |session| is complete and contains a // session ID or ticket. It returns zero otherwise. Note this function does not // ensure |session| will be resumed. It may be expired, dropped by the server, // or associated with incompatible parameters. OPENSSL_EXPORT int SSL_SESSION_is_resumable(const SSL_SESSION *session); // SSL_SESSION_has_ticket returns one if |session| has a ticket and zero // otherwise. OPENSSL_EXPORT int SSL_SESSION_has_ticket(const SSL_SESSION *session); // SSL_SESSION_get0_ticket sets |*out_ticket| and |*out_len| to |session|'s // ticket, or NULL and zero if it does not have one. |out_ticket| may be NULL // if only the ticket length is needed. OPENSSL_EXPORT void SSL_SESSION_get0_ticket(const SSL_SESSION *session, const uint8_t **out_ticket, size_t *out_len); // SSL_SESSION_set_ticket sets |session|'s ticket to |ticket|. It returns one on // success and zero on error. This function may be useful in writing tests but // otherwise should not be used. OPENSSL_EXPORT int SSL_SESSION_set_ticket(SSL_SESSION *session, const uint8_t *ticket, size_t ticket_len); // SSL_SESSION_get_ticket_lifetime_hint returns ticket lifetime hint of // |session| in seconds or zero if none was set. OPENSSL_EXPORT uint32_t SSL_SESSION_get_ticket_lifetime_hint(const SSL_SESSION *session); // SSL_SESSION_get0_cipher returns the cipher negotiated by the connection which // established |session|. // // Note that, in TLS 1.3, there is no guarantee that resumptions with |session| // will use that cipher. Prefer calling |SSL_get_current_cipher| on the |SSL| // instead. OPENSSL_EXPORT const SSL_CIPHER *SSL_SESSION_get0_cipher( const SSL_SESSION *session); // SSL_SESSION_has_peer_sha256 returns one if |session| has a SHA-256 hash of // the peer's certificate retained and zero if the peer did not present a // certificate or if this was not enabled when |session| was created. See also // |SSL_CTX_set_retain_only_sha256_of_client_certs|. OPENSSL_EXPORT int SSL_SESSION_has_peer_sha256(const SSL_SESSION *session); // SSL_SESSION_get0_peer_sha256 sets |*out_ptr| and |*out_len| to the SHA-256 // hash of the peer certificate retained in |session|, or NULL and zero if it // does not have one. See also |SSL_CTX_set_retain_only_sha256_of_client_certs|. OPENSSL_EXPORT void SSL_SESSION_get0_peer_sha256(const SSL_SESSION *session, const uint8_t **out_ptr, size_t *out_len); // Session caching. // // Session caching allows connections to be established more efficiently based // on saved parameters from a previous connection, called a session (see // |SSL_SESSION|). The client offers a saved session, using an opaque identifier // from a previous connection. The server may accept the session, if it has the // parameters available. Otherwise, it will decline and continue with a full // handshake. // // This requires both the client and the server to retain session state. A // client does so with a stateful session cache. A server may do the same or, if // supported by both sides, statelessly using session tickets. For more // information on the latter, see the next section. // // For a server, the library implements a built-in internal session cache as an // in-memory hash table. Servers may also use |SSL_CTX_sess_set_get_cb| and // |SSL_CTX_sess_set_new_cb| to implement a custom external session cache. In // particular, this may be used to share a session cache between multiple // servers in a large deployment. An external cache may be used in addition to // or instead of the internal one. Use |SSL_CTX_set_session_cache_mode| to // toggle the internal cache. // // For a client, the only option is an external session cache. Clients may use // |SSL_CTX_sess_set_new_cb| to register a callback for when new sessions are // available. These may be cached and, in subsequent compatible connections, // configured with |SSL_set_session|. // // Note that offering or accepting a session short-circuits certificate // verification and most parameter negotiation. Resuming sessions across // different contexts may result in security failures and surprising // behavior. For a typical client, this means sessions for different hosts must // be cached under different keys. A client that connects to the same host with, // e.g., different cipher suite settings or client certificates should also use // separate session caches between those contexts. Servers should also partition // session caches between SNI hosts with |SSL_CTX_set_session_id_context|. // // Note also, in TLS 1.2 and earlier, offering sessions allows passive observers // to correlate different client connections. TLS 1.3 and later fix this, // provided clients use sessions at most once. Session caches are managed by the // caller in BoringSSL, so this must be implemented externally. See // |SSL_SESSION_should_be_single_use| for details. // SSL_SESS_CACHE_OFF disables all session caching. #define SSL_SESS_CACHE_OFF 0x0000 // SSL_SESS_CACHE_CLIENT enables session caching for a client. The internal // cache is never used on a client, so this only enables the callbacks. #define SSL_SESS_CACHE_CLIENT 0x0001 // SSL_SESS_CACHE_SERVER enables session caching for a server. #define SSL_SESS_CACHE_SERVER 0x0002 // SSL_SESS_CACHE_BOTH enables session caching for both client and server. #define SSL_SESS_CACHE_BOTH (SSL_SESS_CACHE_CLIENT | SSL_SESS_CACHE_SERVER) // SSL_SESS_CACHE_NO_AUTO_CLEAR disables automatically calling // |SSL_CTX_flush_sessions| every 255 connections. #define SSL_SESS_CACHE_NO_AUTO_CLEAR 0x0080 // SSL_SESS_CACHE_NO_INTERNAL_LOOKUP, on a server, disables looking up a session // from the internal session cache. #define SSL_SESS_CACHE_NO_INTERNAL_LOOKUP 0x0100 // SSL_SESS_CACHE_NO_INTERNAL_STORE, on a server, disables storing sessions in // the internal session cache. #define SSL_SESS_CACHE_NO_INTERNAL_STORE 0x0200 // SSL_SESS_CACHE_NO_INTERNAL, on a server, disables the internal session // cache. #define SSL_SESS_CACHE_NO_INTERNAL \ (SSL_SESS_CACHE_NO_INTERNAL_LOOKUP | SSL_SESS_CACHE_NO_INTERNAL_STORE) // SSL_CTX_set_session_cache_mode sets the session cache mode bits for |ctx| to // |mode|. It returns the previous value. OPENSSL_EXPORT int SSL_CTX_set_session_cache_mode(SSL_CTX *ctx, int mode); // SSL_CTX_get_session_cache_mode returns the session cache mode bits for // |ctx| OPENSSL_EXPORT int SSL_CTX_get_session_cache_mode(const SSL_CTX *ctx); // SSL_set_session, for a client, configures |ssl| to offer to resume |session| // in the initial handshake and returns one. The caller retains ownership of // |session|. Note that configuring a session assumes the authentication in the // session is valid. For callers that wish to revalidate the session before // offering, see |SSL_SESSION_get0_peer_certificates|, // |SSL_SESSION_get0_signed_cert_timestamp_list|, and // |SSL_SESSION_get0_ocsp_response|. // // It is an error to call this function after the handshake has begun. OPENSSL_EXPORT int SSL_set_session(SSL *ssl, SSL_SESSION *session); // SSL_DEFAULT_SESSION_TIMEOUT is the default lifetime, in seconds, of a // session in TLS 1.2 or earlier. This is how long we are willing to use the // secret to encrypt traffic without fresh key material. #define SSL_DEFAULT_SESSION_TIMEOUT (2 * 60 * 60) // SSL_DEFAULT_SESSION_PSK_DHE_TIMEOUT is the default lifetime, in seconds, of a // session for TLS 1.3 psk_dhe_ke. This is how long we are willing to use the // secret as an authenticator. #define SSL_DEFAULT_SESSION_PSK_DHE_TIMEOUT (2 * 24 * 60 * 60) // SSL_DEFAULT_SESSION_AUTH_TIMEOUT is the default non-renewable lifetime, in // seconds, of a TLS 1.3 session. This is how long we are willing to trust the // signature in the initial handshake. #define SSL_DEFAULT_SESSION_AUTH_TIMEOUT (7 * 24 * 60 * 60) // SSL_CTX_set_timeout sets the lifetime, in seconds, of TLS 1.2 (or earlier) // sessions created in |ctx| to |timeout|. OPENSSL_EXPORT uint32_t SSL_CTX_set_timeout(SSL_CTX *ctx, uint32_t timeout); // SSL_CTX_set_session_psk_dhe_timeout sets the lifetime, in seconds, of TLS 1.3 // sessions created in |ctx| to |timeout|. OPENSSL_EXPORT void SSL_CTX_set_session_psk_dhe_timeout(SSL_CTX *ctx, uint32_t timeout); // SSL_CTX_get_timeout returns the lifetime, in seconds, of TLS 1.2 (or earlier) // sessions created in |ctx|. OPENSSL_EXPORT uint32_t SSL_CTX_get_timeout(const SSL_CTX *ctx); // SSL_MAX_SID_CTX_LENGTH is the maximum length of a session ID context. #define SSL_MAX_SID_CTX_LENGTH 32 // SSL_CTX_set_session_id_context sets |ctx|'s session ID context to |sid_ctx|. // It returns one on success and zero on error. The session ID context is an // application-defined opaque byte string. A session will not be used in a // connection without a matching session ID context. // // For a server, if |SSL_VERIFY_PEER| is enabled, it is an error to not set a // session ID context. OPENSSL_EXPORT int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const uint8_t *sid_ctx, size_t sid_ctx_len); // SSL_set_session_id_context sets |ssl|'s session ID context to |sid_ctx|. It // returns one on success and zero on error. See also // |SSL_CTX_set_session_id_context|. OPENSSL_EXPORT int SSL_set_session_id_context(SSL *ssl, const uint8_t *sid_ctx, size_t sid_ctx_len); // SSL_get0_session_id_context returns a pointer to |ssl|'s session ID context // and sets |*out_len| to its length. It returns NULL on error. OPENSSL_EXPORT const uint8_t *SSL_get0_session_id_context(const SSL *ssl, size_t *out_len); // SSL_SESSION_CACHE_MAX_SIZE_DEFAULT is the default maximum size of a session // cache. #define SSL_SESSION_CACHE_MAX_SIZE_DEFAULT (1024 * 20) // SSL_CTX_sess_set_cache_size sets the maximum size of |ctx|'s internal session // cache to |size|. It returns the previous value. OPENSSL_EXPORT unsigned long SSL_CTX_sess_set_cache_size(SSL_CTX *ctx, unsigned long size); // SSL_CTX_sess_get_cache_size returns the maximum size of |ctx|'s internal // session cache. OPENSSL_EXPORT unsigned long SSL_CTX_sess_get_cache_size(const SSL_CTX *ctx); // SSL_CTX_sess_number returns the number of sessions in |ctx|'s internal // session cache. OPENSSL_EXPORT size_t SSL_CTX_sess_number(const SSL_CTX *ctx); // SSL_CTX_add_session inserts |session| into |ctx|'s internal session cache. It // returns one on success and zero on error or if |session| is already in the // cache. The caller retains its reference to |session|. OPENSSL_EXPORT int SSL_CTX_add_session(SSL_CTX *ctx, SSL_SESSION *session); // SSL_CTX_remove_session removes |session| from |ctx|'s internal session cache. // It returns one on success and zero if |session| was not in the cache. OPENSSL_EXPORT int SSL_CTX_remove_session(SSL_CTX *ctx, SSL_SESSION *session); // SSL_CTX_flush_sessions removes all sessions from |ctx| which have expired as // of time |time|. If |time| is zero, all sessions are removed. OPENSSL_EXPORT void SSL_CTX_flush_sessions(SSL_CTX *ctx, uint64_t time); // SSL_CTX_sess_set_new_cb sets the callback to be called when a new session is // established and ready to be cached. If the session cache is disabled (the // appropriate one of |SSL_SESS_CACHE_CLIENT| or |SSL_SESS_CACHE_SERVER| is // unset), the callback is not called. // // The callback is passed a reference to |session|. It returns one if it takes // ownership (and then calls |SSL_SESSION_free| when done) and zero otherwise. A // consumer which places |session| into an in-memory cache will likely return // one, with the cache calling |SSL_SESSION_free|. A consumer which serializes // |session| with |SSL_SESSION_to_bytes| may not need to retain |session| and // will likely return zero. Returning one is equivalent to calling // |SSL_SESSION_up_ref| and then returning zero. // // Note: For a client, the callback may be called on abbreviated handshakes if a // ticket is renewed. Further, it may not be called until some time after // |SSL_do_handshake| or |SSL_connect| completes if False Start is enabled. Thus // it's recommended to use this callback over calling |SSL_get_session| on // handshake completion. OPENSSL_EXPORT void SSL_CTX_sess_set_new_cb( SSL_CTX *ctx, int (*new_session_cb)(SSL *ssl, SSL_SESSION *session)); // SSL_CTX_sess_get_new_cb returns the callback set by // |SSL_CTX_sess_set_new_cb|. OPENSSL_EXPORT int (*SSL_CTX_sess_get_new_cb(SSL_CTX *ctx))( SSL *ssl, SSL_SESSION *session); // SSL_CTX_sess_set_remove_cb sets a callback which is called when a session is // removed from the internal session cache. // // TODO(davidben): What is the point of this callback? It seems useless since it // only fires on sessions in the internal cache. OPENSSL_EXPORT void SSL_CTX_sess_set_remove_cb( SSL_CTX *ctx, void (*remove_session_cb)(SSL_CTX *ctx, SSL_SESSION *session)); // SSL_CTX_sess_get_remove_cb returns the callback set by // |SSL_CTX_sess_set_remove_cb|. OPENSSL_EXPORT void (*SSL_CTX_sess_get_remove_cb(SSL_CTX *ctx))( SSL_CTX *ctx, SSL_SESSION *session); // SSL_CTX_sess_set_get_cb sets a callback to look up a session by ID for a // server. The callback is passed the session ID and should return a matching // |SSL_SESSION| or NULL if not found. It should set |*out_copy| to zero and // return a new reference to the session. This callback is not used for a // client. // // For historical reasons, if |*out_copy| is set to one (default), the SSL // library will take a new reference to the returned |SSL_SESSION|, expecting // the callback to return a non-owning pointer. This is not recommended. If // |ctx| and thus the callback is used on multiple threads, the session may be // removed and invalidated before the SSL library calls |SSL_SESSION_up_ref|, // whereas the callback may synchronize internally. // // To look up a session asynchronously, the callback may return // |SSL_magic_pending_session_ptr|. See the documentation for that function and // |SSL_ERROR_PENDING_SESSION|. // // If the internal session cache is enabled, the callback is only consulted if // the internal cache does not return a match. OPENSSL_EXPORT void SSL_CTX_sess_set_get_cb( SSL_CTX *ctx, SSL_SESSION *(*get_session_cb)(SSL *ssl, const uint8_t *id, int id_len, int *out_copy)); // SSL_CTX_sess_get_get_cb returns the callback set by // |SSL_CTX_sess_set_get_cb|. OPENSSL_EXPORT SSL_SESSION *(*SSL_CTX_sess_get_get_cb(SSL_CTX *ctx))( SSL *ssl, const uint8_t *id, int id_len, int *out_copy); // SSL_magic_pending_session_ptr returns a magic |SSL_SESSION|* which indicates // that the session isn't currently unavailable. |SSL_get_error| will then // return |SSL_ERROR_PENDING_SESSION| and the handshake can be retried later // when the lookup has completed. OPENSSL_EXPORT SSL_SESSION *SSL_magic_pending_session_ptr(void); // Session tickets. // // Session tickets, from RFC 5077, allow session resumption without server-side // state. The server maintains a secret ticket key and sends the client opaque // encrypted session parameters, called a ticket. When offering the session, the // client sends the ticket which the server decrypts to recover session state. // Session tickets are enabled by default but may be disabled with // |SSL_OP_NO_TICKET|. // // On the client, ticket-based sessions use the same APIs as ID-based tickets. // Callers do not need to handle them differently. // // On the server, tickets are encrypted and authenticated with a secret key. // By default, an |SSL_CTX| will manage session ticket encryption keys by // generating them internally and rotating every 48 hours. Tickets are minted // and processed transparently. The following functions may be used to configure // a persistent key or implement more custom behavior, including key rotation // and sharing keys between multiple servers in a large deployment. There are // three levels of customisation possible: // // 1) One can simply set the keys with |SSL_CTX_set_tlsext_ticket_keys|. // 2) One can configure an |EVP_CIPHER_CTX| and |HMAC_CTX| directly for // encryption and authentication. // 3) One can configure an |SSL_TICKET_AEAD_METHOD| to have more control // and the option of asynchronous decryption. // // An attacker that compromises a server's session ticket key can impersonate // the server and, prior to TLS 1.3, retroactively decrypt all application // traffic from sessions using that ticket key. Thus ticket keys must be // regularly rotated for forward secrecy. Note the default key is rotated // automatically once every 48 hours but manually configured keys are not. // SSL_DEFAULT_TICKET_KEY_ROTATION_INTERVAL is the interval with which the // default session ticket encryption key is rotated, if in use. If any // non-default ticket encryption mechanism is configured, automatic rotation is // disabled. #define SSL_DEFAULT_TICKET_KEY_ROTATION_INTERVAL (2 * 24 * 60 * 60) // SSL_CTX_get_tlsext_ticket_keys writes |ctx|'s session ticket key material to // |len| bytes of |out|. It returns one on success and zero if |len| is not // 48. If |out| is NULL, it returns 48 instead. OPENSSL_EXPORT int SSL_CTX_get_tlsext_ticket_keys(SSL_CTX *ctx, void *out, size_t len); // SSL_CTX_set_tlsext_ticket_keys sets |ctx|'s session ticket key material to // |len| bytes of |in|. It returns one on success and zero if |len| is not // 48. If |in| is NULL, it returns 48 instead. OPENSSL_EXPORT int SSL_CTX_set_tlsext_ticket_keys(SSL_CTX *ctx, const void *in, size_t len); // SSL_TICKET_KEY_NAME_LEN is the length of the key name prefix of a session // ticket. #define SSL_TICKET_KEY_NAME_LEN 16 // SSL_CTX_set_tlsext_ticket_key_cb sets the ticket callback to |callback| and // returns one. |callback| will be called when encrypting a new ticket and when // decrypting a ticket from the client. // // In both modes, |ctx| and |hmac_ctx| will already have been initialized with // |EVP_CIPHER_CTX_init| and |HMAC_CTX_init|, respectively. |callback| // configures |hmac_ctx| with an HMAC digest and key, and configures |ctx| // for encryption or decryption, based on the mode. // // When encrypting a new ticket, |encrypt| will be one. It writes a public // 16-byte key name to |key_name| and a fresh IV to |iv|. The output IV length // must match |EVP_CIPHER_CTX_iv_length| of the cipher selected. In this mode, // |callback| returns 1 on success and -1 on error. // // When decrypting a ticket, |encrypt| will be zero. |key_name| will point to a // 16-byte key name and |iv| points to an IV. The length of the IV consumed must // match |EVP_CIPHER_CTX_iv_length| of the cipher selected. In this mode, // |callback| returns -1 to abort the handshake, 0 if decrypting the ticket // failed, and 1 or 2 on success. If it returns 2, the ticket will be renewed. // This may be used to re-key the ticket. // // WARNING: |callback| wildly breaks the usual return value convention and is // called in two different modes. OPENSSL_EXPORT int SSL_CTX_set_tlsext_ticket_key_cb( SSL_CTX *ctx, int (*callback)(SSL *ssl, uint8_t *key_name, uint8_t *iv, EVP_CIPHER_CTX *ctx, HMAC_CTX *hmac_ctx, int encrypt)); // ssl_ticket_aead_result_t enumerates the possible results from decrypting a // ticket with an |SSL_TICKET_AEAD_METHOD|. enum ssl_ticket_aead_result_t BORINGSSL_ENUM_INT { // ssl_ticket_aead_success indicates that the ticket was successfully // decrypted. ssl_ticket_aead_success, // ssl_ticket_aead_retry indicates that the operation could not be // immediately completed and must be reattempted, via |open|, at a later // point. ssl_ticket_aead_retry, // ssl_ticket_aead_ignore_ticket indicates that the ticket should be ignored // (i.e. is corrupt or otherwise undecryptable). ssl_ticket_aead_ignore_ticket, // ssl_ticket_aead_error indicates that a fatal error occured and the // handshake should be terminated. ssl_ticket_aead_error, }; // ssl_ticket_aead_method_st (aka |SSL_TICKET_AEAD_METHOD|) contains methods // for encrypting and decrypting session tickets. struct ssl_ticket_aead_method_st { // max_overhead returns the maximum number of bytes of overhead that |seal| // may add. size_t (*max_overhead)(SSL *ssl); // seal encrypts and authenticates |in_len| bytes from |in|, writes, at most, // |max_out_len| bytes to |out|, and puts the number of bytes written in // |*out_len|. The |in| and |out| buffers may be equal but will not otherwise // alias. It returns one on success or zero on error. int (*seal)(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out_len, const uint8_t *in, size_t in_len); // open authenticates and decrypts |in_len| bytes from |in|, writes, at most, // |max_out_len| bytes of plaintext to |out|, and puts the number of bytes // written in |*out_len|. The |in| and |out| buffers may be equal but will // not otherwise alias. See |ssl_ticket_aead_result_t| for details of the // return values. In the case that a retry is indicated, the caller should // arrange for the high-level operation on |ssl| to be retried when the // operation is completed, which will result in another call to |open|. enum ssl_ticket_aead_result_t (*open)(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out_len, const uint8_t *in, size_t in_len); }; // SSL_CTX_set_ticket_aead_method configures a custom ticket AEAD method table // on |ctx|. |aead_method| must remain valid for the lifetime of |ctx|. OPENSSL_EXPORT void SSL_CTX_set_ticket_aead_method( SSL_CTX *ctx, const SSL_TICKET_AEAD_METHOD *aead_method); // SSL_process_tls13_new_session_ticket processes an unencrypted TLS 1.3 // NewSessionTicket message from |buf| and returns a resumable |SSL_SESSION|, // or NULL on error. The caller takes ownership of the returned session and // must call |SSL_SESSION_free| to free it. // // |buf| contains |buf_len| bytes that represents a complete NewSessionTicket // message including its header, i.e., one byte for the type (0x04) and three // bytes for the length. |buf| must contain only one such message. // // This function may be used to process NewSessionTicket messages in TLS 1.3 // clients that are handling the record layer externally. OPENSSL_EXPORT SSL_SESSION *SSL_process_tls13_new_session_ticket( SSL *ssl, const uint8_t *buf, size_t buf_len); // SSL_CTX_set_num_tickets configures |ctx| to send |num_tickets| immediately // after a successful TLS 1.3 handshake as a server. It returns one. Large // values of |num_tickets| will be capped within the library. // // By default, BoringSSL sends two tickets. OPENSSL_EXPORT int SSL_CTX_set_num_tickets(SSL_CTX *ctx, size_t num_tickets); // SSL_CTX_get_num_tickets returns the number of tickets |ctx| will send // immediately after a successful TLS 1.3 handshake as a server. OPENSSL_EXPORT size_t SSL_CTX_get_num_tickets(const SSL_CTX *ctx); // Diffie-Hellman groups and ephemeral key exchanges. // // Most TLS handshakes (ECDHE cipher suites in TLS 1.2, and all supported TLS // 1.3 modes) incorporate an ephemeral key exchange, most commonly using // Elliptic Curve Diffie-Hellman (ECDH), as described in RFC 8422. The key // exchange algorithm is negotiated separately from the cipher suite, using // NamedGroup values, which define Diffie-Hellman groups. // // Historically, these values were known as "curves", in reference to ECDH, and // some APIs refer to the original name. RFC 7919 renamed them to "groups" in // reference to Diffie-Hellman in general. These values are also used to select // experimental post-quantum KEMs. Though not Diffie-Hellman groups, KEMs can // fill a similar role in TLS, so they use the same codepoints. // // In TLS 1.2, the ECDH values also negotiate elliptic curves used in ECDSA. In // TLS 1.3 and later, ECDSA curves are part of the signature algorithm. See // |SSL_SIGN_*|. // SSL_CTX_set1_groups sets the preferred groups for |ctx| to be |groups|. Each // element of |groups| should be a |NID_*| constant from nid.h. It returns one // on success and zero on failure. // // Note that this API does not use the |SSL_GROUP_*| values defined below. OPENSSL_EXPORT int SSL_CTX_set1_groups(SSL_CTX *ctx, const int *groups, size_t num_groups); // SSL_set1_groups sets the preferred groups for |ssl| to be |groups|. Each // element of |groups| should be a |NID_*| constant from nid.h. It returns one // on success and zero on failure. // // Note that this API does not use the |SSL_GROUP_*| values defined below. OPENSSL_EXPORT int SSL_set1_groups(SSL *ssl, const int *groups, size_t num_groups); // SSL_CTX_set1_groups_list sets the preferred groups for |ctx| to be the // colon-separated list |groups|. Each element of |groups| should be a curve // name (e.g. P-256, X25519, ...). It returns one on success and zero on // failure. OPENSSL_EXPORT int SSL_CTX_set1_groups_list(SSL_CTX *ctx, const char *groups); // SSL_set1_groups_list sets the preferred groups for |ssl| to be the // colon-separated list |groups|. Each element of |groups| should be a curve // name (e.g. P-256, X25519, ...). It returns one on success and zero on // failure. OPENSSL_EXPORT int SSL_set1_groups_list(SSL *ssl, const char *groups); // SSL_GROUP_* define TLS group IDs. #define SSL_GROUP_SECP224R1 21 #define SSL_GROUP_SECP256R1 23 #define SSL_GROUP_SECP384R1 24 #define SSL_GROUP_SECP521R1 25 #define SSL_GROUP_X25519 29 // https://datatracker.ietf.org/doc/html/draft-kwiatkowski-tls-ecdhe-kyber #define SSL_GROUP_SECP256R1_KYBER768_DRAFT00 0x639A // https://datatracker.ietf.org/doc/html/draft-tls-westerbaan-xyber768d00 #define SSL_GROUP_X25519_KYBER768_DRAFT00 0x6399 // https://datatracker.ietf.org/doc/html/draft-kwiatkowski-tls-ecdhe-mlkem.html #define SSL_GROUP_SECP256R1_MLKEM768 0x11EB #define SSL_GROUP_X25519_MLKEM768 0x11EC // PQ and hybrid group IDs are not yet standardized. Current IDs are driven by // community consensus and are defined at // https://github.com/open-quantum-safe/oqs-provider/blob/main/oqs-template/oqs-kem-info.md #define SSL_GROUP_KYBER512_R3 0x023A #define SSL_GROUP_KYBER768_R3 0x023C #define SSL_GROUP_KYBER1024_R3 0x023D // https://datatracker.ietf.org/doc/html/draft-connolly-tls-mlkem-key-agreement.html #define SSL_GROUP_MLKEM768 0x0768 #define SSL_GROUP_MLKEM1024 0x1024 // SSL_get_group_id returns the ID of the group used by |ssl|'s most recently // completed handshake, or 0 if not applicable. OPENSSL_EXPORT uint16_t SSL_get_group_id(const SSL *ssl); // SSL_get_group_name returns a human-readable name for the group specified by // the given TLS group ID, or NULL if the group is unknown. OPENSSL_EXPORT const char *SSL_get_group_name(uint16_t group_id); // *** EXPERIMENTAL — DO NOT USE WITHOUT CHECKING *** // // |SSL_to_bytes| and |SSL_from_bytes| are developed to support SSL transfer // across processes after handshake finished. // // SSL transfer allows the TLS connection to be used in a different // process (or on a different machine). This only applies to servers. // 1. Before termination, the process 1 encodes the |SSL| by calling // |SSL_to_bytes|. // 2. Another process resumes the |SSL| by calling |SSL_from_bytes|. // // WARNING: The serialisation formats are not yet stable: version skew may be // fatal. // WARNING: The encoded data contains sensitive key material and must be // protected. // SSL_to_bytes serializes |in| into a newly allocated buffer and sets // |*out_data| to that buffer and |*out_len| to its length. The caller takes // ownership of the buffer and must call |OPENSSL_free| when done. It returns // one on success and zero on error. // // CAUTION: This function will serialize an established TLS 1.2/1.3 // connection, which includes sensitive security parameters established during // the connection handshake, and memory buffers that may contain // sensitive in-flight application data. It is the callers responsibility for // ensuring the confidentiality and data integrity of the serialized encoding. // Minimally a caller must encrypt the returned bytes using an AEAD cipher, such // as AES-128-GCM before persisting the bytes to storage. // // WARNING: Currently only works with TLS 1.2 or TLS 1.3 after handshake has // finished. // WARNING: Currently only supports |SSL| as server. // WARNING: CRYPTO_EX_DATA |ssl->ex_data| is not encoded. Remember set |ex_data| // back after decode. // WARNING: BIO |ssl->rbio| and |ssl->wbio| are not encoded. // WARNING: STACK_OF(SSL_CIPHER) |ssl->client_cipher_suites| is not encoded. // // Initial implementation of this API is made by Evgeny Potemkin. OPENSSL_EXPORT int SSL_to_bytes(const SSL *in, uint8_t **out_data, size_t *out_len); // SSL_from_bytes parses |in_len| bytes from |in| as an SSL. It // returns a newly-allocated |SSL| on success or NULL on error. // The |SSL| is marked with handshake finished. |in| and |in_len| should // come from |out_data| and |out_len| of |SSL_to_bytes|. In other words, // |SSL_from_bytes| should be called after |SSL_to_bytes|. // // CAUTION: This function deserializes an encoded TLS 1.2/1.3 established // connection so that the communication may continue on the previously // established channel. It is the callers responsibility for maintaining // confidentiality and integrity of serialized bytes between the time of // serialization and invoking this function. // See |SSL_to_bytes| for more details. // // WARNING: Do not decode the same bytes |in| for different connections. // Otherwise, the connections use the same key material. // WARNING: Remember set |ssl->rbio| and |ssl->wbio| before using |ssl|. // WARNING: Remember set callback functions and |ex_data| back if needed. // WARNING: STACK_OF(SSL_CIPHER) |ssl->client_cipher_suites| is not encoded and // will be repopulated on next handshake. // WARNING: To ensure behavior unchange, |ctx| setting should be the same. // // Initial implementation of this API is made by Evgeny Potemkin. OPENSSL_EXPORT SSL *SSL_from_bytes(const uint8_t *in, size_t in_len, SSL_CTX *ctx); // SSL_get_all_group_names outputs a list of possible strings // |SSL_get_group_name| may return in this version of BoringSSL. It writes at // most |max_out| entries to |out| and returns the total number it would have // written, if |max_out| had been large enough. |max_out| may be initially set // to zero to size the output. // // This function is only intended to help initialize tables in callers that want // possible strings pre-declared. This list would not be suitable to set a list // of supported features. It is in no particular order, and may contain // placeholder, experimental, or deprecated values that do not apply to every // caller. Future versions of BoringSSL may also return strings not in this // list, so this does not apply if, say, sending strings across services. OPENSSL_EXPORT size_t SSL_get_all_group_names(const char **out, size_t max_out); // Certificate verification. // // SSL may authenticate either endpoint with an X.509 certificate. Typically // this is used to authenticate the server to the client. These functions // configure certificate verification. // // WARNING: By default, certificate verification errors on a client are not // fatal. See |SSL_VERIFY_NONE| This may be configured with // |SSL_CTX_set_verify|. // // By default clients are anonymous but a server may request a certificate from // the client by setting |SSL_VERIFY_PEER|. // // Many of these functions use OpenSSL's legacy X.509 stack which is // underdocumented and deprecated, but the replacement isn't ready yet. For // now, consumers may use the existing stack or bypass it by performing // certificate verification externally. This may be done with // |SSL_CTX_set_cert_verify_callback| or by extracting the chain with // |SSL_get_peer_cert_chain| after the handshake. In the future, functions will // be added to use the SSL stack without dependency on any part of the legacy // X.509 and ASN.1 stack. // // To augment certificate verification, a client may also enable OCSP stapling // (RFC 6066) and Certificate Transparency (RFC 6962) extensions. // SSL_VERIFY_NONE, on a client, verifies the server certificate but does not // make errors fatal. The result may be checked with |SSL_get_verify_result|. On // a server it does not request a client certificate. This is the default. #define SSL_VERIFY_NONE 0x00 // SSL_VERIFY_PEER, on a client, makes server certificate errors fatal. On a // server it requests a client certificate and makes errors fatal. However, // anonymous clients are still allowed. See // |SSL_VERIFY_FAIL_IF_NO_PEER_CERT|. #define SSL_VERIFY_PEER 0x01 // SSL_VERIFY_FAIL_IF_NO_PEER_CERT configures a server to reject connections if // the client declines to send a certificate. This flag must be used together // with |SSL_VERIFY_PEER|, otherwise it won't work. #define SSL_VERIFY_FAIL_IF_NO_PEER_CERT 0x02 // SSL_VERIFY_PEER_IF_NO_OBC configures a server to request a client certificate // if and only if Channel ID is not negotiated. #define SSL_VERIFY_PEER_IF_NO_OBC 0x04 // SSL_CTX_set_verify configures certificate verification behavior. |mode| is // one of the |SSL_VERIFY_*| values defined above. |callback| should be NULL. // // If |callback| is non-NULL, it is called as in |X509_STORE_CTX_set_verify_cb|, // which is a deprecated and fragile mechanism to run the default certificate // verification process, but suppress individual errors in it. See // |X509_STORE_CTX_set_verify_cb| for details, If set, the callback may use // |SSL_get_ex_data_X509_STORE_CTX_idx| with |X509_STORE_CTX_get_ex_data| to // look up the |SSL| from |store_ctx|. // // WARNING: |callback| is not suitable for implementing custom certificate // check, accepting all certificates, or extracting the certificate after // verification. It does not replace the default process and is called multiple // times throughout that process. It is also very difficult to implement this // callback safely, without inadvertently relying on implementation details or // making incorrect assumptions about when the callback is called. // // Instead, use |SSL_CTX_set_custom_verify| or // |SSL_CTX_set_cert_verify_callback| to customize certificate verification. // Those callbacks can inspect the peer-sent chain, call |X509_verify_cert| and // inspect the result, or perform other operations more straightforwardly. OPENSSL_EXPORT void SSL_CTX_set_verify( SSL_CTX *ctx, int mode, int (*callback)(int ok, X509_STORE_CTX *store_ctx)); // SSL_set_verify configures certificate verification behavior. |mode| is one of // the |SSL_VERIFY_*| values defined above. |callback| should be NULL. // // If |callback| is non-NULL, it is called as in |X509_STORE_CTX_set_verify_cb|, // which is a deprecated and fragile mechanism to run the default certificate // verification process, but suppress individual errors in it. See // |X509_STORE_CTX_set_verify_cb| for details, If set, the callback may use // |SSL_get_ex_data_X509_STORE_CTX_idx| with |X509_STORE_CTX_get_ex_data| to // look up the |SSL| from |store_ctx|. // // WARNING: |callback| is not suitable for implementing custom certificate // check, accepting all certificates, or extracting the certificate after // verification. It does not replace the default process and is called multiple // times throughout that process. It is also very difficult to implement this // callback safely, without inadvertently relying on implementation details or // making incorrect assumptions about when the callback is called. // // Instead, use |SSL_set_custom_verify| or |SSL_set_cert_verify_callback| to // customize certificate verification. Those callbacks can inspect the peer-sent // chain, call |X509_verify_cert| and inspect the result, or perform other // operations more straightforwardly. OPENSSL_EXPORT void SSL_set_verify(SSL *ssl, int mode, int (*callback)(int ok, X509_STORE_CTX *store_ctx)); enum ssl_verify_result_t BORINGSSL_ENUM_INT { ssl_verify_ok, ssl_verify_invalid, ssl_verify_retry, }; // SSL_CTX_set_custom_verify configures certificate verification. |mode| is one // of the |SSL_VERIFY_*| values defined above. |callback| performs the // certificate verification. // // The callback may call |SSL_get0_peer_certificates| for the certificate chain // to validate. The callback should return |ssl_verify_ok| if the certificate is // valid. If the certificate is invalid, the callback should return // |ssl_verify_invalid| and optionally set |*out_alert| to an alert to send to // the peer. Some useful alerts include |SSL_AD_CERTIFICATE_EXPIRED|, // |SSL_AD_CERTIFICATE_REVOKED|, |SSL_AD_UNKNOWN_CA|, |SSL_AD_BAD_CERTIFICATE|, // |SSL_AD_CERTIFICATE_UNKNOWN|, and |SSL_AD_INTERNAL_ERROR|. See RFC 5246 // section 7.2.2 for their precise meanings. If unspecified, // |SSL_AD_CERTIFICATE_UNKNOWN| will be sent by default. // // To verify a certificate asynchronously, the callback may return // |ssl_verify_retry|. The handshake will then pause with |SSL_get_error| // returning |SSL_ERROR_WANT_CERTIFICATE_VERIFY|. OPENSSL_EXPORT void SSL_CTX_set_custom_verify( SSL_CTX *ctx, int mode, enum ssl_verify_result_t (*callback)(SSL *ssl, uint8_t *out_alert)); // SSL_set_custom_verify behaves like |SSL_CTX_set_custom_verify| but configures // an individual |SSL|. OPENSSL_EXPORT void SSL_set_custom_verify( SSL *ssl, int mode, enum ssl_verify_result_t (*callback)(SSL *ssl, uint8_t *out_alert)); // SSL_CTX_get_verify_mode returns |ctx|'s verify mode, set by // |SSL_CTX_set_verify|. OPENSSL_EXPORT int SSL_CTX_get_verify_mode(const SSL_CTX *ctx); // SSL_get_verify_mode returns |ssl|'s verify mode, set by |SSL_CTX_set_verify| // or |SSL_set_verify|. It returns -1 on error. OPENSSL_EXPORT int SSL_get_verify_mode(const SSL *ssl); // SSL_CTX_get_verify_callback returns the callback set by // |SSL_CTX_set_verify|. OPENSSL_EXPORT int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx))( int ok, X509_STORE_CTX *store_ctx); // SSL_get_verify_callback returns the callback set by |SSL_CTX_set_verify| or // |SSL_set_verify|. OPENSSL_EXPORT int (*SSL_get_verify_callback(const SSL *ssl))( int ok, X509_STORE_CTX *store_ctx); // SSL_set1_host sets a DNS name that will be required to be present in the // verified leaf certificate. It returns one on success and zero on error. // // Note: unless _some_ name checking is performed, certificate validation is // ineffective. Simply checking that a host has some certificate from a CA is // rarely meaningful—you have to check that the CA believed that the host was // who you expect to be talking to. // // By default, both subject alternative names and the subject's common name // attribute are checked. The latter has long been deprecated, so callers should // call |SSL_set_hostflags| with |X509_CHECK_FLAG_NEVER_CHECK_SUBJECT| to use // the standard behavior. https://crbug.com/boringssl/464 tracks fixing the // default. OPENSSL_EXPORT int SSL_set1_host(SSL *ssl, const char *hostname); // SSL_set_hostflags calls |X509_VERIFY_PARAM_set_hostflags| on the // |X509_VERIFY_PARAM| associated with this |SSL*|. |flags| should be some // combination of the |X509_CHECK_*| constants. // // |X509_V_FLAG_X509_STRICT| is always ON by default and // |X509_V_FLAG_ALLOW_PROXY_CERTS| is always OFF. Both are non-configurable. // See |x509.h| for more details. OPENSSL_EXPORT void SSL_set_hostflags(SSL *ssl, unsigned flags); // SSL_CTX_set_verify_depth sets the maximum depth of a certificate chain // accepted in verification. This count excludes both the target certificate and // the trust anchor (root certificate). OPENSSL_EXPORT void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth); // SSL_set_verify_depth sets the maximum depth of a certificate chain accepted // in verification. This count excludes both the target certificate and the // trust anchor (root certificate). OPENSSL_EXPORT void SSL_set_verify_depth(SSL *ssl, int depth); // SSL_CTX_get_verify_depth returns the maximum depth of a certificate accepted // in verification. OPENSSL_EXPORT int SSL_CTX_get_verify_depth(const SSL_CTX *ctx); // SSL_get_verify_depth returns the maximum depth of a certificate accepted in // verification. OPENSSL_EXPORT int SSL_get_verify_depth(const SSL *ssl); // SSL_CTX_set1_param sets verification parameters from |param|. It returns one // on success and zero on failure. The caller retains ownership of |param|. OPENSSL_EXPORT int SSL_CTX_set1_param(SSL_CTX *ctx, const X509_VERIFY_PARAM *param); // SSL_set1_param sets verification parameters from |param|. It returns one on // success and zero on failure. The caller retains ownership of |param|. OPENSSL_EXPORT int SSL_set1_param(SSL *ssl, const X509_VERIFY_PARAM *param); // SSL_CTX_get0_param returns |ctx|'s |X509_VERIFY_PARAM| for certificate // verification. The caller must not release the returned pointer but may call // functions on it to configure it. OPENSSL_EXPORT X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx); // SSL_get0_param returns |ssl|'s |X509_VERIFY_PARAM| for certificate // verification. The caller must not release the returned pointer but may call // functions on it to configure it. OPENSSL_EXPORT X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl); // SSL_CTX_set_purpose sets |ctx|'s |X509_VERIFY_PARAM|'s 'purpose' parameter to // |purpose|. It returns one on success and zero on error. OPENSSL_EXPORT int SSL_CTX_set_purpose(SSL_CTX *ctx, int purpose); // SSL_set_purpose sets |ssl|'s |X509_VERIFY_PARAM|'s 'purpose' parameter to // |purpose|. It returns one on success and zero on error. OPENSSL_EXPORT int SSL_set_purpose(SSL *ssl, int purpose); // SSL_CTX_set_trust sets |ctx|'s |X509_VERIFY_PARAM|'s 'trust' parameter to // |trust|. It returns one on success and zero on error. OPENSSL_EXPORT int SSL_CTX_set_trust(SSL_CTX *ctx, int trust); // SSL_set_trust sets |ssl|'s |X509_VERIFY_PARAM|'s 'trust' parameter to // |trust|. It returns one on success and zero on error. OPENSSL_EXPORT int SSL_set_trust(SSL *ssl, int trust); // SSL_CTX_set_cert_store sets |ctx|'s certificate store to |store|. It takes // ownership of |store|. The store is used for certificate verification. // // The store is also used for the auto-chaining feature, but this is deprecated. // See also |SSL_MODE_NO_AUTO_CHAIN|. OPENSSL_EXPORT void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store); // SSL_CTX_set1_cert_store is like |SSL_CTX_set_cert_store|, but does not take // additional ownership of |store|. OPENSSL_EXPORT void SSL_CTX_set1_cert_store(SSL_CTX *ctx, X509_STORE *store); // SSL_CTX_get_cert_store returns |ctx|'s certificate store. OPENSSL_EXPORT X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx); // SSL_CTX_set_default_verify_paths loads the OpenSSL system-default trust // anchors into |ctx|'s store. It returns one on success and zero on failure. OPENSSL_EXPORT int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx); // SSL_CTX_load_verify_locations loads trust anchors into |ctx|'s store from // |ca_file| and |ca_dir|, either of which may be NULL. If |ca_file| is passed, // it is opened and PEM-encoded CA certificates are read. If |ca_dir| is passed, // it is treated as a directory in OpenSSL's hashed directory format. It returns // one on success and zero on failure. // // See // https://www.openssl.org/docs/man1.1.0/man3/SSL_CTX_load_verify_locations.html // for documentation on the directory format. OPENSSL_EXPORT int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *ca_file, const char *ca_dir); // SSL_get_verify_result returns the result of certificate verification. It is // either |X509_V_OK| or a |X509_V_ERR_*| value. OPENSSL_EXPORT long SSL_get_verify_result(const SSL *ssl); // SSL_alert_from_verify_result returns the SSL alert code, such as // |SSL_AD_CERTIFICATE_EXPIRED|, that corresponds to an |X509_V_ERR_*| value. // The return value is always an alert, even when |result| is |X509_V_OK|. OPENSSL_EXPORT int SSL_alert_from_verify_result(long result); // SSL_get_ex_data_X509_STORE_CTX_idx returns the ex_data index used to look up // the |SSL| associated with an |X509_STORE_CTX| in the verify callback. OPENSSL_EXPORT int SSL_get_ex_data_X509_STORE_CTX_idx(void); // SSL_CTX_set_cert_verify_callback sets a custom callback to be called on // certificate verification rather than |X509_verify_cert|. |store_ctx| contains // the verification parameters. The callback should return one on success and // zero on fatal error. It may use |X509_STORE_CTX_set_error| to set a // verification result. // // The callback may use |SSL_get_ex_data_X509_STORE_CTX_idx| to recover the // |SSL| object from |store_ctx|. OPENSSL_EXPORT void SSL_CTX_set_cert_verify_callback( SSL_CTX *ctx, int (*callback)(X509_STORE_CTX *store_ctx, void *arg), void *arg); // SSL_enable_signed_cert_timestamps causes |ssl| (which must be the client end // of a connection) to request SCTs from the server. See // https://tools.ietf.org/html/rfc6962. // // Call |SSL_get0_signed_cert_timestamp_list| to recover the SCT after the // handshake. OPENSSL_EXPORT void SSL_enable_signed_cert_timestamps(SSL *ssl); // SSL_CTX_enable_signed_cert_timestamps enables SCT requests on all client SSL // objects created from |ctx|. // // Call |SSL_get0_signed_cert_timestamp_list| to recover the SCT after the // handshake. OPENSSL_EXPORT void SSL_CTX_enable_signed_cert_timestamps(SSL_CTX *ctx); // SSL_enable_ocsp_stapling causes |ssl| (which must be the client end of a // connection) to request a stapled OCSP response from the server. // // Call |SSL_get0_ocsp_response| to recover the OCSP response after the // handshake. OPENSSL_EXPORT void SSL_enable_ocsp_stapling(SSL *ssl); // SSL_CTX_enable_ocsp_stapling enables OCSP stapling on all client SSL objects // created from |ctx|. // // Call |SSL_get0_ocsp_response| to recover the OCSP response after the // handshake. OPENSSL_EXPORT void SSL_CTX_enable_ocsp_stapling(SSL_CTX *ctx); // SSL_CTX_set0_verify_cert_store sets an |X509_STORE| that will be used // exclusively for certificate verification and returns one. Ownership of // |store| is transferred to the |SSL_CTX|. OPENSSL_EXPORT int SSL_CTX_set0_verify_cert_store(SSL_CTX *ctx, X509_STORE *store); // SSL_CTX_set1_verify_cert_store sets an |X509_STORE| that will be used // exclusively for certificate verification and returns one. An additional // reference to |store| will be taken. OPENSSL_EXPORT int SSL_CTX_set1_verify_cert_store(SSL_CTX *ctx, X509_STORE *store); // SSL_set0_verify_cert_store sets an |X509_STORE| that will be used // exclusively for certificate verification and returns one. Ownership of // |store| is transferred to the |SSL|. OPENSSL_EXPORT int SSL_set0_verify_cert_store(SSL *ssl, X509_STORE *store); // SSL_set1_verify_cert_store sets an |X509_STORE| that will be used // exclusively for certificate verification and returns one. An additional // reference to |store| will be taken. OPENSSL_EXPORT int SSL_set1_verify_cert_store(SSL *ssl, X509_STORE *store); // SSL_CTX_set_verify_algorithm_prefs configures |ctx| to use |prefs| as the // preference list when verifying signatures from the peer's long-term key. It // returns one on zero on error. |prefs| should not include the internal-only // value |SSL_SIGN_RSA_PKCS1_MD5_SHA1|. OPENSSL_EXPORT int SSL_CTX_set_verify_algorithm_prefs(SSL_CTX *ctx, const uint16_t *prefs, size_t num_prefs); // SSL_set_verify_algorithm_prefs configures |ssl| to use |prefs| as the // preference list when verifying signatures from the peer's long-term key. It // returns one on zero on error. |prefs| should not include the internal-only // value |SSL_SIGN_RSA_PKCS1_MD5_SHA1|. OPENSSL_EXPORT int SSL_set_verify_algorithm_prefs(SSL *ssl, const uint16_t *prefs, size_t num_prefs); // Client certificate CA list. // // When requesting a client certificate, a server may advertise a list of // certificate authorities which are accepted. These functions may be used to // configure this list. // SSL_set_client_CA_list sets |ssl|'s client certificate CA list to // |name_list|. It takes ownership of and frees |name_list|. OPENSSL_EXPORT void SSL_set_client_CA_list(SSL *ssl, STACK_OF(X509_NAME) *name_list); // SSL_CTX_set_client_CA_list sets |ctx|'s client certificate CA list to // |name_list|. It takes ownership of and frees |name_list|. OPENSSL_EXPORT void SSL_CTX_set_client_CA_list(SSL_CTX *ctx, STACK_OF(X509_NAME) *name_list); // SSL_set0_client_CAs sets |ssl|'s client certificate CA list to |name_list|, // which should contain DER-encoded distinguished names (RFC 5280). It takes // ownership of |name_list|. OPENSSL_EXPORT void SSL_set0_client_CAs(SSL *ssl, STACK_OF(CRYPTO_BUFFER) *name_list); // SSL_CTX_set0_client_CAs sets |ctx|'s client certificate CA list to // |name_list|, which should contain DER-encoded distinguished names (RFC 5280). // It takes ownership of |name_list|. OPENSSL_EXPORT void SSL_CTX_set0_client_CAs(SSL_CTX *ctx, STACK_OF(CRYPTO_BUFFER) *name_list); // SSL_get_client_CA_list returns |ssl|'s client certificate CA list. If |ssl| // has not been configured as a client, this is the list configured by // |SSL_CTX_set_client_CA_list|. // // If configured as a client, it returns the client certificate CA list sent by // the server. In this mode, the behavior is undefined except during the // callbacks set by |SSL_CTX_set_cert_cb| and |SSL_CTX_set_client_cert_cb| or // when the handshake is paused because of them. OPENSSL_EXPORT STACK_OF(X509_NAME) *SSL_get_client_CA_list(const SSL *ssl); // SSL_get0_server_requested_CAs returns the CAs sent by a server to guide a // client in certificate selection. They are a series of DER-encoded X.509 // names. This function may only be called during a callback set by // |SSL_CTX_set_cert_cb| or when the handshake is paused because of it. // // The returned stack is owned by |ssl|, as are its contents. It should not be // used past the point where the handshake is restarted after the callback. OPENSSL_EXPORT const STACK_OF(CRYPTO_BUFFER) *SSL_get0_server_requested_CAs( const SSL *ssl); // SSL_CTX_get_client_CA_list returns |ctx|'s client certificate CA list. OPENSSL_EXPORT STACK_OF(X509_NAME) *SSL_CTX_get_client_CA_list( const SSL_CTX *ctx); // SSL_add_client_CA appends |x509|'s subject to the client certificate CA list. // It returns one on success or zero on error. The caller retains ownership of // |x509|. OPENSSL_EXPORT int SSL_add_client_CA(SSL *ssl, X509 *x509); // SSL_CTX_add_client_CA appends |x509|'s subject to the client certificate CA // list. It returns one on success or zero on error. The caller retains // ownership of |x509|. OPENSSL_EXPORT int SSL_CTX_add_client_CA(SSL_CTX *ctx, X509 *x509); // SSL_load_client_CA_file opens |file| and reads PEM-encoded certificates from // it. It returns a newly-allocated stack of the certificate subjects or NULL // on error. Duplicates in |file| are ignored. OPENSSL_EXPORT STACK_OF(X509_NAME) *SSL_load_client_CA_file(const char *file); // SSL_dup_CA_list makes a deep copy of |list|. It returns the new list on // success or NULL on allocation error. OPENSSL_EXPORT STACK_OF(X509_NAME) *SSL_dup_CA_list(STACK_OF(X509_NAME) *list); // SSL_add_file_cert_subjects_to_stack behaves like |SSL_load_client_CA_file| // but appends the result to |out|. It returns one on success or zero on // error. OPENSSL_EXPORT int SSL_add_file_cert_subjects_to_stack(STACK_OF(X509_NAME) *out, const char *file); // SSL_add_bio_cert_subjects_to_stack behaves like // |SSL_add_file_cert_subjects_to_stack| but reads from |bio|. OPENSSL_EXPORT int SSL_add_bio_cert_subjects_to_stack(STACK_OF(X509_NAME) *out, BIO *bio); // Server name indication. // // The server_name extension (RFC 3546) allows the client to advertise the name // of the server it is connecting to. This is used in virtual hosting // deployments to select one of a several certificates on a single IP. Only the // host_name name type is supported. #define TLSEXT_NAMETYPE_host_name 0 // SSL_set_tlsext_host_name, for a client, configures |ssl| to advertise |name| // in the server_name extension. It returns one on success and zero on error. OPENSSL_EXPORT int SSL_set_tlsext_host_name(SSL *ssl, const char *name); // SSL_get_servername, for a server, returns the hostname supplied by the // client or NULL if there was none. The |type| argument must be // |TLSEXT_NAMETYPE_host_name|. OPENSSL_EXPORT const char *SSL_get_servername(const SSL *ssl, const int type); // SSL_get_servername_type, for a server, returns |TLSEXT_NAMETYPE_host_name| // if the client sent a hostname and -1 otherwise. OPENSSL_EXPORT int SSL_get_servername_type(const SSL *ssl); // SSL_CTX_set_tlsext_servername_callback configures |callback| to be called on // the server after ClientHello extensions have been parsed and returns one. // The callback may use |SSL_get_servername| to examine the server_name // extension and returns a |SSL_TLSEXT_ERR_*| value. The value of |arg| may be // set by calling |SSL_CTX_set_tlsext_servername_arg|. // // If the callback returns |SSL_TLSEXT_ERR_NOACK|, the server_name extension is // not acknowledged in the ServerHello. If the return value is // |SSL_TLSEXT_ERR_ALERT_FATAL|, then |*out_alert| is the alert to send, // defaulting to |SSL_AD_UNRECOGNIZED_NAME|. |SSL_TLSEXT_ERR_ALERT_WARNING| is // ignored and treated as |SSL_TLSEXT_ERR_OK|. OPENSSL_EXPORT int SSL_CTX_set_tlsext_servername_callback( SSL_CTX *ctx, int (*callback)(SSL *ssl, int *out_alert, void *arg)); // SSL_CTX_set_tlsext_servername_arg sets the argument to the servername // callback and returns one. See |SSL_CTX_set_tlsext_servername_callback|. OPENSSL_EXPORT int SSL_CTX_set_tlsext_servername_arg(SSL_CTX *ctx, void *arg); // SSL_TLSEXT_ERR_* are values returned by some extension-related callbacks. #define SSL_TLSEXT_ERR_OK 0 #define SSL_TLSEXT_ERR_ALERT_WARNING 1 #define SSL_TLSEXT_ERR_ALERT_FATAL 2 #define SSL_TLSEXT_ERR_NOACK 3 // SSL_set_SSL_CTX changes |ssl|'s |SSL_CTX|. |ssl| will use the // certificate-related settings from |ctx|, and |SSL_get_SSL_CTX| will report // |ctx|. This function may be used during the callbacks registered by // |SSL_CTX_set_select_certificate_cb|, // |SSL_CTX_set_tlsext_servername_callback|, and |SSL_CTX_set_cert_cb| or when // the handshake is paused from them. It is typically used to switch // certificates based on SNI. // // Note the session cache and related settings will continue to use the initial // |SSL_CTX|. Callers should use |SSL_CTX_set_session_id_context| to partition // the session cache between different domains. // // TODO(davidben): Should other settings change after this call? OPENSSL_EXPORT SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx); // Application-layer protocol negotiation. // // The ALPN extension (RFC 7301) allows negotiating different application-layer // protocols over a single port. This is used, for example, to negotiate // HTTP/2. // SSL_CTX_set_alpn_protos sets the client ALPN protocol list on |ctx| to // |protos|. |protos| must be in wire-format (i.e. a series of non-empty, 8-bit // length-prefixed strings), or the empty string to disable ALPN. It returns // zero on success and one on failure. Configuring a non-empty string enables // ALPN on a client. // // WARNING: this function is dangerous because it breaks the usual return value // convention. OPENSSL_EXPORT int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const uint8_t *protos, size_t protos_len); // SSL_set_alpn_protos sets the client ALPN protocol list on |ssl| to |protos|. // |protos| must be in wire-format (i.e. a series of non-empty, 8-bit // length-prefixed strings), or the empty string to disable ALPN. It returns // zero on success and one on failure. Configuring a non-empty string enables // ALPN on a client. // // WARNING: this function is dangerous because it breaks the usual return value // convention. OPENSSL_EXPORT int SSL_set_alpn_protos(SSL *ssl, const uint8_t *protos, size_t protos_len); // SSL_CTX_set_alpn_select_cb sets a callback function on |ctx| that is called // during ClientHello processing in order to select an ALPN protocol from the // client's list of offered protocols. |SSL_select_next_proto| is an optional // utility function which may be useful in implementing this callback. // // The callback is passed a wire-format (i.e. a series of non-empty, 8-bit // length-prefixed strings) ALPN protocol list in |in|. To select a protocol, // the callback should set |*out| and |*out_len| to the selected protocol and // return |SSL_TLSEXT_ERR_OK| on success. It does not pass ownership of the // buffer, so |*out| should point to a static string, a buffer that outlives the // callback call, or the corresponding entry in |in|. // // If the server supports ALPN, but there are no protocols in common, the // callback should return |SSL_TLSEXT_ERR_ALERT_FATAL| to abort the connection // with a no_application_protocol alert. // // If the server does not support ALPN, it can return |SSL_TLSEXT_ERR_NOACK| to // continue the handshake without negotiating a protocol. This may be useful if // multiple server configurations share an |SSL_CTX|, only some of which have // ALPN protocols configured. // // |SSL_TLSEXT_ERR_ALERT_WARNING| is ignored and will be treated as // |SSL_TLSEXT_ERR_NOACK|. // // The callback will only be called if the client supports ALPN. Callers that // wish to require ALPN for all clients must check |SSL_get0_alpn_selected| // after the handshake. In QUIC connections, this is done automatically. // // The cipher suite is selected before negotiating ALPN. The callback may use // |SSL_get_pending_cipher| to query the cipher suite. This may be used to // implement HTTP/2's cipher suite constraints. OPENSSL_EXPORT void SSL_CTX_set_alpn_select_cb( SSL_CTX *ctx, int (*cb)(SSL *ssl, const uint8_t **out, uint8_t *out_len, const uint8_t *in, unsigned in_len, void *arg), void *arg); // SSL_get0_alpn_selected gets the selected ALPN protocol (if any) from |ssl|. // On return it sets |*out_data| to point to |*out_len| bytes of protocol name // (not including the leading length-prefix byte). If the server didn't respond // with a negotiated protocol then |*out_len| will be zero. OPENSSL_EXPORT void SSL_get0_alpn_selected(const SSL *ssl, const uint8_t **out_data, unsigned *out_len); // SSL_CTX_set_allow_unknown_alpn_protos configures client connections on |ctx| // to allow unknown ALPN protocols from the server. Otherwise, by default, the // client will require that the protocol be advertised in // |SSL_CTX_set_alpn_protos|. OPENSSL_EXPORT void SSL_CTX_set_allow_unknown_alpn_protos(SSL_CTX *ctx, int enabled); // Application-layer protocol settings // // The ALPS extension (draft-vvv-tls-alps) allows exchanging application-layer // settings in the TLS handshake for applications negotiated with ALPN. Note // that, when ALPS is negotiated, the client and server each advertise their own // settings, so there are functions to both configure setting to send and query // received settings. // SSL_add_application_settings configures |ssl| to enable ALPS with ALPN // protocol |proto|, sending an ALPS value of |settings|. It returns one on // success and zero on error. If |proto| is negotiated via ALPN and the peer // supports ALPS, |settings| will be sent to the peer. The peer's ALPS value can // be retrieved with |SSL_get0_peer_application_settings|. // // On the client, this function should be called before the handshake, once for // each supported ALPN protocol which uses ALPS. |proto| must be included in the // client's ALPN configuration (see |SSL_CTX_set_alpn_protos| and // |SSL_set_alpn_protos|). On the server, ALPS can be preconfigured for each // protocol as in the client, or configuration can be deferred to the ALPN // callback (see |SSL_CTX_set_alpn_select_cb|), in which case only the selected // protocol needs to be configured. // // ALPS can be independently configured from 0-RTT, however changes in protocol // settings will fallback to 1-RTT to negotiate the new value, so it is // recommended for |settings| to be relatively stable. OPENSSL_EXPORT int SSL_add_application_settings(SSL *ssl, const uint8_t *proto, size_t proto_len, const uint8_t *settings, size_t settings_len); // SSL_get0_peer_application_settings sets |*out_data| and |*out_len| to a // buffer containing the peer's ALPS value, or the empty string if ALPS was not // negotiated. Note an empty string could also indicate the peer sent an empty // settings value. Use |SSL_has_application_settings| to check if ALPS was // negotiated. The output buffer is owned by |ssl| and is valid until the next // time |ssl| is modified. OPENSSL_EXPORT void SSL_get0_peer_application_settings(const SSL *ssl, const uint8_t **out_data, size_t *out_len); // SSL_has_application_settings returns one if ALPS was negotiated on this // connection and zero otherwise. OPENSSL_EXPORT int SSL_has_application_settings(const SSL *ssl); // SSL_set_alps_use_new_codepoint configures whether to use the new ALPS // codepoint. By default, the old codepoint is used. OPENSSL_EXPORT void SSL_set_alps_use_new_codepoint(SSL *ssl, int use_new); // Certificate compression. // // Certificates in TLS 1.3 can be compressed (RFC 8879). BoringSSL supports this // as both a client and a server, but does not link against any specific // compression libraries in order to keep dependencies to a minimum. Instead, // hooks for compression and decompression can be installed in an |SSL_CTX| to // enable support. // ssl_cert_compression_func_t is a pointer to a function that performs // compression. It must write the compressed representation of |in| to |out|, // returning one on success and zero on error. The results of compressing // certificates are not cached internally. Implementations may wish to implement // their own cache if they expect it to be useful given the certificates that // they serve. typedef int (*ssl_cert_compression_func_t)(SSL *ssl, CBB *out, const uint8_t *in, size_t in_len); // ssl_cert_decompression_func_t is a pointer to a function that performs // decompression. The compressed data from the peer is passed as |in| and the // decompressed result must be exactly |uncompressed_len| bytes long. It returns // one on success, in which case |*out| must be set to the result of // decompressing |in|, or zero on error. Setting |*out| transfers ownership, // i.e. |CRYPTO_BUFFER_free| will be called on |*out| at some point in the // future. The results of decompressions are not cached internally. // Implementations may wish to implement their own cache if they expect it to be // useful. typedef int (*ssl_cert_decompression_func_t)(SSL *ssl, CRYPTO_BUFFER **out, size_t uncompressed_len, const uint8_t *in, size_t in_len); // SSL_CTX_add_cert_compression_alg registers a certificate compression // algorithm on |ctx| with ID |alg_id|. (The value of |alg_id| should be an IANA // assigned value and each can only be registered once.) // // One of the function pointers may be NULL to avoid having to implement both // sides of a compression algorithm if you're only going to use it in one // direction. In this case, the unimplemented direction acts like it was never // configured. // // For a server, algorithms are registered in preference order with the most // preferable first. It returns one on success or zero on error. OPENSSL_EXPORT int SSL_CTX_add_cert_compression_alg( SSL_CTX *ctx, uint16_t alg_id, ssl_cert_compression_func_t compress, ssl_cert_decompression_func_t decompress); // Next protocol negotiation. // // The NPN extension (draft-agl-tls-nextprotoneg-03) is the predecessor to ALPN // and deprecated in favor of it. // SSL_CTX_set_next_protos_advertised_cb sets a callback that is called when a // TLS server needs a list of supported protocols for Next Protocol // Negotiation. The returned list must be in wire format. The list is returned // by setting |*out| to point to it and |*out_len| to its length. This memory // will not be modified, but one should assume that |ssl| keeps a reference to // it. // // The callback should return |SSL_TLSEXT_ERR_OK| if it wishes to advertise. // Otherwise, no such extension will be included in the ServerHello. OPENSSL_EXPORT void SSL_CTX_set_next_protos_advertised_cb( SSL_CTX *ctx, int (*cb)(SSL *ssl, const uint8_t **out, unsigned *out_len, void *arg), void *arg); // SSL_CTX_set_next_proto_select_cb sets a callback that is called when a client // needs to select a protocol from the server's provided list. |*out| must be // set to point to the selected protocol (which may be within |in|). The length // of the protocol name must be written into |*out_len|. The server's advertised // protocols are provided in |in| and |in_len|. The callback can assume that // |in| is syntactically valid. |SSL_select_next_proto| is an optional utility // function which may be useful in implementing this callback. // // The client must select a protocol. It is fatal to the connection if this // callback returns a value other than |SSL_TLSEXT_ERR_OK|. // // Configuring this callback enables NPN on a client. OPENSSL_EXPORT void SSL_CTX_set_next_proto_select_cb( SSL_CTX *ctx, int (*cb)(SSL *ssl, uint8_t **out, uint8_t *out_len, const uint8_t *in, unsigned in_len, void *arg), void *arg); // SSL_get0_next_proto_negotiated sets |*out_data| and |*out_len| to point to // the client's requested protocol for this connection. If the client didn't // request any protocol, then |*out_data| is set to NULL. // // Note that the client can request any protocol it chooses. The value returned // from this function need not be a member of the list of supported protocols // provided by the server. OPENSSL_EXPORT void SSL_get0_next_proto_negotiated(const SSL *ssl, const uint8_t **out_data, unsigned *out_len); // SSL_select_next_proto implements the standard protocol selection for either // ALPN servers or NPN clients. It is expected that this function is called from // the callback set by |SSL_CTX_set_alpn_select_cb| or // |SSL_CTX_set_next_proto_select_cb|. // // |peer| and |supported| contain the peer and locally-configured protocols, // respectively. This function finds the first protocol in |peer| which is also // in |supported|. If one was found, it sets |*out| and |*out_len| to point to // it and returns |OPENSSL_NPN_NEGOTIATED|. Otherwise, it returns // |OPENSSL_NPN_NO_OVERLAP| and sets |*out| and |*out_len| to the first // supported protocol. // // In ALPN, the server should only select protocols among those that the client // offered. Thus, if this function returns |OPENSSL_NPN_NO_OVERLAP|, the caller // should ignore |*out| and return |SSL_TLSEXT_ERR_ALERT_FATAL| from // |SSL_CTX_set_alpn_select_cb|'s callback to indicate there was no match. // // In NPN, the client may either select one of the server's protocols, or an // "opportunistic" protocol as described in Section 6 of // draft-agl-tls-nextprotoneg-03. When this function returns // |OPENSSL_NPN_NO_OVERLAP|, |*out| implicitly selects the first supported // protocol for use as the opportunistic protocol. The caller may use it, // ignore it and select a different opportunistic protocol, or ignore it and // select no protocol (empty string). // // |peer| and |supported| must be vectors of 8-bit, length-prefixed byte // strings. The length byte itself is not included in the length. A byte string // of length 0 is invalid. No byte string may be truncated. |supported| must be // non-empty; a caller that supports no ALPN/NPN protocols should skip // negotiating the extension, rather than calling this function. If any of these // preconditions do not hold, this function will return |OPENSSL_NPN_NO_OVERLAP| // and set |*out| and |*out_len| to an empty buffer for robustness, but callers // are not recommended to rely on this. An empty buffer is not a valid output // for |SSL_CTX_set_alpn_select_cb|'s callback. // // WARNING: |*out| and |*out_len| may alias either |peer| or |supported| and may // not be used after one of those buffers is modified or released. Additionally, // this function is not const-correct for compatibility reasons. Although |*out| // is a non-const pointer, callers may not modify the buffer though |*out|. OPENSSL_EXPORT int SSL_select_next_proto(uint8_t **out, uint8_t *out_len, const uint8_t *peer, unsigned peer_len, const uint8_t *supported, unsigned supported_len); #define OPENSSL_NPN_UNSUPPORTED 0 #define OPENSSL_NPN_NEGOTIATED 1 #define OPENSSL_NPN_NO_OVERLAP 2 // Channel ID. // // See draft-balfanz-tls-channelid-01. This is an old, experimental mechanism // and should not be used in new code. // SSL_CTX_set_tls_channel_id_enabled configures whether connections associated // with |ctx| should enable Channel ID as a server. OPENSSL_EXPORT void SSL_CTX_set_tls_channel_id_enabled(SSL_CTX *ctx, int enabled); // SSL_set_tls_channel_id_enabled configures whether |ssl| should enable Channel // ID as a server. OPENSSL_EXPORT void SSL_set_tls_channel_id_enabled(SSL *ssl, int enabled); // SSL_CTX_set1_tls_channel_id configures a TLS client to send a TLS Channel ID // to compatible servers. |private_key| must be a P-256 EC key. It returns one // on success and zero on error. OPENSSL_EXPORT int SSL_CTX_set1_tls_channel_id(SSL_CTX *ctx, EVP_PKEY *private_key); // SSL_set1_tls_channel_id configures a TLS client to send a TLS Channel ID to // compatible servers. |private_key| must be a P-256 EC key. It returns one on // success and zero on error. OPENSSL_EXPORT int SSL_set1_tls_channel_id(SSL *ssl, EVP_PKEY *private_key); // SSL_get_tls_channel_id gets the client's TLS Channel ID from a server |SSL| // and copies up to the first |max_out| bytes into |out|. The Channel ID // consists of the client's P-256 public key as an (x,y) pair where each is a // 32-byte, big-endian field element. It returns 0 if the client didn't offer a // Channel ID and the length of the complete Channel ID otherwise. This function // always returns zero if |ssl| is a client. OPENSSL_EXPORT size_t SSL_get_tls_channel_id(SSL *ssl, uint8_t *out, size_t max_out); // DTLS-SRTP. // // See RFC 5764. // srtp_protection_profile_st (aka |SRTP_PROTECTION_PROFILE|) is an SRTP // profile for use with the use_srtp extension. struct srtp_protection_profile_st { const char *name; unsigned long id; } /* SRTP_PROTECTION_PROFILE */; DEFINE_CONST_STACK_OF(SRTP_PROTECTION_PROFILE) // SRTP_* define constants for SRTP profiles. #define SRTP_AES128_CM_SHA1_80 0x0001 #define SRTP_AES128_CM_SHA1_32 0x0002 #define SRTP_AES128_F8_SHA1_80 0x0003 #define SRTP_AES128_F8_SHA1_32 0x0004 #define SRTP_NULL_SHA1_80 0x0005 #define SRTP_NULL_SHA1_32 0x0006 #define SRTP_AEAD_AES_128_GCM 0x0007 #define SRTP_AEAD_AES_256_GCM 0x0008 // SSL_CTX_set_srtp_profiles enables SRTP for all SSL objects created from // |ctx|. |profile| contains a colon-separated list of profile names. It returns // one on success and zero on failure. OPENSSL_EXPORT int SSL_CTX_set_srtp_profiles(SSL_CTX *ctx, const char *profiles); // SSL_set_srtp_profiles enables SRTP for |ssl|. |profile| contains a // colon-separated list of profile names. It returns one on success and zero on // failure. OPENSSL_EXPORT int SSL_set_srtp_profiles(SSL *ssl, const char *profiles); // SSL_get_srtp_profiles returns the SRTP profiles supported by |ssl|. OPENSSL_EXPORT const STACK_OF(SRTP_PROTECTION_PROFILE) *SSL_get_srtp_profiles( const SSL *ssl); // SSL_get_selected_srtp_profile returns the selected SRTP profile, or NULL if // SRTP was not negotiated. OPENSSL_EXPORT const SRTP_PROTECTION_PROFILE *SSL_get_selected_srtp_profile( SSL *ssl); // Pre-shared keys. // // Connections may be configured with PSK (Pre-Shared Key) cipher suites. These // authenticate using out-of-band pre-shared keys rather than certificates. See // RFC 4279. // // This implementation uses NUL-terminated C strings for identities and identity // hints, so values with a NUL character are not supported. (RFC 4279 does not // specify the format of an identity.) // PSK_MAX_IDENTITY_LEN is the maximum supported length of a PSK identity, // excluding the NUL terminator. #define PSK_MAX_IDENTITY_LEN 128 // PSK_MAX_PSK_LEN is the maximum supported length of a pre-shared key. #define PSK_MAX_PSK_LEN 256 // SSL_psk_client_cb_func defines a function signature for the client callback. typedef unsigned int (*SSL_psk_client_cb_func)(SSL *ssl, const char *hint, char *identity, unsigned int max_identity_len, uint8_t *psk, unsigned max_psk_len); // SSL_CTX_set_psk_client_callback sets the callback to be called when PSK is // negotiated on the client. This callback must be set to enable PSK cipher // suites on the client. // // The callback is passed the identity hint in |hint| or NULL if none was // provided. It should select a PSK identity and write the identity and the // corresponding PSK to |identity| and |psk|, respectively. The identity is // written as a NUL-terminated C string of length (excluding the NUL terminator) // at most |max_identity_len|. The PSK's length must be at most |max_psk_len|. // The callback returns the length of the PSK or 0 if no suitable identity was // found. OPENSSL_EXPORT void SSL_CTX_set_psk_client_callback( SSL_CTX *ctx, SSL_psk_client_cb_func cb); // SSL_set_psk_client_callback sets the callback to be called when PSK is // negotiated on the client. This callback must be set to enable PSK cipher // suites on the client. See also |SSL_CTX_set_psk_client_callback|. OPENSSL_EXPORT void SSL_set_psk_client_callback( SSL *ssl, SSL_psk_client_cb_func cb); // SSL_psk_server_cb_func defines a function signature for the server callback. typedef unsigned (*SSL_psk_server_cb_func)(SSL *ssl, const char *identity, uint8_t *psk, unsigned max_psk_len); // SSL_CTX_set_psk_server_callback sets the callback to be called when PSK is // negotiated on the server. This callback must be set to enable PSK cipher // suites on the server. // // The callback is passed the identity in |identity|. It should write a PSK of // length at most |max_psk_len| to |psk| and return the number of bytes written // or zero if the PSK identity is unknown. OPENSSL_EXPORT void SSL_CTX_set_psk_server_callback( SSL_CTX *ctx, SSL_psk_server_cb_func cb); // SSL_set_psk_server_callback sets the callback to be called when PSK is // negotiated on the server. This callback must be set to enable PSK cipher // suites on the server. See also |SSL_CTX_set_psk_server_callback|. OPENSSL_EXPORT void SSL_set_psk_server_callback( SSL *ssl, SSL_psk_server_cb_func cb); // SSL_CTX_use_psk_identity_hint configures server connections to advertise an // identity hint of |identity_hint|. It returns one on success and zero on // error. OPENSSL_EXPORT int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint); // SSL_use_psk_identity_hint configures server connections to advertise an // identity hint of |identity_hint|. It returns one on success and zero on // error. OPENSSL_EXPORT int SSL_use_psk_identity_hint(SSL *ssl, const char *identity_hint); // SSL_get_psk_identity_hint returns the PSK identity hint advertised for |ssl| // or NULL if there is none. OPENSSL_EXPORT const char *SSL_get_psk_identity_hint(const SSL *ssl); // SSL_get_psk_identity, after the handshake completes, returns the PSK identity // that was negotiated by |ssl| or NULL if PSK was not used. OPENSSL_EXPORT const char *SSL_get_psk_identity(const SSL *ssl); // Delegated credentials. // // *** EXPERIMENTAL — PRONE TO CHANGE *** // // draft-ietf-tls-subcerts is a proposed extension for TLS 1.3 and above that // allows an end point to use its certificate to delegate credentials for // authentication. If the peer indicates support for this extension, then this // host may use a delegated credential to sign the handshake. Once issued, // credentials can't be revoked. In order to mitigate the damage in case the // credential secret key is compromised, the credential is only valid for a // short time (days, hours, or even minutes). This library implements draft-03 // of the protocol spec. // // The extension ID has not been assigned; we're using 0xff02 for the time // being. Currently only the server side is implemented. // // Servers configure a DC for use in the handshake via // |SSL_set1_delegated_credential|. It must be signed by the host's end-entity // certificate as defined in draft-ietf-tls-subcerts-03. // SSL_set1_delegated_credential configures the delegated credential (DC) that // will be sent to the peer for the current connection. |dc| is the DC in wire // format, and |pkey| or |key_method| is the corresponding private key. // Currently (as of draft-03), only servers may configure a DC to use in the // handshake. // // The DC will only be used if the protocol version is correct and the signature // scheme is supported by the peer. If not, the DC will not be negotiated and // the handshake will use the private key (or private key method) associated // with the certificate. OPENSSL_EXPORT int SSL_set1_delegated_credential( SSL *ssl, CRYPTO_BUFFER *dc, EVP_PKEY *pkey, const SSL_PRIVATE_KEY_METHOD *key_method); // SSL_delegated_credential_used returns one if a delegated credential was used // and zero otherwise. OPENSSL_EXPORT int SSL_delegated_credential_used(const SSL *ssl); // QUIC integration. // // QUIC acts as an underlying transport for the TLS 1.3 handshake. The following // functions allow a QUIC implementation to serve as the underlying transport as // described in RFC 9001. // // When configured for QUIC, |SSL_do_handshake| will drive the handshake as // before, but it will not use the configured |BIO|. It will call functions on // |SSL_QUIC_METHOD| to configure secrets and send data. If data is needed from // the peer, it will return |SSL_ERROR_WANT_READ|. As the caller receives data // it can decrypt, it calls |SSL_provide_quic_data|. Subsequent // |SSL_do_handshake| calls will then consume that data and progress the // handshake. After the handshake is complete, the caller should continue to // call |SSL_provide_quic_data| for any post-handshake data, followed by // |SSL_process_quic_post_handshake| to process it. It is an error to call // |SSL_read| and |SSL_write| in QUIC. // // 0-RTT behaves similarly to |TLS_method|'s usual behavior. |SSL_do_handshake| // returns early as soon as the client (respectively, server) is allowed to send // 0-RTT (respectively, half-RTT) data. The caller should then call // |SSL_do_handshake| again to consume the remaining handshake messages and // confirm the handshake. As a client, |SSL_ERROR_EARLY_DATA_REJECTED| and // |SSL_reset_early_data_reject| behave as usual. // // See https://www.rfc-editor.org/rfc/rfc9001.html#section-4.1 for more details. // // To avoid DoS attacks, the QUIC implementation must limit the amount of data // being queued up. The implementation can call // |SSL_quic_max_handshake_flight_len| to get the maximum buffer length at each // encryption level. // // QUIC implementations must additionally configure transport parameters with // |SSL_set_quic_transport_params|. |SSL_get_peer_quic_transport_params| may be // used to query the value received from the peer. BoringSSL handles this // extension as an opaque byte string. The caller is responsible for serializing // and parsing them. See https://www.rfc-editor.org/rfc/rfc9000#section-7.4 for // details. // // QUIC additionally imposes restrictions on 0-RTT. In particular, the QUIC // transport layer requires that if a server accepts 0-RTT data, then the // transport parameters sent on the resumed connection must not lower any limits // compared to the transport parameters that the server sent on the connection // where the ticket for 0-RTT was issued. In effect, the server must remember // the transport parameters with the ticket. Application protocols running on // QUIC may impose similar restrictions, for example HTTP/3's restrictions on // SETTINGS frames. // // BoringSSL implements this check by doing a byte-for-byte comparison of an // opaque context passed in by the server. This context must be the same on the // connection where the ticket was issued and the connection where that ticket // is used for 0-RTT. If there is a mismatch, or the context was not set, // BoringSSL will reject early data (but not reject the resumption attempt). // This context is set via |SSL_set_quic_early_data_context| and should cover // both transport parameters and any application state. // |SSL_set_quic_early_data_context| must be called on the server with a // non-empty context if the server is to support 0-RTT in QUIC. // // BoringSSL does not perform any client-side checks on the transport // parameters received from a server that also accepted early data. It is up to // the caller to verify that the received transport parameters do not lower any // limits, and to close the QUIC connection if that is not the case. The same // holds for any application protocol state remembered for 0-RTT, e.g. HTTP/3 // SETTINGS. // ssl_encryption_level_t represents a specific QUIC encryption level used to // transmit handshake messages. enum ssl_encryption_level_t BORINGSSL_ENUM_INT { ssl_encryption_initial = 0, ssl_encryption_early_data, ssl_encryption_handshake, ssl_encryption_application, }; // ssl_quic_method_st (aka |SSL_QUIC_METHOD|) describes custom QUIC hooks. struct ssl_quic_method_st { // set_read_secret configures the read secret and cipher suite for the given // encryption level. It returns one on success and zero to terminate the // handshake with an error. It will be called at most once per encryption // level. // // BoringSSL will not release read keys before QUIC may use them. Once a level // has been initialized, QUIC may begin processing data from it. Handshake // data should be passed to |SSL_provide_quic_data| and application data (if // |level| is |ssl_encryption_early_data| or |ssl_encryption_application|) may // be processed according to the rules of the QUIC protocol. // // QUIC ACKs packets at the same encryption level they were received at, // except that client |ssl_encryption_early_data| (0-RTT) packets trigger // server |ssl_encryption_application| (1-RTT) ACKs. BoringSSL will always // install ACK-writing keys with |set_write_secret| before the packet-reading // keys with |set_read_secret|. This ensures the caller can always ACK any // packet it decrypts. Note this means the server installs 1-RTT write keys // before 0-RTT read keys. // // The converse is not true. An encryption level may be configured with write // secrets a roundtrip before the corresponding secrets for reading ACKs is // available. int (*set_read_secret)(SSL *ssl, enum ssl_encryption_level_t level, const SSL_CIPHER *cipher, const uint8_t *secret, size_t secret_len); // set_write_secret behaves like |set_read_secret| but configures the write // secret and cipher suite for the given encryption level. It will be called // at most once per encryption level. // // BoringSSL will not release write keys before QUIC may use them. If |level| // is |ssl_encryption_early_data| or |ssl_encryption_application|, QUIC may // begin sending application data at |level|. However, note that BoringSSL // configures server |ssl_encryption_application| write keys before the client // Finished. This allows QUIC to send half-RTT data, but the handshake is not // confirmed at this point and, if requesting client certificates, the client // is not yet authenticated. // // See |set_read_secret| for additional invariants between packets and their // ACKs. // // Note that, on 0-RTT reject, the |ssl_encryption_early_data| write secret // may use a different cipher suite from the other keys. int (*set_write_secret)(SSL *ssl, enum ssl_encryption_level_t level, const SSL_CIPHER *cipher, const uint8_t *secret, size_t secret_len); // add_handshake_data adds handshake data to the current flight at the given // encryption level. It returns one on success and zero on error. // // BoringSSL will pack data from a single encryption level together, but a // single handshake flight may include multiple encryption levels. Callers // should defer writing data to the network until |flush_flight| to better // pack QUIC packets into transport datagrams. // // If |level| is not |ssl_encryption_initial|, this function will not be // called before |level| is initialized with |set_write_secret|. int (*add_handshake_data)(SSL *ssl, enum ssl_encryption_level_t level, const uint8_t *data, size_t len); // flush_flight is called when the current flight is complete and should be // written to the transport. Note a flight may contain data at several // encryption levels. It returns one on success and zero on error. int (*flush_flight)(SSL *ssl); // send_alert sends a fatal alert at the specified encryption level. It // returns one on success and zero on error. // // If |level| is not |ssl_encryption_initial|, this function will not be // called before |level| is initialized with |set_write_secret|. int (*send_alert)(SSL *ssl, enum ssl_encryption_level_t level, uint8_t alert); }; // SSL_quic_max_handshake_flight_len returns returns the maximum number of bytes // that may be received at the given encryption level. This function should be // used to limit buffering in the QUIC implementation. // // See https://www.rfc-editor.org/rfc/rfc9000#section-7.5 OPENSSL_EXPORT size_t SSL_quic_max_handshake_flight_len( const SSL *ssl, enum ssl_encryption_level_t level); // SSL_quic_read_level returns the current read encryption level. // // TODO(davidben): Is it still necessary to expose this function to callers? // QUICHE does not use it. OPENSSL_EXPORT enum ssl_encryption_level_t SSL_quic_read_level(const SSL *ssl); // SSL_quic_write_level returns the current write encryption level. // // TODO(davidben): Is it still necessary to expose this function to callers? // QUICHE does not use it. OPENSSL_EXPORT enum ssl_encryption_level_t SSL_quic_write_level(const SSL *ssl); // SSL_provide_quic_data provides data from QUIC at a particular encryption // level |level|. It returns one on success and zero on error. Note this // function will return zero if the handshake is not expecting data from |level| // at this time. The QUIC implementation should then close the connection with // an error. OPENSSL_EXPORT int SSL_provide_quic_data(SSL *ssl, enum ssl_encryption_level_t level, const uint8_t *data, size_t len); // SSL_process_quic_post_handshake processes any data that QUIC has provided // after the handshake has completed. This includes NewSessionTicket messages // sent by the server. It returns one on success and zero on error. OPENSSL_EXPORT int SSL_process_quic_post_handshake(SSL *ssl); // SSL_CTX_set_quic_method configures the QUIC hooks. This should only be // configured with a minimum version of TLS 1.3. |quic_method| must remain valid // for the lifetime of |ctx|. It returns one on success and zero on error. OPENSSL_EXPORT int SSL_CTX_set_quic_method(SSL_CTX *ctx, const SSL_QUIC_METHOD *quic_method); // SSL_set_quic_method configures the QUIC hooks. This should only be // configured with a minimum version of TLS 1.3. |quic_method| must remain valid // for the lifetime of |ssl|. It returns one on success and zero on error. OPENSSL_EXPORT int SSL_set_quic_method(SSL *ssl, const SSL_QUIC_METHOD *quic_method); // SSL_set_quic_transport_params configures |ssl| to send |params| (of length // |params_len|) in the quic_transport_parameters extension in either the // ClientHello or EncryptedExtensions handshake message. It is an error to set // transport parameters if |ssl| is not configured for QUIC. The buffer pointed // to by |params| only need be valid for the duration of the call to this // function. This function returns 1 on success and 0 on failure. OPENSSL_EXPORT int SSL_set_quic_transport_params(SSL *ssl, const uint8_t *params, size_t params_len); // SSL_get_peer_quic_transport_params provides the caller with the value of the // quic_transport_parameters extension sent by the peer. A pointer to the buffer // containing the TransportParameters will be put in |*out_params|, and its // length in |*params_len|. This buffer will be valid for the lifetime of the // |SSL|. If no params were received from the peer, |*out_params_len| will be 0. OPENSSL_EXPORT void SSL_get_peer_quic_transport_params( const SSL *ssl, const uint8_t **out_params, size_t *out_params_len); // SSL_set_quic_use_legacy_codepoint configures whether to use the legacy QUIC // extension codepoint 0xffa5 as opposed to the official value 57. Call with // |use_legacy| set to 1 to use 0xffa5 and call with 0 to use 57. By default, // the standard code point is used. OPENSSL_EXPORT void SSL_set_quic_use_legacy_codepoint(SSL *ssl, int use_legacy); // SSL_set_quic_early_data_context configures a context string in QUIC servers // for accepting early data. If a resumption connection offers early data, the // server will check if the value matches that of the connection which minted // the ticket. If not, resumption still succeeds but early data is rejected. // This should include all QUIC Transport Parameters except ones specified that // the client MUST NOT remember. This should also include any application // protocol-specific state. For HTTP/3, this should be the serialized server // SETTINGS frame and the QUIC Transport Parameters (except the stateless reset // token). // // This function may be called before |SSL_do_handshake| or during server // certificate selection. It returns 1 on success and 0 on failure. OPENSSL_EXPORT int SSL_set_quic_early_data_context(SSL *ssl, const uint8_t *context, size_t context_len); // Early data. // // WARNING: 0-RTT support in BoringSSL is currently experimental and not fully // implemented. It may cause interoperability or security failures when used. // // Early data, or 0-RTT, is a feature in TLS 1.3 which allows clients to send // data on the first flight during a resumption handshake. This can save a // round-trip in some application protocols. // // WARNING: A 0-RTT handshake has different security properties from normal // handshake, so it is off by default unless opted in. In particular, early data // is replayable by a network attacker. Callers must account for this when // sending or processing data before the handshake is confirmed. See RFC 8446 // for more information. // // As a server, if early data is accepted, |SSL_do_handshake| will complete as // soon as the ClientHello is processed and server flight sent. |SSL_write| may // be used to send half-RTT data. |SSL_read| will consume early data and // transition to 1-RTT data as appropriate. Prior to the transition, // |SSL_in_init| will report the handshake is still in progress. Callers may use // it or |SSL_in_early_data| to defer or reject requests as needed. // // Early data as a client is more complex. If the offered session (see // |SSL_set_session|) is 0-RTT-capable, the handshake will return after sending // the ClientHello. The predicted peer certificates and ALPN protocol will be // available via the usual APIs. |SSL_write| will write early data, up to the // session's limit. Writes past this limit and |SSL_read| will complete the // handshake before continuing. Callers may also call |SSL_do_handshake| again // to complete the handshake sooner. // // If the server accepts early data, the handshake will succeed. |SSL_read| and // |SSL_write| will then act as in a 1-RTT handshake. The peer certificates and // ALPN protocol will be as predicted and need not be re-queried. // // If the server rejects early data, |SSL_do_handshake| (and thus |SSL_read| and // |SSL_write|) will then fail with |SSL_get_error| returning // |SSL_ERROR_EARLY_DATA_REJECTED|. The caller should treat this as a connection // error and most likely perform a high-level retry. Note the server may still // have processed the early data due to attacker replays. // // To then continue the handshake on the original connection, use // |SSL_reset_early_data_reject|. The connection will then behave as one which // had not yet completed the handshake. This allows a faster retry than making a // fresh connection. |SSL_do_handshake| will complete the full handshake, // possibly resulting in different peer certificates, ALPN protocol, and other // properties. The caller must disregard any values from before the reset and // query again. // // Finally, to implement the fallback described in RFC 8446 appendix D.3, retry // on a fresh connection without 0-RTT if the handshake fails with // |SSL_R_WRONG_VERSION_ON_EARLY_DATA|. // SSL_CTX_set_early_data_enabled sets whether early data is allowed to be used // with resumptions using |ctx|. OPENSSL_EXPORT void SSL_CTX_set_early_data_enabled(SSL_CTX *ctx, int enabled); // SSL_set_early_data_enabled sets whether early data is allowed to be used // with resumptions using |ssl|. See |SSL_CTX_set_early_data_enabled| for more // information. OPENSSL_EXPORT void SSL_set_early_data_enabled(SSL *ssl, int enabled); // SSL_in_early_data returns one if |ssl| has a pending handshake that has // progressed enough to send or receive early data. Clients may call |SSL_write| // to send early data, but |SSL_read| will complete the handshake before // accepting application data. Servers may call |SSL_read| to read early data // and |SSL_write| to send half-RTT data. OPENSSL_EXPORT int SSL_in_early_data(const SSL *ssl); // SSL_SESSION_early_data_capable returns whether early data would have been // attempted with |session| if enabled. OPENSSL_EXPORT int SSL_SESSION_early_data_capable(const SSL_SESSION *session); // SSL_SESSION_copy_without_early_data returns a copy of |session| with early // data disabled. If |session| already does not support early data, it returns // |session| with the reference count increased. The caller takes ownership of // the result and must release it with |SSL_SESSION_free|. // // This function may be used on the client to clear early data support from // existing sessions when the server rejects early data. In particular, // |SSL_R_WRONG_VERSION_ON_EARLY_DATA| requires a fresh connection to retry, and // the client would not want 0-RTT enabled for the next connection attempt. OPENSSL_EXPORT SSL_SESSION *SSL_SESSION_copy_without_early_data( SSL_SESSION *session); // SSL_early_data_accepted returns whether early data was accepted on the // handshake performed by |ssl|. OPENSSL_EXPORT int SSL_early_data_accepted(const SSL *ssl); // SSL_reset_early_data_reject resets |ssl| after an early data reject. All // 0-RTT state is discarded, including any pending |SSL_write| calls. The caller // should treat |ssl| as a logically fresh connection, usually by driving the // handshake to completion using |SSL_do_handshake|. // // It is an error to call this function on an |SSL| object that is not signaling // |SSL_ERROR_EARLY_DATA_REJECTED|. OPENSSL_EXPORT void SSL_reset_early_data_reject(SSL *ssl); // SSL_get_ticket_age_skew returns the difference, in seconds, between the // client-sent ticket age and the server-computed value in TLS 1.3 server // connections which resumed a session. OPENSSL_EXPORT int32_t SSL_get_ticket_age_skew(const SSL *ssl); // An ssl_early_data_reason_t describes why 0-RTT was accepted or rejected. // These values are persisted to logs. Entries should not be renumbered and // numeric values should never be reused. enum ssl_early_data_reason_t BORINGSSL_ENUM_INT { // The handshake has not progressed far enough for the 0-RTT status to be // known. ssl_early_data_unknown = 0, // 0-RTT is disabled for this connection. ssl_early_data_disabled = 1, // 0-RTT was accepted. ssl_early_data_accepted = 2, // The negotiated protocol version does not support 0-RTT. ssl_early_data_protocol_version = 3, // The peer declined to offer or accept 0-RTT for an unknown reason. ssl_early_data_peer_declined = 4, // The client did not offer a session. ssl_early_data_no_session_offered = 5, // The server declined to resume the session. ssl_early_data_session_not_resumed = 6, // The session does not support 0-RTT. ssl_early_data_unsupported_for_session = 7, // The server sent a HelloRetryRequest. ssl_early_data_hello_retry_request = 8, // The negotiated ALPN protocol did not match the session. ssl_early_data_alpn_mismatch = 9, // The connection negotiated Channel ID, which is incompatible with 0-RTT. ssl_early_data_channel_id = 10, // Value 11 is reserved. (It has historically |ssl_early_data_token_binding|.) // The client and server ticket age were too far apart. ssl_early_data_ticket_age_skew = 12, // QUIC parameters differ between this connection and the original. ssl_early_data_quic_parameter_mismatch = 13, // The application settings did not match the session. ssl_early_data_alps_mismatch = 14, // The value of the largest entry. ssl_early_data_unsupported_with_custom_extension = 15, ssl_early_data_reason_max_value = ssl_early_data_unsupported_with_custom_extension, }; // SSL_get_early_data_reason returns details why 0-RTT was accepted or rejected // on |ssl|. This is primarily useful on the server. OPENSSL_EXPORT enum ssl_early_data_reason_t SSL_get_early_data_reason( const SSL *ssl); // SSL_early_data_reason_string returns a string representation for |reason|, or // NULL if |reason| is unknown. This function may be used for logging. OPENSSL_EXPORT const char *SSL_early_data_reason_string( enum ssl_early_data_reason_t reason); // Encrypted ClientHello. // // ECH is a mechanism for encrypting the entire ClientHello message in TLS 1.3. // This can prevent observers from seeing cleartext information about the // connection, such as the server_name extension. // // By default, BoringSSL will treat the server name, session ticket, and client // certificate as secret, but most other parameters, such as the ALPN protocol // list will be treated as public and sent in the cleartext ClientHello. Other // APIs may be added for applications with different secrecy requirements. // // ECH support in BoringSSL is still experimental and under development. // // See https://tools.ietf.org/html/draft-ietf-tls-esni-13. // SSL_set_enable_ech_grease configures whether the client will send a GREASE // ECH extension when no supported ECHConfig is available. OPENSSL_EXPORT void SSL_set_enable_ech_grease(SSL *ssl, int enable); // SSL_set1_ech_config_list configures |ssl| to, as a client, offer ECH with the // specified configuration. |ech_config_list| should contain a serialized // ECHConfigList structure. It returns one on success and zero on error. // // This function returns an error if the input is malformed. If the input is // valid but none of the ECHConfigs implement supported parameters, it will // return success and proceed without ECH. // // If a supported ECHConfig is found, |ssl| will encrypt the true ClientHello // parameters. If the server cannot decrypt it, e.g. due to a key mismatch, ECH // has a recovery flow. |ssl| will handshake using the cleartext parameters, // including a public name in the ECHConfig. If using // |SSL_CTX_set_custom_verify|, callers should use |SSL_get0_ech_name_override| // to verify the certificate with the public name. If using the built-in // verifier, the |X509_STORE_CTX| will be configured automatically. // // If no other errors are found in this handshake, it will fail with // |SSL_R_ECH_REJECTED|. Since it didn't use the true parameters, the connection // cannot be used for application data. Instead, callers should handle this // error by calling |SSL_get0_ech_retry_configs| and retrying the connection // with updated ECH parameters. If the retry also fails with // |SSL_R_ECH_REJECTED|, the caller should report a connection failure. OPENSSL_EXPORT int SSL_set1_ech_config_list(SSL *ssl, const uint8_t *ech_config_list, size_t ech_config_list_len); // SSL_get0_ech_name_override, if |ssl| is a client and the server rejected ECH, // sets |*out_name| and |*out_name_len| to point to a buffer containing the ECH // public name. Otherwise, the buffer will be empty. // // When offering ECH as a client, this function should be called during the // certificate verification callback (see |SSL_CTX_set_custom_verify|). If // |*out_name_len| is non-zero, the caller should verify the certificate against // the result, interpreted as a DNS name, rather than the true server name. In // this case, the handshake will never succeed and is only used to authenticate // retry configs. See also |SSL_get0_ech_retry_configs|. OPENSSL_EXPORT void SSL_get0_ech_name_override(const SSL *ssl, const char **out_name, size_t *out_name_len); // SSL_get0_ech_retry_configs sets |*out_retry_configs| and // |*out_retry_configs_len| to a buffer containing a serialized ECHConfigList. // If the server did not provide an ECHConfigList, |*out_retry_configs_len| will // be zero. // // When handling an |SSL_R_ECH_REJECTED| error code as a client, callers should // use this function to recover from potential key mismatches. If the result is // non-empty, the caller should retry the connection, passing this buffer to // |SSL_set1_ech_config_list|. If the result is empty, the server has rolled // back ECH support, and the caller should retry without ECH. // // This function must only be called in response to an |SSL_R_ECH_REJECTED| // error code. Calling this function on |ssl|s that have not authenticated the // rejection handshake will assert in debug builds and otherwise return an // unparsable list. OPENSSL_EXPORT void SSL_get0_ech_retry_configs( const SSL *ssl, const uint8_t **out_retry_configs, size_t *out_retry_configs_len); // SSL_marshal_ech_config constructs a new serialized ECHConfig. On success, it // sets |*out| to a newly-allocated buffer containing the result and |*out_len| // to the size of the buffer. The caller must call |OPENSSL_free| on |*out| to // release the memory. On failure, it returns zero. // // The |config_id| field is a single byte identifer for the ECHConfig. Reusing // config IDs is allowed, but if multiple ECHConfigs with the same config ID are // active at a time, server load may increase. See // |SSL_ECH_KEYS_has_duplicate_config_id|. // // The public key and KEM algorithm are taken from |key|. |public_name| is the // DNS name used to authenticate the recovery flow. |max_name_len| should be the // length of the longest name in the ECHConfig's anonymity set and influences // client padding decisions. OPENSSL_EXPORT int SSL_marshal_ech_config(uint8_t **out, size_t *out_len, uint8_t config_id, const EVP_HPKE_KEY *key, const char *public_name, size_t max_name_len); // SSL_ECH_KEYS_new returns a newly-allocated |SSL_ECH_KEYS| or NULL on error. OPENSSL_EXPORT SSL_ECH_KEYS *SSL_ECH_KEYS_new(void); // SSL_ECH_KEYS_up_ref increments the reference count of |keys|. OPENSSL_EXPORT void SSL_ECH_KEYS_up_ref(SSL_ECH_KEYS *keys); // SSL_ECH_KEYS_free releases memory associated with |keys|. OPENSSL_EXPORT void SSL_ECH_KEYS_free(SSL_ECH_KEYS *keys); // SSL_ECH_KEYS_add decodes |ech_config| as an ECHConfig and appends it with // |key| to |keys|. If |is_retry_config| is non-zero, this config will be // returned to the client on configuration mismatch. It returns one on success // and zero on error. // // This function should be called successively to register each ECHConfig in // decreasing order of preference. This configuration must be completed before // setting |keys| on an |SSL_CTX| with |SSL_CTX_set1_ech_keys|. After that // point, |keys| is immutable; no more ECHConfig values may be added. // // See also |SSL_CTX_set1_ech_keys|. OPENSSL_EXPORT int SSL_ECH_KEYS_add(SSL_ECH_KEYS *keys, int is_retry_config, const uint8_t *ech_config, size_t ech_config_len, const EVP_HPKE_KEY *key); // SSL_ECH_KEYS_has_duplicate_config_id returns one if |keys| has duplicate // config IDs or zero otherwise. Duplicate config IDs still work, but may // increase server load due to trial decryption. OPENSSL_EXPORT int SSL_ECH_KEYS_has_duplicate_config_id( const SSL_ECH_KEYS *keys); // SSL_ECH_KEYS_marshal_retry_configs serializes the retry configs in |keys| as // an ECHConfigList. On success, it sets |*out| to a newly-allocated buffer // containing the result and |*out_len| to the size of the buffer. The caller // must call |OPENSSL_free| on |*out| to release the memory. On failure, it // returns zero. // // This output may be advertised to clients in DNS. OPENSSL_EXPORT int SSL_ECH_KEYS_marshal_retry_configs(const SSL_ECH_KEYS *keys, uint8_t **out, size_t *out_len); // SSL_CTX_set1_ech_keys configures |ctx| to use |keys| to decrypt encrypted // ClientHellos. It returns one on success, and zero on failure. If |keys| does // not contain any retry configs, this function will fail. Retry configs are // marked as such when they are added to |keys| with |SSL_ECH_KEYS_add|. // // Once |keys| has been passed to this function, it is immutable. Unlike most // |SSL_CTX| configuration functions, this function may be called even if |ctx| // already has associated connections on multiple threads. This may be used to // rotate keys in a long-lived server process. // // The configured ECHConfig values should also be advertised out-of-band via DNS // (see draft-ietf-dnsop-svcb-https). Before advertising an ECHConfig in DNS, // deployments should ensure all instances of the service are configured with // the ECHConfig and corresponding private key. // // Only the most recent fully-deployed ECHConfigs should be advertised in DNS. // |keys| may contain a newer set if those ECHConfigs are mid-deployment. It // should also contain older sets, until the DNS change has rolled out and the // old records have expired from caches. // // If there is a mismatch, |SSL| objects associated with |ctx| will complete the // handshake using the cleartext ClientHello and send updated ECHConfig values // to the client. The client will then retry to recover, but with a latency // penalty. This recovery flow depends on the public name in the ECHConfig. // Before advertising an ECHConfig in DNS, deployments must ensure all instances // of the service can present a valid certificate for the public name. // // BoringSSL negotiates ECH before certificate selection callbacks are called, // including |SSL_CTX_set_select_certificate_cb|. If ECH is negotiated, the // reported |SSL_CLIENT_HELLO| structure and |SSL_get_servername| function will // transparently reflect the inner ClientHello. Callers should select parameters // based on these values to correctly handle ECH as well as the recovery flow. OPENSSL_EXPORT int SSL_CTX_set1_ech_keys(SSL_CTX *ctx, SSL_ECH_KEYS *keys); // SSL_ech_accepted returns one if |ssl| negotiated ECH and zero otherwise. OPENSSL_EXPORT int SSL_ech_accepted(const SSL *ssl); // Alerts. // // TLS uses alerts to signal error conditions. Alerts have a type (warning or // fatal) and description. OpenSSL internally handles fatal alerts with // dedicated error codes (see |SSL_AD_REASON_OFFSET|). Except for close_notify, // warning alerts are silently ignored and may only be surfaced with // |SSL_CTX_set_info_callback|. // SSL_AD_REASON_OFFSET is the offset between error reasons and |SSL_AD_*| // values. Any error code under |ERR_LIB_SSL| with an error reason above this // value corresponds to an alert description. Consumers may add or subtract // |SSL_AD_REASON_OFFSET| to convert between them. // // make_errors.go reserves error codes above 1000 for manually-assigned errors. // This value must be kept in sync with reservedReasonCode in make_errors.h #define SSL_AD_REASON_OFFSET 1000 // SSL_AD_* are alert descriptions. #define SSL_AD_CLOSE_NOTIFY SSL3_AD_CLOSE_NOTIFY #define SSL_AD_UNEXPECTED_MESSAGE SSL3_AD_UNEXPECTED_MESSAGE #define SSL_AD_BAD_RECORD_MAC SSL3_AD_BAD_RECORD_MAC #define SSL_AD_DECRYPTION_FAILED TLS1_AD_DECRYPTION_FAILED #define SSL_AD_RECORD_OVERFLOW TLS1_AD_RECORD_OVERFLOW #define SSL_AD_DECOMPRESSION_FAILURE SSL3_AD_DECOMPRESSION_FAILURE #define SSL_AD_HANDSHAKE_FAILURE SSL3_AD_HANDSHAKE_FAILURE #define SSL_AD_NO_CERTIFICATE SSL3_AD_NO_CERTIFICATE // Legacy SSL 3.0 value #define SSL_AD_BAD_CERTIFICATE SSL3_AD_BAD_CERTIFICATE #define SSL_AD_UNSUPPORTED_CERTIFICATE SSL3_AD_UNSUPPORTED_CERTIFICATE #define SSL_AD_CERTIFICATE_REVOKED SSL3_AD_CERTIFICATE_REVOKED #define SSL_AD_CERTIFICATE_EXPIRED SSL3_AD_CERTIFICATE_EXPIRED #define SSL_AD_CERTIFICATE_UNKNOWN SSL3_AD_CERTIFICATE_UNKNOWN #define SSL_AD_ILLEGAL_PARAMETER SSL3_AD_ILLEGAL_PARAMETER #define SSL_AD_UNKNOWN_CA TLS1_AD_UNKNOWN_CA #define SSL_AD_ACCESS_DENIED TLS1_AD_ACCESS_DENIED #define SSL_AD_DECODE_ERROR TLS1_AD_DECODE_ERROR #define SSL_AD_DECRYPT_ERROR TLS1_AD_DECRYPT_ERROR #define SSL_AD_EXPORT_RESTRICTION TLS1_AD_EXPORT_RESTRICTION #define SSL_AD_PROTOCOL_VERSION TLS1_AD_PROTOCOL_VERSION #define SSL_AD_INSUFFICIENT_SECURITY TLS1_AD_INSUFFICIENT_SECURITY #define SSL_AD_INTERNAL_ERROR TLS1_AD_INTERNAL_ERROR #define SSL_AD_INAPPROPRIATE_FALLBACK SSL3_AD_INAPPROPRIATE_FALLBACK #define SSL_AD_USER_CANCELLED TLS1_AD_USER_CANCELLED #define SSL_AD_NO_RENEGOTIATION TLS1_AD_NO_RENEGOTIATION #define SSL_AD_MISSING_EXTENSION TLS1_AD_MISSING_EXTENSION #define SSL_AD_UNSUPPORTED_EXTENSION TLS1_AD_UNSUPPORTED_EXTENSION #define SSL_AD_CERTIFICATE_UNOBTAINABLE TLS1_AD_CERTIFICATE_UNOBTAINABLE #define SSL_AD_UNRECOGNIZED_NAME TLS1_AD_UNRECOGNIZED_NAME #define SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE \ TLS1_AD_BAD_CERTIFICATE_STATUS_RESPONSE #define SSL_AD_BAD_CERTIFICATE_HASH_VALUE TLS1_AD_BAD_CERTIFICATE_HASH_VALUE #define SSL_AD_UNKNOWN_PSK_IDENTITY TLS1_AD_UNKNOWN_PSK_IDENTITY #define SSL_AD_CERTIFICATE_REQUIRED TLS1_AD_CERTIFICATE_REQUIRED #define SSL_AD_NO_APPLICATION_PROTOCOL TLS1_AD_NO_APPLICATION_PROTOCOL #define SSL_AD_ECH_REQUIRED TLS1_AD_ECH_REQUIRED // SSL_alert_type_string_long returns a string description of |value| as an // alert type (warning or fatal). OPENSSL_EXPORT const char *SSL_alert_type_string_long(int value); // SSL_alert_desc_string_long returns a string description of |value| as an // alert description or "unknown" if unknown. OPENSSL_EXPORT const char *SSL_alert_desc_string_long(int value); // SSL_send_fatal_alert sends a fatal alert over |ssl| of the specified type, // which should be one of the |SSL_AD_*| constants. It returns one on success // and <= 0 on error. The caller should pass the return value into // |SSL_get_error| to determine how to proceed. Once this function has been // called, future calls to |SSL_write| will fail. // // If retrying a failed operation due to |SSL_ERROR_WANT_WRITE|, subsequent // calls must use the same |alert| parameter. OPENSSL_EXPORT int SSL_send_fatal_alert(SSL *ssl, uint8_t alert); // ex_data functions. // // See |ex_data.h| for details. OPENSSL_EXPORT int SSL_set_ex_data(SSL *ssl, int idx, void *data); OPENSSL_EXPORT void *SSL_get_ex_data(const SSL *ssl, int idx); OPENSSL_EXPORT int SSL_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused *unused, CRYPTO_EX_dup *dup_unused, CRYPTO_EX_free *free_func); OPENSSL_EXPORT int SSL_SESSION_set_ex_data(SSL_SESSION *session, int idx, void *data); OPENSSL_EXPORT void *SSL_SESSION_get_ex_data(const SSL_SESSION *session, int idx); OPENSSL_EXPORT int SSL_SESSION_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused *unused, CRYPTO_EX_dup *dup_unused, CRYPTO_EX_free *free_func); OPENSSL_EXPORT int SSL_CTX_set_ex_data(SSL_CTX *ctx, int idx, void *data); OPENSSL_EXPORT void *SSL_CTX_get_ex_data(const SSL_CTX *ctx, int idx); OPENSSL_EXPORT int SSL_CTX_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused *unused, CRYPTO_EX_dup *dup_unused, CRYPTO_EX_free *free_func); // Low-level record-layer state. // SSL_get_ivs sets |*out_iv_len| to the length of the IVs for the ciphers // underlying |ssl| and sets |*out_read_iv| and |*out_write_iv| to point to the // current IVs for the read and write directions. This is only meaningful for // connections with implicit IVs (i.e. CBC mode with TLS 1.0). // // It returns one on success or zero on error. OPENSSL_EXPORT int SSL_get_ivs(const SSL *ssl, const uint8_t **out_read_iv, const uint8_t **out_write_iv, size_t *out_iv_len); // SSL_get_key_block_len returns the length of |ssl|'s key block, for TLS 1.2 // and below. It is an error to call this function during a handshake, or if // |ssl| negotiated TLS 1.3. OPENSSL_EXPORT size_t SSL_get_key_block_len(const SSL *ssl); // SSL_generate_key_block generates |out_len| bytes of key material for |ssl|'s // current connection state, for TLS 1.2 and below. It is an error to call this // function during a handshake, or if |ssl| negotiated TLS 1.3. OPENSSL_EXPORT int SSL_generate_key_block(const SSL *ssl, uint8_t *out, size_t out_len); // SSL_get_read_sequence returns, in TLS, the expected sequence number of the // next incoming record in the current epoch. In DTLS, it returns the maximum // sequence number received in the current epoch and includes the epoch number // in the two most significant bytes. OPENSSL_EXPORT uint64_t SSL_get_read_sequence(const SSL *ssl); // SSL_get_write_sequence returns the sequence number of the next outgoing // record in the current epoch. In DTLS, it includes the epoch number in the // two most significant bytes. OPENSSL_EXPORT uint64_t SSL_get_write_sequence(const SSL *ssl); // SSL_CTX_set_record_protocol_version returns whether |version| is zero. OPENSSL_EXPORT int SSL_CTX_set_record_protocol_version(SSL_CTX *ctx, int version); // Handshake hints. // // WARNING: Contact the BoringSSL team before using this API. While this // mechanism was designed to gracefully recover from version skew and // configuration mismatch, splitting a single TLS server into multiple services // is complex. // // Some server deployments make asynchronous RPC calls in both ClientHello // dispatch and private key operations. In TLS handshakes where the private key // operation occurs in the first round-trip, this results in two consecutive RPC // round-trips. Handshake hints allow the RPC service to predict a signature. // If correctly predicted, this can skip the second RPC call. // // First, the server installs a certificate selection callback (see // |SSL_CTX_set_select_certificate_cb|). When that is called, it performs the // RPC as before, but includes the ClientHello and a capabilities string from // |SSL_serialize_capabilities|. // // Next, the RPC service creates its own |SSL| object, applies the results of // certificate selection, calls |SSL_request_handshake_hints|, and runs the // handshake. If this successfully computes handshake hints (see // |SSL_serialize_handshake_hints|), the RPC server should send the hints // alongside any certificate selection results. // // Finally, the server calls |SSL_set_handshake_hints| and applies any // configuration from the RPC server. It then completes the handshake as before. // If the hints apply, BoringSSL will use the predicted signature and skip the // private key callbacks. Otherwise, BoringSSL will call private key callbacks // to generate a signature as before. // // Callers should synchronize configuration across the two services. // Configuration mismatches and some cases of version skew are not fatal, but // may result in the hints not applying. Additionally, some handshake flows use // the private key in later round-trips, such as TLS 1.3 HelloRetryRequest. In // those cases, BoringSSL will not predict a signature as there is no benefit. // Callers must allow for handshakes to complete without a predicted signature. // SSL_serialize_capabilities writes an opaque byte string to |out| describing // some of |ssl|'s capabilities. It returns one on success and zero on error. // // This string is used by BoringSSL internally to reduce the impact of version // skew. OPENSSL_EXPORT int SSL_serialize_capabilities(const SSL *ssl, CBB *out); // SSL_request_handshake_hints configures |ssl| to generate a handshake hint for // |client_hello|. It returns one on success and zero on error. |client_hello| // should contain a serialized ClientHello structure, from the |client_hello| // and |client_hello_len| fields of the |SSL_CLIENT_HELLO| structure. // |capabilities| should contain the output of |SSL_serialize_capabilities|. // // When configured, |ssl| will perform no I/O (so there is no need to configure // |BIO|s). For QUIC, the caller should still configure an |SSL_QUIC_METHOD|, // but the callbacks themselves will never be called and may be left NULL or // report failure. |SSL_provide_quic_data| also should not be called. // // If hint generation is successful, |SSL_do_handshake| will stop the handshake // early with |SSL_get_error| returning |SSL_ERROR_HANDSHAKE_HINTS_READY|. At // this point, the caller should run |SSL_serialize_handshake_hints| to extract // the resulting hints. // // Hint generation may fail if, e.g., |ssl| was unable to process the // ClientHello. Callers should then complete the certificate selection RPC and // continue the original handshake with no hint. It will likely fail, but this // reports the correct alert to the client and is more robust in case of // mismatch. OPENSSL_EXPORT int SSL_request_handshake_hints(SSL *ssl, const uint8_t *client_hello, size_t client_hello_len, const uint8_t *capabilities, size_t capabilities_len); // SSL_serialize_handshake_hints writes an opaque byte string to |out| // containing the handshake hints computed by |out|. It returns one on success // and zero on error. This function should only be called if // |SSL_request_handshake_hints| was configured and the handshake terminated // with |SSL_ERROR_HANDSHAKE_HINTS_READY|. // // This string may be passed to |SSL_set_handshake_hints| on another |SSL| to // avoid an extra signature call. OPENSSL_EXPORT int SSL_serialize_handshake_hints(const SSL *ssl, CBB *out); // SSL_set_handshake_hints configures |ssl| to use |hints| as handshake hints. // It returns one on success and zero on error. The handshake will then continue // as before, but apply predicted values from |hints| where applicable. // // Hints may contain connection and session secrets, so they must not leak and // must come from a source trusted to terminate the connection. However, they // will not change |ssl|'s configuration. The caller is responsible for // serializing and applying options from the RPC server as needed. This ensures // |ssl|'s behavior is self-consistent and consistent with the caller's local // decisions. OPENSSL_EXPORT int SSL_set_handshake_hints(SSL *ssl, const uint8_t *hints, size_t hints_len); // Obscure functions. // SSL_CTX_set_msg_callback installs |cb| as the message callback for |ctx|. // This callback will be called when sending or receiving low-level record // headers, complete handshake messages, ChangeCipherSpec, and alerts. // |write_p| is one for outgoing messages and zero for incoming messages. // // For each record header, |cb| is called with |version| = 0 and |content_type| // = |SSL3_RT_HEADER|. The |len| bytes from |buf| contain the header. Note that // this does not include the record body. If the record is sealed, the length // in the header is the length of the ciphertext. // // For each handshake message, ChangeCipherSpec, and alert, |version| is the // protocol version and |content_type| is the corresponding record type. The // |len| bytes from |buf| contain the handshake message, one-byte // ChangeCipherSpec body, and two-byte alert, respectively. // // In connections that enable ECH, |cb| is additionally called with // |content_type| = |SSL3_RT_CLIENT_HELLO_INNER| for each ClientHelloInner that // is encrypted or decrypted. The |len| bytes from |buf| contain the // ClientHelloInner, including the reconstructed outer extensions and handshake // header. // // For a V2ClientHello, |version| is |SSL2_VERSION|, |content_type| is zero, and // the |len| bytes from |buf| contain the V2ClientHello structure. OPENSSL_EXPORT void SSL_CTX_set_msg_callback( SSL_CTX *ctx, void (*cb)(int is_write, int version, int content_type, const void *buf, size_t len, SSL *ssl, void *arg)); // SSL_CTX_set_msg_callback_arg sets the |arg| parameter of the message // callback. OPENSSL_EXPORT void SSL_CTX_set_msg_callback_arg(SSL_CTX *ctx, void *arg); // SSL_set_msg_callback installs |cb| as the message callback of |ssl|. See // |SSL_CTX_set_msg_callback| for when this callback is called. OPENSSL_EXPORT void SSL_set_msg_callback( SSL *ssl, void (*cb)(int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl, void *arg)); // SSL_set_msg_callback_arg sets the |arg| parameter of the message callback. OPENSSL_EXPORT void SSL_set_msg_callback_arg(SSL *ssl, void *arg); // SSL_CTX_set_keylog_callback configures a callback to log key material. This // is intended for debugging use with tools like Wireshark. The |cb| function // should log |line| followed by a newline, synchronizing with any concurrent // access to the log. // // The format is described in // https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Key_Log_Format. OPENSSL_EXPORT void SSL_CTX_set_keylog_callback(SSL_CTX *ctx, void (*cb)(const SSL *ssl, const char *line)); // SSL_CTX_get_keylog_callback returns the callback configured by // |SSL_CTX_set_keylog_callback|. OPENSSL_EXPORT void (*SSL_CTX_get_keylog_callback(const SSL_CTX *ctx))( const SSL *ssl, const char *line); // SSL_CTX_set_current_time_cb configures a callback to retrieve the current // time, which should be set in |*out_clock|. This can be used for testing // purposes; for example, a callback can be configured that returns a time // set explicitly by the test. The |ssl| pointer passed to |cb| is always null. OPENSSL_EXPORT void SSL_CTX_set_current_time_cb( SSL_CTX *ctx, void (*cb)(const SSL *ssl, struct timeval *out_clock)); // SSL_set_shed_handshake_config allows some of the configuration of |ssl| to be // freed after its handshake completes. Once configuration has been shed, APIs // that query it may fail. "Configuration" in this context means anything that // was set by the caller, as distinct from information derived from the // handshake. For example, |SSL_get_ciphers| queries how the |SSL| was // configured by the caller, and fails after configuration has been shed, // whereas |SSL_get_cipher| queries the result of the handshake, and is // unaffected by configuration shedding. // // If configuration shedding is enabled, it is an error to call |SSL_clear|. // // Note that configuration shedding as a client additionally depends on // renegotiation being disabled (see |SSL_set_renegotiate_mode|). If // renegotiation is possible, the configuration will be retained. If // configuration shedding is enabled and renegotiation later disabled after the // handshake, |SSL_set_renegotiate_mode| will shed configuration then. This may // be useful for clients which support renegotiation with some ALPN protocols, // such as HTTP/1.1, and not others, such as HTTP/2. OPENSSL_EXPORT void SSL_set_shed_handshake_config(SSL *ssl, int enable); enum ssl_renegotiate_mode_t BORINGSSL_ENUM_INT { ssl_renegotiate_never = 0, ssl_renegotiate_once, ssl_renegotiate_freely, ssl_renegotiate_ignore, ssl_renegotiate_explicit, }; // SSL_set_renegotiate_mode configures how |ssl|, a client, reacts to // renegotiation attempts by a server. If |ssl| is a server, peer-initiated // renegotiations are *always* rejected and this function does nothing. // // WARNING: Renegotiation is error-prone, complicates TLS's security properties, // and increases its attack surface. When enabled, many common assumptions about // BoringSSL's behavior no longer hold, and the calling application must handle // more cases. Renegotiation is also incompatible with many application // protocols, e.g. section 9.2.1 of RFC 7540. Many functions behave in ambiguous // or undefined ways during a renegotiation. // // The renegotiation mode defaults to |ssl_renegotiate_never|, but may be set // at any point in a connection's lifetime. Set it to |ssl_renegotiate_once| to // allow one renegotiation, |ssl_renegotiate_freely| to allow all // renegotiations or |ssl_renegotiate_ignore| to ignore HelloRequest messages. // Note that ignoring HelloRequest messages may cause the connection to stall // if the server waits for the renegotiation to complete. // // If set to |ssl_renegotiate_explicit|, |SSL_read| and |SSL_peek| calls which // encounter a HelloRequest will pause with |SSL_ERROR_WANT_RENEGOTIATE|. // |SSL_write| will continue to work while paused. The caller may call // |SSL_renegotiate| to begin the renegotiation at a later point. This mode may // be used if callers wish to eagerly call |SSL_peek| without triggering a // renegotiation. // // If configuration shedding is enabled (see |SSL_set_shed_handshake_config|), // configuration is released if, at any point after the handshake, renegotiation // is disabled. It is not possible to switch from disabling renegotiation to // enabling it on a given connection. Callers that condition renegotiation on, // e.g., ALPN must enable renegotiation before the handshake and conditionally // disable it afterwards. // // When enabled, renegotiation can cause properties of |ssl|, such as the cipher // suite, to change during the lifetime of the connection. More over, during a // renegotiation, not all properties of the new handshake are available or fully // established. In BoringSSL, most functions, such as |SSL_get_current_cipher|, // report information from the most recently completed handshake, not the // pending one. However, renegotiation may rerun handshake callbacks, such as // |SSL_CTX_set_cert_cb|. Such callbacks must ensure they are acting on the // desired versions of each property. // // BoringSSL does not reverify peer certificates on renegotiation and instead // requires they match between handshakes, so certificate verification callbacks // (see |SSL_CTX_set_custom_verify|) may assume |ssl| is in the initial // handshake and use |SSL_get0_peer_certificates|, etc. // // There is no support in BoringSSL for initiating renegotiations as a client // or server. OPENSSL_EXPORT void SSL_set_renegotiate_mode(SSL *ssl, enum ssl_renegotiate_mode_t mode); // SSL_renegotiate starts a deferred renegotiation on |ssl| if it was configured // with |ssl_renegotiate_explicit| and has a pending HelloRequest. It returns // one on success and zero on error. // // This function does not do perform any I/O. On success, a subsequent // |SSL_do_handshake| call will run the handshake. |SSL_write| and // |SSL_read| will also complete the handshake before sending or receiving // application data. OPENSSL_EXPORT int SSL_renegotiate(SSL *ssl); // SSL_renegotiate_pending returns one if |ssl| is in the middle of a // renegotiation. OPENSSL_EXPORT int SSL_renegotiate_pending(SSL *ssl); // SSL_total_renegotiations returns the total number of renegotiation handshakes // performed by |ssl|. This includes the pending renegotiation, if any. OPENSSL_EXPORT int SSL_total_renegotiations(const SSL *ssl); // SSL_MAX_CERT_LIST_DEFAULT is the default maximum length, in bytes, of a peer // certificate chain. #define SSL_MAX_CERT_LIST_DEFAULT (1024 * 100) // SSL_CTX_get_max_cert_list returns the maximum length, in bytes, of a peer // certificate chain accepted by |ctx|. OPENSSL_EXPORT size_t SSL_CTX_get_max_cert_list(const SSL_CTX *ctx); // SSL_CTX_set_max_cert_list sets the maximum length, in bytes, of a peer // certificate chain to |max_cert_list|. This affects how much memory may be // consumed during the handshake. OPENSSL_EXPORT void SSL_CTX_set_max_cert_list(SSL_CTX *ctx, size_t max_cert_list); // SSL_get_max_cert_list returns the maximum length, in bytes, of a peer // certificate chain accepted by |ssl|. OPENSSL_EXPORT size_t SSL_get_max_cert_list(const SSL *ssl); // SSL_set_max_cert_list sets the maximum length, in bytes, of a peer // certificate chain to |max_cert_list|. This affects how much memory may be // consumed during the handshake. OPENSSL_EXPORT void SSL_set_max_cert_list(SSL *ssl, size_t max_cert_list); // SSL_CTX_set_max_send_fragment sets the maximum length, in bytes, of records // sent by |ctx|. Beyond this length, handshake messages and application data // will be split into multiple records. It returns one on success or zero on // error. OPENSSL_EXPORT int SSL_CTX_set_max_send_fragment(SSL_CTX *ctx, size_t max_send_fragment); // SSL_set_max_send_fragment sets the maximum length, in bytes, of records sent // by |ssl|. Beyond this length, handshake messages and application data will // be split into multiple records. It returns one on success or zero on // error. The minimum is 512, and the max is 16384. OPENSSL_EXPORT int SSL_set_max_send_fragment(SSL *ssl, size_t max_send_fragment); // ssl_early_callback_ctx (aka |SSL_CLIENT_HELLO|) is passed to certain // callbacks that are called very early on during the server handshake. At this // point, much of the SSL* hasn't been filled out and only the ClientHello can // be depended on. struct ssl_early_callback_ctx { SSL *ssl; const uint8_t *client_hello; size_t client_hello_len; uint16_t version; const uint8_t *random; size_t random_len; const uint8_t *session_id; size_t session_id_len; const uint8_t *cipher_suites; size_t cipher_suites_len; const uint8_t *compression_methods; size_t compression_methods_len; const uint8_t *extensions; size_t extensions_len; } /* SSL_CLIENT_HELLO */; // ssl_select_cert_result_t enumerates the possible results from selecting a // certificate with |select_certificate_cb|. enum ssl_select_cert_result_t BORINGSSL_ENUM_INT { // ssl_select_cert_success indicates that the certificate selection was // successful. ssl_select_cert_success = 1, // ssl_select_cert_retry indicates that the operation could not be // immediately completed and must be reattempted at a later point. ssl_select_cert_retry = 0, // ssl_select_cert_error indicates that a fatal error occured and the // handshake should be terminated. ssl_select_cert_error = -1, }; // SSL_early_callback_ctx_extension_get searches the extensions in // |client_hello| for an extension of the given type. If not found, it returns // zero. Otherwise it sets |out_data| to point to the extension contents (not // including the type and length bytes), sets |out_len| to the length of the // extension contents and returns one. OPENSSL_EXPORT int SSL_early_callback_ctx_extension_get( const SSL_CLIENT_HELLO *client_hello, uint16_t extension_type, const uint8_t **out_data, size_t *out_len); // SSL_CTX_set_select_certificate_cb sets a callback that is called before most // ClientHello processing and before the decision whether to resume a session // is made. The callback may inspect the ClientHello and configure the // connection. See |ssl_select_cert_result_t| for details of the return values. // // In the case that a retry is indicated, |SSL_get_error| will return // |SSL_ERROR_PENDING_CERTIFICATE| and the caller should arrange for the // high-level operation on |ssl| to be retried at a later time, which will // result in another call to |cb|. // // |SSL_get_servername| may be used during this callback. // // Note: The |SSL_CLIENT_HELLO| is only valid for the duration of the callback // and is not valid while the handshake is paused. OPENSSL_EXPORT void SSL_CTX_set_select_certificate_cb( SSL_CTX *ctx, enum ssl_select_cert_result_t (*cb)(const SSL_CLIENT_HELLO *)); // SSL_CTX_set_dos_protection_cb sets a callback that is called once the // resumption decision for a ClientHello has been made. It can return one to // allow the handshake to continue or zero to cause the handshake to abort. OPENSSL_EXPORT void SSL_CTX_set_dos_protection_cb( SSL_CTX *ctx, int (*cb)(const SSL_CLIENT_HELLO *)); // SSL_CTX_set_reverify_on_resume configures whether the certificate // verification callback will be used to reverify stored certificates // when resuming a session. This only works with |SSL_CTX_set_custom_verify|. // For now, this is incompatible with |SSL_VERIFY_NONE| mode, and is only // respected on clients. OPENSSL_EXPORT void SSL_CTX_set_reverify_on_resume(SSL_CTX *ctx, int enabled); // SSL_set_enforce_rsa_key_usage configures whether, when |ssl| is a client // negotiating TLS 1.2 or below, the keyUsage extension of RSA leaf server // certificates will be checked for consistency with the TLS usage. In all other // cases, this check is always enabled. // // This parameter may be set late; it will not be read until after the // certificate verification callback. OPENSSL_EXPORT void SSL_set_enforce_rsa_key_usage(SSL *ssl, int enabled); // SSL_was_key_usage_invalid returns one if |ssl|'s handshake succeeded despite // using TLS parameters which were incompatible with the leaf certificate's // keyUsage extension. Otherwise, it returns zero. // // If |SSL_set_enforce_rsa_key_usage| is enabled or not applicable, this // function will always return zero because key usages will be consistently // checked. OPENSSL_EXPORT int SSL_was_key_usage_invalid(const SSL *ssl); // SSL_ST_* are possible values for |SSL_state|, the bitmasks that make them up, // and some historical values for compatibility. Only |SSL_ST_INIT| and // |SSL_ST_OK| are ever returned. #define SSL_ST_CONNECT 0x1000 #define SSL_ST_ACCEPT 0x2000 #define SSL_ST_MASK 0x0FFF #define SSL_ST_INIT (SSL_ST_CONNECT | SSL_ST_ACCEPT) #define SSL_ST_OK 0x03 #define SSL_ST_RENEGOTIATE (0x04 | SSL_ST_INIT) #define SSL_ST_BEFORE (0x05 | SSL_ST_INIT) // OSSL_HANDSHAKE_STATE enumerates possible TLS states returned from // |SSL_get_state| and |SSL_state|. TLS_ST_* are aliases for |SSL_ST_*| for // OpenSSL 1.1.0 compatibility. typedef enum { TLS_ST_OK = SSL_ST_OK, TLS_ST_BEFORE = SSL_ST_INIT } OSSL_HANDSHAKE_STATE; // SSL_CB_* are possible values for the |type| parameter in the info // callback and the bitmasks that make them up. #define SSL_CB_LOOP 0x01 #define SSL_CB_EXIT 0x02 #define SSL_CB_READ 0x04 #define SSL_CB_WRITE 0x08 #define SSL_CB_ALERT 0x4000 #define SSL_CB_READ_ALERT (SSL_CB_ALERT | SSL_CB_READ) #define SSL_CB_WRITE_ALERT (SSL_CB_ALERT | SSL_CB_WRITE) #define SSL_CB_ACCEPT_LOOP (SSL_ST_ACCEPT | SSL_CB_LOOP) #define SSL_CB_ACCEPT_EXIT (SSL_ST_ACCEPT | SSL_CB_EXIT) #define SSL_CB_CONNECT_LOOP (SSL_ST_CONNECT | SSL_CB_LOOP) #define SSL_CB_CONNECT_EXIT (SSL_ST_CONNECT | SSL_CB_EXIT) #define SSL_CB_HANDSHAKE_START 0x10 #define SSL_CB_HANDSHAKE_DONE 0x20 // SSL_CTX_set_info_callback configures a callback to be run when various // events occur during a connection's lifetime. The |type| argument determines // the type of event and the meaning of the |value| argument. Callbacks must // ignore unexpected |type| values. // // |SSL_CB_READ_ALERT| is signaled for each alert received, warning or fatal. // The |value| argument is a 16-bit value where the alert level (either // |SSL3_AL_WARNING| or |SSL3_AL_FATAL|) is in the most-significant eight bits // and the alert type (one of |SSL_AD_*|) is in the least-significant eight. // // |SSL_CB_WRITE_ALERT| is signaled for each alert sent. The |value| argument // is constructed as with |SSL_CB_READ_ALERT|. // // |SSL_CB_HANDSHAKE_START| is signaled when a handshake begins. The |value| // argument is always one. // // |SSL_CB_HANDSHAKE_DONE| is signaled when a handshake completes successfully. // The |value| argument is always one. If a handshake False Starts, this event // may be used to determine when the Finished message is received. // // The following event types expose implementation details of the handshake // state machine. Consuming them is deprecated. // // |SSL_CB_ACCEPT_LOOP| (respectively, |SSL_CB_CONNECT_LOOP|) is signaled when // a server (respectively, client) handshake progresses. The |value| argument // is always one. // // |SSL_CB_ACCEPT_EXIT| (respectively, |SSL_CB_CONNECT_EXIT|) is signaled when // a server (respectively, client) handshake completes, fails, or is paused. // The |value| argument is one if the handshake succeeded and <= 0 // otherwise. OPENSSL_EXPORT void SSL_CTX_set_info_callback(SSL_CTX *ctx, void (*cb)(const SSL *ssl, int type, int value)); // SSL_CTX_get_info_callback returns the callback set by // |SSL_CTX_set_info_callback|. OPENSSL_EXPORT void (*SSL_CTX_get_info_callback(SSL_CTX *ctx))(const SSL *ssl, int type, int value); // SSL_set_info_callback configures a callback to be run at various events // during a connection's lifetime. See |SSL_CTX_set_info_callback|. OPENSSL_EXPORT void SSL_set_info_callback(SSL *ssl, void (*cb)(const SSL *ssl, int type, int value)); // SSL_get_info_callback returns the callback set by |SSL_set_info_callback|. OPENSSL_EXPORT void (*SSL_get_info_callback(const SSL *ssl))(const SSL *ssl, int type, int value); // SSL_state_string_long returns the current state of the handshake state // machine as a string. This may be useful for debugging and logging. OPENSSL_EXPORT const char *SSL_state_string_long(const SSL *ssl); #define SSL_SENT_SHUTDOWN 1 #define SSL_RECEIVED_SHUTDOWN 2 // SSL_get_shutdown returns a bitmask with a subset of |SSL_SENT_SHUTDOWN| and // |SSL_RECEIVED_SHUTDOWN| to query whether close_notify was sent or received, // respectively. OPENSSL_EXPORT int SSL_get_shutdown(const SSL *ssl); // SSL_get_peer_signature_algorithm returns the signature algorithm used by the // peer. If not applicable, it returns zero. OPENSSL_EXPORT uint16_t SSL_get_peer_signature_algorithm(const SSL *ssl); // SSL_get_peer_signature_nid sets |psig_nid| to the NID of the digest used by // the peer to sign their TLS messages. Returns one on success and zero on // failure. OPENSSL_EXPORT int SSL_get_peer_signature_nid(const SSL *ssl, int *psig_nid); // SSL_get_peer_signature_type_nid sets |psigtype_nid| to the signature type // used by the peer to sign their TLS messages. The signature type is the NID of // the public key type used for signing. Returns one on success and zero on // failure. OPENSSL_EXPORT int SSL_get_peer_signature_type_nid(const SSL *ssl, int *psigtype_nid); // SSL_get_client_random writes up to |max_out| bytes of the most recent // handshake's client_random to |out| and returns the number of bytes written. // If |max_out| is zero, it returns the size of the client_random. OPENSSL_EXPORT size_t SSL_get_client_random(const SSL *ssl, uint8_t *out, size_t max_out); // SSL_get_server_random writes up to |max_out| bytes of the most recent // handshake's server_random to |out| and returns the number of bytes written. // If |max_out| is zero, it returns the size of the server_random. OPENSSL_EXPORT size_t SSL_get_server_random(const SSL *ssl, uint8_t *out, size_t max_out); // SSL_get_pending_cipher returns the cipher suite for the current handshake or // NULL if one has not been negotiated yet or there is no pending handshake. OPENSSL_EXPORT const SSL_CIPHER *SSL_get_pending_cipher(const SSL *ssl); // SSL_set_retain_only_sha256_of_client_certs, on a server, sets whether only // the SHA-256 hash of peer's certificate should be saved in memory and in the // session. This can save memory, ticket size and session cache space. If // enabled, |SSL_get_peer_certificate| will return NULL after the handshake // completes. See |SSL_SESSION_has_peer_sha256| and // |SSL_SESSION_get0_peer_sha256| to query the hash. OPENSSL_EXPORT void SSL_set_retain_only_sha256_of_client_certs(SSL *ssl, int enable); // SSL_CTX_set_retain_only_sha256_of_client_certs, on a server, sets whether // only the SHA-256 hash of peer's certificate should be saved in memory and in // the session. This can save memory, ticket size and session cache space. If // enabled, |SSL_get_peer_certificate| will return NULL after the handshake // completes. See |SSL_SESSION_has_peer_sha256| and // |SSL_SESSION_get0_peer_sha256| to query the hash. OPENSSL_EXPORT void SSL_CTX_set_retain_only_sha256_of_client_certs(SSL_CTX *ctx, int enable); // SSL_CTX_set_grease_enabled configures whether sockets on |ctx| should enable // GREASE. See RFC 8701. OPENSSL_EXPORT void SSL_CTX_set_grease_enabled(SSL_CTX *ctx, int enabled); // SSL_CTX_set_permute_extensions configures whether sockets on |ctx| should // permute extensions. For now, this is only implemented for the ClientHello. OPENSSL_EXPORT void SSL_CTX_set_permute_extensions(SSL_CTX *ctx, int enabled); // SSL_set_permute_extensions configures whether sockets on |ssl| should // permute extensions. For now, this is only implemented for the ClientHello. OPENSSL_EXPORT void SSL_set_permute_extensions(SSL *ssl, int enabled); // SSL_max_seal_overhead returns the maximum overhead, in bytes, of sealing a // record with |ssl|. OPENSSL_EXPORT size_t SSL_max_seal_overhead(const SSL *ssl); // SSL_CTX_set_false_start_allowed_without_alpn configures whether connections // on |ctx| may use False Start (if |SSL_MODE_ENABLE_FALSE_START| is enabled) // without negotiating ALPN. OPENSSL_EXPORT void SSL_CTX_set_false_start_allowed_without_alpn(SSL_CTX *ctx, int allowed); // SSL_used_hello_retry_request returns one if the TLS 1.3 HelloRetryRequest // message has been either sent by the server or received by the client. It // returns zero otherwise. OPENSSL_EXPORT int SSL_used_hello_retry_request(const SSL *ssl); // SSL_set_jdk11_workaround configures whether to workaround various bugs in // JDK 11's TLS 1.3 implementation by disabling TLS 1.3 for such clients. // // https://bugs.openjdk.java.net/browse/JDK-8211806 // https://bugs.openjdk.java.net/browse/JDK-8212885 // https://bugs.openjdk.java.net/browse/JDK-8213202 OPENSSL_EXPORT void SSL_set_jdk11_workaround(SSL *ssl, int enable); // SSL Stat Counters. // SSL_CTX_sess_connect returns the number of started SSL/TLS handshakes in // client mode. OPENSSL_EXPORT int SSL_CTX_sess_connect(const SSL_CTX *ctx); // SSL_CTX_sess_connect_good returns the number of successfully established // SSL/TLS sessions in client mode. OPENSSL_EXPORT int SSL_CTX_sess_connect_good(const SSL_CTX *ctx); // SSL_CTX_sess_connect_renegotiate returns the number of started renegotiations // in client mode. OPENSSL_EXPORT int SSL_CTX_sess_connect_renegotiate(const SSL_CTX *ctx); // SSL_CTX_sess_accept returns the number of started SSL/TLS handshakes in // server mode. OPENSSL_EXPORT int SSL_CTX_sess_accept(const SSL_CTX *ctx); // SSL_CTX_sess_accept_renegotiate returns zero. AWS-LC does not support server // side renegotiations. OPENSSL_EXPORT int SSL_CTX_sess_accept_renegotiate(const SSL_CTX *ctx); // SSL_CTX_sess_accept_good returns the number of successfully established // SSL/TLS sessions in server mode. OPENSSL_EXPORT int SSL_CTX_sess_accept_good(const SSL_CTX *ctx); // SSL_CTX_sess_hits returns the number of successfully reused sessions, from // both session cache and session tickets. OPENSSL_EXPORT int SSL_CTX_sess_hits(const SSL_CTX *ctx); // SSL_CTX_sess_cb_hits returns the number of successfully retrieved sessions // from the external session cache in server mode. OPENSSL_EXPORT int SSL_CTX_sess_cb_hits(const SSL_CTX *ctx); // SSL_CTX_sess_misses returns the number of sessions proposed by clients that // were not found in the internal session cache in server mode. OPENSSL_EXPORT int SSL_CTX_sess_misses(const SSL_CTX *ctx); // SSL_CTX_sess_timeouts returns the number of sessions proposed by clients and // either found in the internal or external session cache in server mode, but // that were invalid due to timeout. OPENSSL_EXPORT int SSL_CTX_sess_timeouts(const SSL_CTX *ctx); // SSL_CTX_sess_cache_full returns the number of sessions that were removed // because the maximum session cache size was exceeded. OPENSSL_EXPORT int SSL_CTX_sess_cache_full(const SSL_CTX *ctx); // Deprecated functions. // SSL_library_init calls |CRYPTO_library_init| and returns one. OPENSSL_EXPORT int SSL_library_init(void); // SSL_CIPHER_description writes a description of |cipher| into |buf| and // returns |buf|. If |buf| is NULL, it returns a newly allocated string, to be // freed with |OPENSSL_free|, or NULL on error. // // The description includes a trailing newline and has the form: // AES128-SHA Kx=RSA Au=RSA Enc=AES(128) Mac=SHA1 // // Consider |SSL_CIPHER_standard_name| or |SSL_CIPHER_get_name| instead. OPENSSL_EXPORT const char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len); // SSL_CIPHER_get_version returns the string "TLSv1/SSLv3". OPENSSL_EXPORT const char *SSL_CIPHER_get_version(const SSL_CIPHER *cipher); // SSLv23_method calls |TLS_method|. OPENSSL_EXPORT const SSL_METHOD *SSLv23_method(void); // These version-specific methods behave exactly like |TLS_method| and // |DTLS_method| except they also call |SSL_CTX_set_min_proto_version| and // |SSL_CTX_set_max_proto_version| to lock connections to that protocol // version. OPENSSL_EXPORT const SSL_METHOD *TLSv1_method(void); OPENSSL_EXPORT const SSL_METHOD *TLSv1_1_method(void); OPENSSL_EXPORT const SSL_METHOD *TLSv1_2_method(void); OPENSSL_EXPORT const SSL_METHOD *DTLSv1_method(void); OPENSSL_EXPORT const SSL_METHOD *DTLSv1_2_method(void); // These client- and server-specific methods call their corresponding generic // methods. OPENSSL_EXPORT const SSL_METHOD *TLS_server_method(void); OPENSSL_EXPORT const SSL_METHOD *TLS_client_method(void); OPENSSL_EXPORT const SSL_METHOD *SSLv23_server_method(void); OPENSSL_EXPORT const SSL_METHOD *SSLv23_client_method(void); OPENSSL_EXPORT const SSL_METHOD *TLSv1_server_method(void); OPENSSL_EXPORT const SSL_METHOD *TLSv1_client_method(void); OPENSSL_EXPORT const SSL_METHOD *TLSv1_1_server_method(void); OPENSSL_EXPORT const SSL_METHOD *TLSv1_1_client_method(void); OPENSSL_EXPORT const SSL_METHOD *TLSv1_2_server_method(void); OPENSSL_EXPORT const SSL_METHOD *TLSv1_2_client_method(void); OPENSSL_EXPORT const SSL_METHOD *DTLS_server_method(void); OPENSSL_EXPORT const SSL_METHOD *DTLS_client_method(void); OPENSSL_EXPORT const SSL_METHOD *DTLSv1_server_method(void); OPENSSL_EXPORT const SSL_METHOD *DTLSv1_client_method(void); OPENSSL_EXPORT const SSL_METHOD *DTLSv1_2_server_method(void); OPENSSL_EXPORT const SSL_METHOD *DTLSv1_2_client_method(void); // SSL_clear resets |ssl| to allow another connection and returns one on success // or zero on failure. It returns most configuration state but releases memory // associated with the current connection. // // Free |ssl| and create a new one instead. OPENSSL_EXPORT int SSL_clear(SSL *ssl); // SSL_cutthrough_complete calls |SSL_in_false_start|. OPENSSL_EXPORT int SSL_cutthrough_complete(const SSL *ssl); // SSL_num_renegotiations calls |SSL_total_renegotiations|. OPENSSL_EXPORT int SSL_num_renegotiations(const SSL *ssl); // SSL_CTX_get_read_ahead returns 1 if |ctx| is not null and read ahead is // enabled, otherwise it returns 0. OPENSSL_EXPORT int SSL_CTX_get_read_ahead(const SSL_CTX *ctx); // SSL_CTX_set_read_ahead enables or disables read ahead on |ctx|: // if |yes| is 1 it enables read ahead and returns 1, // if |yes| is 0 it disables read ahead and returns 1, // if |yes| is any other value nothing is changed and 0 is returned. // // When read ahead is enabled all future reads will be up to the buffer size configured // with |SSL_CTX_set_default_read_buffer_len|, the default buffer size is // |SSL3_RT_MAX_PLAIN_LENGTH| + |SSL3_RT_MAX_ENCRYPTED_OVERHEAD| = 16704 bytes. // // Read ahead should only be enabled on non-blocking IO sources configured with |SSL_set_bio|. // When read ahead is enabled AWS-LC will make reads for potentially more data than is // avaliable in the BIO with the assumption a partial read will be returned. If // a blocking BIO is used and never returns the read could get stuck forever. OPENSSL_EXPORT int SSL_CTX_set_read_ahead(SSL_CTX *ctx, int yes); // SSL_get_read_ahead returns 1 if |ssl| is not null and read ahead is enabled // otherwise it returns 0. OPENSSL_EXPORT int SSL_get_read_ahead(const SSL *ssl); // SSL_set_read_ahead enables or disables read ahead on |ssl|: // if |yes| is 1 it enables read ahead and returns 1, // if |yes| is 0 it disables read ahead and returns 1, // if |yes| is any other value nothing is changed and 0 is returned. // // When read ahead is enabled all future reads will be for up to the buffer size configured // with |SSL_CTX_set_default_read_buffer_len|. The default buffer size is // |SSL3_RT_MAX_PLAIN_LENGTH| + |SSL3_RT_MAX_ENCRYPTED_OVERHEAD| = 16704 bytes // // Read ahead should only be enabled on non-blocking IO sources configured with |SSL_set_bio|, // when read ahead is enabled AWS-LC will make reads for potentially more data than is // available in the BIO. OPENSSL_EXPORT int SSL_set_read_ahead(SSL *ssl, int yes); // SSL_CTX_set_default_read_buffer_len sets the size of the buffer reads will use on // |ctx| if read ahead has been enabled. 0 is the minimum and 65535 is the maximum. // A |len| of 0 is the same behavior as read ahead turned off: each call to // |SSL_read| reads the amount specified in the TLS Record Header. OPENSSL_EXPORT int SSL_CTX_set_default_read_buffer_len(SSL_CTX *ctx, size_t len); // SSL_set_default_read_buffer_len sets the size of the buffer reads will use on // |ssl| if read ahead has been enabled. 0 is the minimum and 65535 is the maximum. // A |len| of 0 is the same behavior as read ahead turned off: each call to // |SSL_read| reads the amount specified in the TLS Record Header. OPENSSL_EXPORT int SSL_set_default_read_buffer_len(SSL *ssl, size_t len); // SSL_MODE_HANDSHAKE_CUTTHROUGH is the same as SSL_MODE_ENABLE_FALSE_START. #define SSL_MODE_HANDSHAKE_CUTTHROUGH SSL_MODE_ENABLE_FALSE_START // i2d_SSL_SESSION serializes |in|, as described in |i2d_SAMPLE|. // // Use |SSL_SESSION_to_bytes| instead. OPENSSL_EXPORT int i2d_SSL_SESSION(SSL_SESSION *in, uint8_t **pp); // d2i_SSL_SESSION parses a serialized session from the |length| bytes pointed // to by |*pp|, as described in |d2i_SAMPLE|. // // Use |SSL_SESSION_from_bytes| instead. OPENSSL_EXPORT SSL_SESSION *d2i_SSL_SESSION(SSL_SESSION **a, const uint8_t **pp, long length); // i2d_SSL_SESSION_bio serializes |session| and writes the result to |bio|. It // returns the number of bytes written on success and <= 0 on error. OPENSSL_EXPORT int i2d_SSL_SESSION_bio(BIO *bio, const SSL_SESSION *session); // d2i_SSL_SESSION_bio reads a serialized |SSL_SESSION| from |bio| and returns a // newly-allocated |SSL_SESSION| or NULL on error. If |out| is not NULL, it also // frees |*out| and sets |*out| to the new |SSL_SESSION|. OPENSSL_EXPORT SSL_SESSION *d2i_SSL_SESSION_bio(BIO *bio, SSL_SESSION **out); // SSL_CTX_set_tlsext_use_srtp calls |SSL_CTX_set_srtp_profiles|. It returns // zero on success and one on failure. // // WARNING: this function is dangerous because it breaks the usual return value // convention. Use |SSL_CTX_set_srtp_profiles| instead. OPENSSL_EXPORT int SSL_CTX_set_tlsext_use_srtp(SSL_CTX *ctx, const char *profiles); // SSL_set_tlsext_use_srtp calls |SSL_set_srtp_profiles|. It returns zero on // success and one on failure. // // WARNING: this function is dangerous because it breaks the usual return value // convention. Use |SSL_set_srtp_profiles| instead. OPENSSL_EXPORT int SSL_set_tlsext_use_srtp(SSL *ssl, const char *profiles); // SSL_CTX_set1_sigalgs takes |num_values| ints and interprets them as pairs // where the first is the nid of a hash function and the second is an // |EVP_PKEY_*| value. It configures the signature algorithm preferences for // |ctx| based on them and returns one on success or zero on error. // // This API is compatible with OpenSSL. However, BoringSSL-specific code should // prefer |SSL_CTX_set_signing_algorithm_prefs| because it's clearer and it's // more convenient to codesearch for specific algorithm values. OPENSSL_EXPORT int SSL_CTX_set1_sigalgs(SSL_CTX *ctx, const int *values, size_t num_values); // SSL_set1_sigalgs takes |num_values| ints and interprets them as pairs where // the first is the nid of a hash function and the second is an |EVP_PKEY_*| // value. It configures the signature algorithm preferences for |ssl| based on // them and returns one on success or zero on error. // // This API is compatible with OpenSSL. However, BoringSSL-specific code should // prefer |SSL_CTX_set_signing_algorithm_prefs| because it's clearer and it's // more convenient to codesearch for specific algorithm values. OPENSSL_EXPORT int SSL_set1_sigalgs(SSL *ssl, const int *values, size_t num_values); // SSL_CTX_set1_sigalgs_list takes a textual specification of a set of signature // algorithms and configures them on |ctx|. It returns one on success and zero // on error. See // https://www.openssl.org/docs/man1.1.0/man3/SSL_CTX_set1_sigalgs_list.html for // a description of the text format. Also note that TLS 1.3 names (e.g. // "rsa_pkcs1_md5_sha1") can also be used (as in OpenSSL, although OpenSSL // doesn't document that). // // This API is compatible with OpenSSL. However, BoringSSL-specific code should // prefer |SSL_CTX_set_signing_algorithm_prefs| because it's clearer and it's // more convenient to codesearch for specific algorithm values. OPENSSL_EXPORT int SSL_CTX_set1_sigalgs_list(SSL_CTX *ctx, const char *str); // SSL_set1_sigalgs_list takes a textual specification of a set of signature // algorithms and configures them on |ssl|. It returns one on success and zero // on error. See // https://www.openssl.org/docs/man1.1.0/man3/SSL_CTX_set1_sigalgs_list.html for // a description of the text format. Also note that TLS 1.3 names (e.g. // "rsa_pkcs1_md5_sha1") can also be used (as in OpenSSL, although OpenSSL // doesn't document that). // // This API is compatible with OpenSSL. However, BoringSSL-specific code should // prefer |SSL_CTX_set_signing_algorithm_prefs| because it's clearer and it's // more convenient to codesearch for specific algorithm values. OPENSSL_EXPORT int SSL_set1_sigalgs_list(SSL *ssl, const char *str); // SSL_SESSION_print prints the contents of |sess| to |bp|. OPENSSL_EXPORT int SSL_SESSION_print(BIO *bp, const SSL_SESSION *sess); #define SSL_set_app_data(s, arg) (SSL_set_ex_data(s, 0, (char *)(arg))) #define SSL_get_app_data(s) (SSL_get_ex_data(s, 0)) #define SSL_SESSION_set_app_data(s, a) \ (SSL_SESSION_set_ex_data(s, 0, (char *)(a))) #define SSL_SESSION_get_app_data(s) (SSL_SESSION_get_ex_data(s, 0)) #define SSL_CTX_get_app_data(ctx) (SSL_CTX_get_ex_data(ctx, 0)) #define SSL_CTX_set_app_data(ctx, arg) \ (SSL_CTX_set_ex_data(ctx, 0, (char *)(arg))) #define OpenSSL_add_ssl_algorithms() SSL_library_init() #define SSLeay_add_ssl_algorithms() SSL_library_init() #define SSL_get_cipher(ssl) SSL_CIPHER_get_name(SSL_get_current_cipher(ssl)) #define SSL_get_cipher_bits(ssl, out_alg_bits) \ SSL_CIPHER_get_bits(SSL_get_current_cipher(ssl), out_alg_bits) #define SSL_get_cipher_version(ssl) \ SSL_CIPHER_get_version(SSL_get_current_cipher(ssl)) #define SSL_get_cipher_name(ssl) \ SSL_CIPHER_get_name(SSL_get_current_cipher(ssl)) #define SSL_get_time(session) SSL_SESSION_get_time(session) #define SSL_set_time(session, time) SSL_SESSION_set_time((session), (time)) #define SSL_get_timeout(session) SSL_SESSION_get_timeout(session) #define SSL_set_timeout(session, timeout) \ SSL_SESSION_set_timeout((session), (timeout)) // SSL_cache_hit calls |SSL_session_reused|. OPENSSL_EXPORT int SSL_cache_hit(SSL *ssl); // SSL_get_default_timeout returns |SSL_DEFAULT_SESSION_TIMEOUT|. OPENSSL_EXPORT long SSL_get_default_timeout(const SSL *ssl); // SSL_get_version returns a string describing the TLS version used by |ssl|. // For example, "TLSv1.2" or "DTLSv1". OPENSSL_EXPORT const char *SSL_get_version(const SSL *ssl); // SSL_get_all_version_names outputs a list of possible strings // |SSL_get_version| may return in this version of BoringSSL. It writes at most // |max_out| entries to |out| and returns the total number it would have // written, if |max_out| had been large enough. |max_out| may be initially set // to zero to size the output. // // This function is only intended to help initialize tables in callers that want // possible strings pre-declared. This list would not be suitable to set a list // of supported features. It is in no particular order, and may contain // placeholder, experimental, or deprecated values that do not apply to every // caller. Future versions of BoringSSL may also return strings not in this // list, so this does not apply if, say, sending strings across services. OPENSSL_EXPORT size_t SSL_get_all_version_names(const char **out, size_t max_out); // SSL_get_cipher_list returns the name of the |n|th cipher in the output of // |SSL_get_ciphers| or NULL if out of range. Use |SSL_get_ciphers| instead. OPENSSL_EXPORT const char *SSL_get_cipher_list(const SSL *ssl, int n); // SSL_CTX_set_client_cert_cb sets a callback which is called on the client if // the server requests a client certificate and none is configured. On success, // the callback should return one and set |*out_x509| to |*out_pkey| to a leaf // certificate and private key, respectively, passing ownership. It should // return zero to send no certificate and -1 to fail or pause the handshake. If // the handshake is paused, |SSL_get_error| will return // |SSL_ERROR_WANT_X509_LOOKUP|. // // The callback may call |SSL_get0_certificate_types| and // |SSL_get_client_CA_list| for information on the server's certificate request. // // Use |SSL_CTX_set_cert_cb| instead. Configuring intermediate certificates with // this function is confusing. This callback may not be registered concurrently // with |SSL_CTX_set_cert_cb| or |SSL_set_cert_cb|. OPENSSL_EXPORT void SSL_CTX_set_client_cert_cb( SSL_CTX *ctx, int (*cb)(SSL *ssl, X509 **out_x509, EVP_PKEY **out_pkey)); #define SSL_NOTHING SSL_ERROR_NONE #define SSL_WRITING SSL_ERROR_WANT_WRITE #define SSL_READING SSL_ERROR_WANT_READ // SSL_want returns one of the above values to determine what the most recent // operation on |ssl| was blocked on. Use |SSL_get_error| instead. OPENSSL_EXPORT int SSL_want(const SSL *ssl); #define SSL_want_read(ssl) (SSL_want(ssl) == SSL_READING) #define SSL_want_write(ssl) (SSL_want(ssl) == SSL_WRITING) // SSL_get_finished writes up to |count| bytes of the Finished message sent by // |ssl| to |buf|. It returns the total untruncated length or zero if none has // been sent yet. At TLS 1.3 and later, it returns zero. // // Use |SSL_get_tls_unique| instead. OPENSSL_EXPORT size_t SSL_get_finished(const SSL *ssl, void *buf, size_t count); // SSL_get_peer_finished writes up to |count| bytes of the Finished message // received from |ssl|'s peer to |buf|. It returns the total untruncated length // or zero if none has been received yet. At TLS 1.3 and later, it returns // zero. // // Use |SSL_get_tls_unique| instead. OPENSSL_EXPORT size_t SSL_get_peer_finished(const SSL *ssl, void *buf, size_t count); // SSL_alert_type_string returns an unintelligible 1 letter string description // of |value| as an alert type (W or F). Use |SSL_alert_type_string_long| // instead. OPENSSL_EXPORT const char *SSL_alert_type_string(int value); // SSL_alert_desc_string returns an unintelligible 2 letter string description // of |value|. Use |SSL_alert_desc_string_long| instead. OPENSSL_EXPORT const char *SSL_alert_desc_string(int value); // SSL_state_string returns |SSL_state_string_long|. OPENSSL_EXPORT const char *SSL_state_string(const SSL *ssl); // SSL_TXT_* expand to strings. #define SSL_TXT_MEDIUM "MEDIUM" #define SSL_TXT_HIGH "HIGH" #define SSL_TXT_FIPS "FIPS" #define SSL_TXT_kRSA "kRSA" #define SSL_TXT_kDHE "kDHE" #define SSL_TXT_kEDH "kEDH" #define SSL_TXT_kECDHE "kECDHE" #define SSL_TXT_kEECDH "kEECDH" #define SSL_TXT_kPSK "kPSK" #define SSL_TXT_aRSA "aRSA" #define SSL_TXT_aECDSA "aECDSA" #define SSL_TXT_aPSK "aPSK" #define SSL_TXT_DH "DH" #define SSL_TXT_DHE "DHE" #define SSL_TXT_EDH "EDH" #define SSL_TXT_RSA "RSA" #define SSL_TXT_ECDH "ECDH" #define SSL_TXT_ECDHE "ECDHE" #define SSL_TXT_EECDH "EECDH" #define SSL_TXT_ECDSA "ECDSA" #define SSL_TXT_PSK "PSK" #define SSL_TXT_3DES "3DES" #define SSL_TXT_RC4 "RC4" #define SSL_TXT_AES128 "AES128" #define SSL_TXT_AES256 "AES256" #define SSL_TXT_AES "AES" #define SSL_TXT_AES_GCM "AESGCM" #define SSL_TXT_CHACHA20 "CHACHA20" #define SSL_TXT_MD5 "MD5" #define SSL_TXT_SHA1 "SHA1" #define SSL_TXT_SHA "SHA" #define SSL_TXT_SHA256 "SHA256" #define SSL_TXT_SHA384 "SHA384" #define SSL_TXT_SSLV3 "SSLv3" #define SSL_TXT_TLSV1 "TLSv1" #define SSL_TXT_TLSV1_1 "TLSv1.1" #define SSL_TXT_TLSV1_2 "TLSv1.2" #define SSL_TXT_TLSV1_3 "TLSv1.3" #define SSL_TXT_ALL "ALL" #define SSL_TXT_CMPDEF "COMPLEMENTOFDEFAULT" typedef struct ssl_conf_ctx_st SSL_CONF_CTX; // SSL_state returns |SSL_ST_INIT| if a handshake is in progress and |SSL_ST_OK| // otherwise. // // Use |SSL_is_init| instead. OPENSSL_EXPORT int SSL_state(const SSL *ssl); #define SSL_get_state(ssl) SSL_state(ssl) // SSL_set_shutdown causes |ssl| to behave as if the shutdown bitmask (see // |SSL_get_shutdown|) were |mode|. This may be used to skip sending or // receiving close_notify in |SSL_shutdown| by causing the implementation to // believe the events already happened. // // Note: |SSL_set_shutdown| cannot be used to unset a bit that has already // been set in AWS-LC. Doing so will be ignored. // // Use |SSL_CTX_set_quiet_shutdown| instead. OPENSSL_EXPORT void SSL_set_shutdown(SSL *ssl, int mode); // SSL_CTX_set_tmp_ecdh calls |SSL_CTX_set1_groups| with a one-element list // containing |ec_key|'s curve. The remainder of |ec_key| is ignored. OPENSSL_EXPORT int SSL_CTX_set_tmp_ecdh(SSL_CTX *ctx, const EC_KEY *ec_key); // SSL_set_tmp_ecdh calls |SSL_set1_groups| with a one-element list containing // |ec_key|'s curve. The remainder of |ec_key| is ignored. OPENSSL_EXPORT int SSL_set_tmp_ecdh(SSL *ssl, const EC_KEY *ec_key); #if !defined(OPENSSL_NO_FILESYSTEM) // SSL_add_dir_cert_subjects_to_stack lists files in directory |dir|. It calls // |SSL_add_file_cert_subjects_to_stack| on each file and returns one on success // or zero on error. This function is deprecated. OPENSSL_EXPORT int SSL_add_dir_cert_subjects_to_stack(STACK_OF(X509_NAME) *out, const char *dir); #endif // SSL_CTX_enable_tls_channel_id calls |SSL_CTX_set_tls_channel_id_enabled|. OPENSSL_EXPORT int SSL_CTX_enable_tls_channel_id(SSL_CTX *ctx); // SSL_enable_tls_channel_id calls |SSL_set_tls_channel_id_enabled|. OPENSSL_EXPORT int SSL_enable_tls_channel_id(SSL *ssl); // BIO_f_ssl returns a |BIO_METHOD| that can wrap an |SSL*| in a |BIO*|. Note // that this has quite different behaviour from the version in OpenSSL (notably // that it doesn't try to auto renegotiate). // // IMPORTANT: if you are not curl, don't use this. OPENSSL_EXPORT const BIO_METHOD *BIO_f_ssl(void); // BIO_set_ssl sets |ssl| as the underlying connection for |bio|, which must // have been created using |BIO_f_ssl|. If |take_owership| is true, |bio| will // call |SSL_free| on |ssl| when closed. It returns one on success or something // other than one on error. OPENSSL_EXPORT long BIO_set_ssl(BIO *bio, SSL *ssl, int take_owership); // SSL_get_session returns a non-owning pointer to |ssl|'s session. For // historical reasons, which session it returns depends on |ssl|'s state. // // Prior to the start of the initial handshake, it returns the session the // caller set with |SSL_set_session|. After the initial handshake has finished // and if no additional handshakes are in progress, it returns the currently // active session. Its behavior is undefined while a handshake is in progress. // // If trying to add new sessions to an external session cache, use // |SSL_CTX_sess_set_new_cb| instead. In particular, using the callback is // required as of TLS 1.3. For compatibility, this function will return an // unresumable session which may be cached, but will never be resumed. // // If querying properties of the connection, use APIs on the |SSL| object. OPENSSL_EXPORT SSL_SESSION *SSL_get_session(const SSL *ssl); // SSL_get0_session is an alias for |SSL_get_session|. #define SSL_get0_session SSL_get_session // SSL_get1_session acts like |SSL_get_session| but returns a new reference to // the session. OPENSSL_EXPORT SSL_SESSION *SSL_get1_session(SSL *ssl); #define OPENSSL_INIT_NO_LOAD_SSL_STRINGS 0 #define OPENSSL_INIT_LOAD_SSL_STRINGS 0 #define OPENSSL_INIT_SSL_DEFAULT 0 // OPENSSL_init_ssl calls |CRYPTO_library_init| and returns one. OPENSSL_EXPORT int OPENSSL_init_ssl(uint64_t opts, const OPENSSL_INIT_SETTINGS *settings); // The following constants are legacy aliases for RSA-PSS with rsaEncryption // keys. Use the new names instead. #define SSL_SIGN_RSA_PSS_SHA256 SSL_SIGN_RSA_PSS_RSAE_SHA256 #define SSL_SIGN_RSA_PSS_SHA384 SSL_SIGN_RSA_PSS_RSAE_SHA384 #define SSL_SIGN_RSA_PSS_SHA512 SSL_SIGN_RSA_PSS_RSAE_SHA512 // SSL_set_tlsext_status_type configures a client to request OCSP stapling if // |type| is |TLSEXT_STATUSTYPE_ocsp| and disables it otherwise. It returns one // on success and zero if handshake configuration has already been shed. // // Use |SSL_enable_ocsp_stapling| instead. OPENSSL_EXPORT int SSL_set_tlsext_status_type(SSL *ssl, int type); // SSL_get_tlsext_status_type returns |TLSEXT_STATUSTYPE_ocsp| if the client // requested OCSP stapling and |TLSEXT_STATUSTYPE_nothing| otherwise. On the // client, this reflects whether OCSP stapling was enabled via, e.g., // |SSL_set_tlsext_status_type|. On the server, this is determined during the // handshake. It may be queried in callbacks set by |SSL_CTX_set_cert_cb|. The // result is undefined after the handshake completes. OPENSSL_EXPORT int SSL_get_tlsext_status_type(const SSL *ssl); // SSL_set_tlsext_status_ocsp_resp sets the OCSP response. It returns one on // success and zero on error. On success, |ssl| takes ownership of |resp|, which // must have been allocated by |OPENSSL_malloc|. // // Use |SSL_set_ocsp_response| instead. OPENSSL_EXPORT int SSL_set_tlsext_status_ocsp_resp(SSL *ssl, uint8_t *resp, size_t resp_len); // SSL_get_tlsext_status_ocsp_resp sets |*out| to point to the OCSP response // from the server. It returns the length of the response. If there was no // response, it sets |*out| to NULL and returns zero. // // Use |SSL_get0_ocsp_response| instead. // // WARNING: the returned data is not guaranteed to be well formed. OPENSSL_EXPORT size_t SSL_get_tlsext_status_ocsp_resp(const SSL *ssl, const uint8_t **out); // SSL_CTX_set_tlsext_status_cb configures the legacy OpenSSL OCSP callback and // returns one. Though the type signature is the same, this callback has // different behavior for client and server connections: // // For clients, the callback is called after certificate verification. It should // return one for success, zero for a bad OCSP response, and a negative number // for internal error. Instead, handle this as part of certificate verification. // (Historically, OpenSSL verified certificates just before parsing stapled OCSP // responses, but BoringSSL fixes this ordering. All server credentials are // available during verification.) // // Do not use this callback as a server. It is provided for compatibility // purposes only. For servers, it is called to configure server credentials. It // should return |SSL_TLSEXT_ERR_OK| on success, |SSL_TLSEXT_ERR_NOACK| to // ignore OCSP requests, or |SSL_TLSEXT_ERR_ALERT_FATAL| on error. It is usually // used to fetch OCSP responses on demand, which is not ideal. Instead, treat // OCSP responses like other server credentials, such as certificates or SCT // lists. Configure, store, and refresh them eagerly. This avoids downtime if // the CA's OCSP responder is briefly offline. OPENSSL_EXPORT int SSL_CTX_set_tlsext_status_cb(SSL_CTX *ctx, int (*callback)(SSL *ssl, void *arg)); // SSL_CTX_get_tlsext_status_cb returns the legacy OpenSSL OCSP callback if set. OPENSSL_EXPORT int SSL_CTX_get_tlsext_status_cb(SSL_CTX *ctx, int (**callback)(SSL *, void *)); // SSL_CTX_set_tlsext_status_arg sets additional data for // |SSL_CTX_set_tlsext_status_cb|'s callback and returns one. OPENSSL_EXPORT int SSL_CTX_set_tlsext_status_arg(SSL_CTX *ctx, void *arg); // The following symbols are compatibility aliases for reason codes used when // receiving an alert from the peer. Use the other names instead, which fit the // naming convention. // // TODO(davidben): Fix references to |SSL_R_TLSV1_CERTIFICATE_REQUIRED| and // remove the compatibility value. The others come from OpenSSL. #define SSL_R_TLSV1_UNSUPPORTED_EXTENSION \ SSL_R_TLSV1_ALERT_UNSUPPORTED_EXTENSION #define SSL_R_TLSV1_CERTIFICATE_UNOBTAINABLE \ SSL_R_TLSV1_ALERT_CERTIFICATE_UNOBTAINABLE #define SSL_R_TLSV1_UNRECOGNIZED_NAME SSL_R_TLSV1_ALERT_UNRECOGNIZED_NAME #define SSL_R_TLSV1_BAD_CERTIFICATE_STATUS_RESPONSE \ SSL_R_TLSV1_ALERT_BAD_CERTIFICATE_STATUS_RESPONSE #define SSL_R_TLSV1_BAD_CERTIFICATE_HASH_VALUE \ SSL_R_TLSV1_ALERT_BAD_CERTIFICATE_HASH_VALUE #define SSL_R_TLSV1_CERTIFICATE_REQUIRED SSL_R_TLSV1_ALERT_CERTIFICATE_REQUIRED // The following symbols are compatibility aliases for |SSL_GROUP_*|. #define SSL_CURVE_SECP224R1 SSL_GROUP_SECP224R1 #define SSL_CURVE_SECP256R1 SSL_GROUP_SECP256R1 #define SSL_CURVE_SECP384R1 SSL_GROUP_SECP384R1 #define SSL_CURVE_SECP521R1 SSL_GROUP_SECP521R1 #define SSL_CURVE_X25519 SSL_GROUP_X25519 #define SSL_CURVE_SECP256R1_KYBER768_DRAFT00 \ SSL_GROUP_SECP256R1_KYBER768_DRAFT00 #define SSL_CURVE_X25519_KYBER768_DRAFT00 SSL_GROUP_X25519_KYBER768_DRAFT00 // SSL_get_curve_id calls |SSL_get_group_id|. OPENSSL_EXPORT uint16_t SSL_get_curve_id(const SSL *ssl); // SSL_get_curve_name calls |SSL_get_group_name|. OPENSSL_EXPORT const char *SSL_get_curve_name(uint16_t curve_id); // SSL_get_all_curve_names calls |SSL_get_all_group_names|. OPENSSL_EXPORT size_t SSL_get_all_curve_names(const char **out, size_t max_out); // SSL_CTX_set1_curves calls |SSL_CTX_set1_groups|. OPENSSL_EXPORT int SSL_CTX_set1_curves(SSL_CTX *ctx, const int *curves, size_t num_curves); // SSL_set1_curves calls |SSL_set1_groups|. OPENSSL_EXPORT int SSL_set1_curves(SSL *ssl, const int *curves, size_t num_curves); // SSL_CTX_set1_curves_list calls |SSL_CTX_set1_groups_list|. OPENSSL_EXPORT int SSL_CTX_set1_curves_list(SSL_CTX *ctx, const char *curves); // SSL_set1_curves_list calls |SSL_set1_groups_list|. OPENSSL_EXPORT int SSL_set1_curves_list(SSL *ssl, const char *curves); // No-op Configuration Flags // // The following flags do nothing and are included only to make it easier to // compile code with AWS-LC. Flags defined within this section are not // configurable and the state of AWS-LC does not change when used. // SSL_MODE_AUTO_RETRY is ON by default in AWS-LC and OpenSSL. This will let // the application automatically retry if the transport is blocking. // Read/write operations will only return after the handshake and successful // completion. #define SSL_MODE_AUTO_RETRY 0 // SSL_MODE_RELEASE_BUFFERS is ON by default in AWS-LC. When a read/write // buffer is no longer needed for a given SSL, the memory holding it is // released. #define SSL_MODE_RELEASE_BUFFERS 0 // SSL_MODE_SEND_CLIENTHELLO_TIME is OFF by default in AWS-LC. Turning this ON // in OpenSSL sends the current time in the Random fields of the ClientHello // records is sent. #define SSL_MODE_SEND_CLIENTHELLO_TIME 0 // SSL_MODE_SEND_SERVERHELLO_TIME is ON by default in AWS-LC. The current time // in the Random fields of the ServerHello records is sent. #define SSL_MODE_SEND_SERVERHELLO_TIME 0 // SSL_OP_ALL is OFF by default in AWS-LC. Turning this ON in OpenSSL enables // all the less harmless bug workarounds that OpenSSL has had historically. // // See https://www.openssl.org/docs/manmaster/man3/SSL_CTX_set_options.html // for more details. #define SSL_OP_ALL 0 // SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION is OFF by default in AWS-LC. // Turning this ON in OpenSSL allows legacy insecure renegotiation for // unpatched clients and servers and is intentionally not supported in AWS-LC. #define SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION 0 // SSL_OP_CRYPTOPRO_TLSEXT_BUG is OFF by default in AWS-LC. Turning this ON in // OpenSSL lets the server add a server-hello extension from early version of // the cryptopro draft, when the GOST ciphersuite is negotiated. Required for // interoperability with CryptoPro CSP 3.x. // // Note: AWS-LC does not support GOST ciphersuites. #define SSL_OP_CRYPTOPRO_TLSEXT_BUG 0 // SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS is ON by default in AWS-LC. This // disables a countermeasure against a SSL 3.0/TLS 1.0 protocol vulnerability // affecting CBC ciphers, which cannot be handled by some broken SSL // implementations. #define SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS 0 // SSL_OP_LEGACY_SERVER_CONNECT is OFF by default in AWS-LC. Turning this ON in // OpenSSL allows legacy insecure renegotiation between OpenSSL and unpatched // servers "only" and is intentionally not supported in AWS-LC. #define SSL_OP_LEGACY_SERVER_CONNECT 0 // SSL_OP_NO_COMPRESSION is ON by default in AWS-LC. AWS-LC intentionally does // not support TLS record compressions. #define SSL_OP_NO_COMPRESSION 0 // SSL_OP_NO_RENEGOTIATION is ON by default in AWS-LC. This disables all // renegotiation in TLSv1.2 and earlier. // To enable renegotiation, use |SSL_set_renegotiate_mode|. #define SSL_OP_NO_RENEGOTIATION 0 // ssl_renegotiate_never is the default // SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION is ON by default in AWS-LC. // This always starts a new session when performing renegotiation as a server // (i.e., session resumption requests are only accepted in the initial // handshake). // There is no support for renegototiation for a server in AWS-LC. #define SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION 0 // SSL_OP_NO_SSLv2 is ON by default in AWS-LC. There is no support for SSLv2 in // AWS-LC #define SSL_OP_NO_SSLv2 0 // SSL_OP_NO_SSLv3 is ON by default in AWS-LC. There is no support for SSLv3 in // AWS-LC #define SSL_OP_NO_SSLv3 0 // SSL_OP_SAFARI_ECDHE_ECDSA_BUG is OFF by default in AWS-LC. Turning this ON in // OpenSSL lets the application not prefer ECDHE-ECDSA ciphers when the client // appears to be Safari on OSX. // // Note: OS X 10.8..10.8.3 broke support for ECDHE-ECDSA ciphers. #define SSL_OP_SAFARI_ECDHE_ECDSA_BUG 0 // SSL_OP_TLSEXT_PADDING is OFF by default in AWS-LC. Turning this ON in OpenSSL // adds a padding extension to ensure the ClientHello size is never between 256 // and 511 bytes in length. This is needed as a workaround for F5 terminators. #define SSL_OP_TLSEXT_PADDING 0 // SSL_OP_TLS_ROLLBACK_BUG is OFF by default in AWS-LC. Turning this ON in // OpenSSL disables version rollback attack detection and is intentionally not // supported in AWS-LC. #define SSL_OP_TLS_ROLLBACK_BUG 0 // SSL_VERIFY_CLIENT_ONCE is OFF by default in AWS-LC. Turning this ON in // OpenSSL only requests a client certificate on the initial TLS handshake and // is intentionally not supported in AWS-LC. #define SSL_VERIFY_CLIENT_ONCE 0 // SSL_OP_TLSEXT_PADDING is OFF by default in AWS-LC. Turning this ON in // OpenSSL adds a padding extension to ensure the ClientHello size is never // between 256 and 511 bytes in length. This is needed as a workaround for some // implementations. #define SSL_OP_TLSEXT_PADDING 0 // SSL_OP_SAFARI_ECDHE_ECDSA_BUG is OFF by default in AWS-LC. Turning this ON in // OpenSSL defers ECDHE-ECDSA ciphers when the client appears to be Safari on // OSX. OSX 10.8 ~ 10.8.3 has broken support for ECDHE-ECDSA ciphers. #define SSL_OP_SAFARI_ECDHE_ECDSA_BUG 0 // SSL_OP_CRYPTOPRO_TLSEXT_BUG is OFF by default in AWS-LC. Turning this ON in // OpenSSL adds the server-hello extension from the early version of cryptopro // draft when GOST ciphersuite is negotiated (which we don't support). #define SSL_OP_CRYPTOPRO_TLSEXT_BUG 0 // The following have no effect in both AWS-LC and OpenSSL. #define SSL_OP_EPHEMERAL_RSA 0 #define SSL_OP_MICROSOFT_BIG_SSLV3_BUFFER 0 #define SSL_OP_MICROSOFT_SESS_ID_BUG 0 #define SSL_OP_MSIE_SSLV2_RSA_PADDING 0 #define SSL_OP_NETSCAPE_CA_DN_BUG 0 #define SSL_OP_NETSCAPE_CHALLENGE_BUG 0 #define SSL_OP_NETSCAPE_DEMO_CIPHER_CHANGE_BUG 0 #define SSL_OP_NETSCAPE_REUSE_CIPHER_CHANGE_BUG 0 #define SSL_OP_PKCS1_CHECK_1 0 #define SSL_OP_PKCS1_CHECK_2 0 #define SSL_OP_SINGLE_DH_USE 0 #define SSL_OP_SINGLE_ECDH_USE 0 #define SSL_OP_SSLEAY_080_CLIENT_DH_BUG 0 #define SSL_OP_SSLREF2_REUSE_CERT_TYPE_BUG 0 #define SSL_OP_TLS_BLOCK_PADDING_BUG 0 #define SSL_OP_TLS_D5_BUG 0 // |SSL_COMP| and |COMP_METHOD| No-ops [Deprecated]. // // Support for SSL compression has been completely removed and the following // functions are only provided as no-ops for easier compatibility. typedef void COMP_METHOD; typedef struct ssl_comp_st SSL_COMP; // SSL_COMP_get_compression_methods returns NULL. OPENSSL_EXPORT OPENSSL_DEPRECATED STACK_OF(SSL_COMP) * SSL_COMP_get_compression_methods(void); // SSL_COMP_add_compression_method returns one. OPENSSL_EXPORT OPENSSL_DEPRECATED int SSL_COMP_add_compression_method( int id, COMP_METHOD *cm); // SSL_COMP_get_name returns NULL. OPENSSL_EXPORT OPENSSL_DEPRECATED const char *SSL_COMP_get_name( const COMP_METHOD *comp); // SSL_COMP_get0_name returns the |name| member of |comp|. OPENSSL_EXPORT OPENSSL_DEPRECATED const char *SSL_COMP_get0_name( const SSL_COMP *comp); // SSL_COMP_get_id returns the |id| member of |comp|. OPENSSL_EXPORT OPENSSL_DEPRECATED int SSL_COMP_get_id(const SSL_COMP *comp); // SSL_COMP_free_compression_methods does nothing. OPENSSL_EXPORT OPENSSL_DEPRECATED void SSL_COMP_free_compression_methods(void); // SSL_get_current_compression returns NULL. OPENSSL_EXPORT OPENSSL_DEPRECATED const COMP_METHOD * SSL_get_current_compression(SSL *ssl); // SSL_get_current_expansion returns NULL. OPENSSL_EXPORT OPENSSL_DEPRECATED const COMP_METHOD *SSL_get_current_expansion( SSL *ssl); struct ssl_comp_st { int id; const char *name; char *method; }; DEFINE_STACK_OF(SSL_COMP) // FFDH Ciphersuite No-ops [Deprecated]. // // AWS-LC does not support the use of FFDH cipher suites in libssl. The // following functions are only provided as no-ops for easier compatibility. // SSL_get_server_tmp_key returns zero. This was deprecated as part of the // removal of |EVP_PKEY_DH|. OPENSSL_EXPORT OPENSSL_DEPRECATED int SSL_get_server_tmp_key( SSL *ssl, EVP_PKEY **out_key); // SSL_CTX_set_tmp_dh returns 1. // // TODO (CryptoAlg-2398): Add |OPENSSL_DEPRECATED|. nginx defines -Werror and // depends on this. OPENSSL_EXPORT int SSL_CTX_set_tmp_dh(SSL_CTX *ctx, const DH *dh); // SSL_set_tmp_dh returns 1. OPENSSL_EXPORT OPENSSL_DEPRECATED int SSL_set_tmp_dh(SSL *ssl, const DH *dh); // SSL_CTX_set_tmp_dh_callback does nothing. OPENSSL_EXPORT OPENSSL_DEPRECATED void SSL_CTX_set_tmp_dh_callback( SSL_CTX *ctx, DH *(*cb)(SSL *ssl, int is_export, int keylength)); // SSL_set_tmp_dh_callback does nothing. OPENSSL_EXPORT OPENSSL_DEPRECATED void SSL_set_tmp_dh_callback( SSL *ssl, DH *(*cb)(SSL *ssl, int is_export, int keylength)); // SSL_CTX_set_dh_auto does nothing and returns 0 for error. OPENSSL_EXPORT OPENSSL_DEPRECATED long SSL_CTX_set_dh_auto(SSL_CTX *ctx, int onoff); // Security Levels No-ops [Deprecated]. // // OpenSSL has the option to set “security levels”. Security levels can be // defined either at compile time with "-DOPENSSL_TLS_SECURITY_LEVEL=level" or // at runtime with |SSL_CTX_set_security_level|. AWS-LC does not support this // and the security level APIs are no-ops within AWS-LC. AWS-LC intentionally // limits the knobs a consumer can tweak in regards to security. // SSL_CTX_get_security_level returns 0. This is only to maintain compatibility // with OpenSSL and no security assumptions should be based on the number this // function returns. // // Per OpenSSL's definition of Level 0, 1, and 2: // // Level 0: // Everything is permitted. This retains compatibility with previous versions of // OpenSSL. // // Level 1 // The security level corresponds to a minimum of 80 bits of security. Any // parameters offering below 80 bits of security are excluded. As a result RSA, // DSA and DH keys shorter than 1024 bits and ECC keys shorter than 160 bits are // prohibited. All export cipher suites are prohibited since they all offer less // than 80 bits of security. SSL version 2 is prohibited. Any cipher suite using // MD5 for the MAC is also prohibited. // // Level 2 // Security level set to 112 bits of security. As a result RSA, DSA and DH keys // shorter than 2048 bits and ECC keys shorter than 224 bits are prohibited. In // addition to the level 1 exclusions any cipher suite using RC4 is also // prohibited. SSL version 3 is also not allowed. Compression is disabled. // // AWS-LC's libssl doesn't support SSLv2 or SSLv3 and we have no support for MD5 // or RC4 related cipher suites. However, we don't directly prohibit 512 bit RSA // keys like Level 1 in OpenSSL states. Since this function is only retained for // OpenSSL compatibility, we set the returned value to 0. OPENSSL_EXPORT OPENSSL_DEPRECATED int SSL_CTX_get_security_level( const SSL_CTX *ctx); // SSL_CTX_set_security_level does nothing. See documentation in // |SSL_CTX_get_security_level| about implied security levels for AWS-LC. OPENSSL_EXPORT OPENSSL_DEPRECATED void SSL_CTX_set_security_level( const SSL_CTX *ctx, int level); // General No-op Functions [Deprecated]. // SSL_set_state does nothing. OPENSSL_EXPORT OPENSSL_DEPRECATED void SSL_set_state(SSL *ssl, int state); // SSL_get_shared_ciphers writes an empty string to |buf| and returns a // pointer to |buf|, or NULL if |len| is less than or equal to zero. // // TODO (CryptoAlg-2398): Add |OPENSSL_DEPRECATED|. nginx defines -Werror and // depends on this. OPENSSL_EXPORT char *SSL_get_shared_ciphers(const SSL *ssl, char *buf, int len); // SSL_get_shared_sigalgs returns zero. OPENSSL_EXPORT OPENSSL_DEPRECATED int SSL_get_shared_sigalgs( SSL *ssl, int idx, int *psign, int *phash, int *psignandhash, uint8_t *rsig, uint8_t *rhash); // SSL_CTX_set_ecdh_auto returns one. This is also a no-op in OpenSSL. #define SSL_CTX_set_ecdh_auto(ctx, onoff) 1 // SSL_set_ecdh_auto returns one. This is also a no-op in OpenSSL. #define SSL_set_ecdh_auto(ssl, onoff) 1 // ERR_load_SSL_strings does nothing in AWS-LC and OpenSSL. OPENSSL_EXPORT OPENSSL_DEPRECATED void ERR_load_SSL_strings(void); // SSL_load_error_strings does nothing in AWS-LC and OpenSSL. // // TODO (CryptoAlg-2398): Add |OPENSSL_DEPRECATED|. nginx defines -Werror and // depends on this. OPENSSL_EXPORT void SSL_load_error_strings(void); // SSL TMP_RSA No-ops [Deprecated]. // // Support for these methods was intentionally removed due to them being the // center of the FREAK attack. These functions are also no-ops in OpenSSL. // FREAK Attack: https://freakattack.com/ // SSL_CTX_set_tmp_rsa_callback does nothing. OPENSSL_EXPORT OPENSSL_DEPRECATED void SSL_CTX_set_tmp_rsa_callback( SSL_CTX *ctx, RSA *(*cb)(SSL *ssl, int is_export, int keylength)); // SSL_set_tmp_rsa_callback does nothing. OPENSSL_EXPORT OPENSSL_DEPRECATED void SSL_set_tmp_rsa_callback( SSL *ssl, RSA *(*cb)(SSL *ssl, int is_export, int keylength)); // SSL_CTX_need_tmp_RSA returns zero. OPENSSL_EXPORT OPENSSL_DEPRECATED int SSL_CTX_need_tmp_RSA(const SSL_CTX *ctx); // SSL_need_tmp_RSA returns zero. OPENSSL_EXPORT OPENSSL_DEPRECATED int SSL_need_tmp_RSA(const SSL *ssl); // SSL_CTX_set_tmp_rsa returns one. OPENSSL_EXPORT OPENSSL_DEPRECATED int SSL_CTX_set_tmp_rsa(SSL_CTX *ctx, const RSA *rsa); // SSL_set_tmp_rsa returns one. OPENSSL_EXPORT OPENSSL_DEPRECATED int SSL_set_tmp_rsa(SSL *ssl, const RSA *rsa); // Nodejs compatibility section (hidden). // // These defines exist for node.js, with the hope that we can eliminate the // need for them over time. #define SSLerr(function, reason) \ ERR_put_error(ERR_LIB_SSL, 0, reason, __FILE__, __LINE__) // Preprocessor compatibility section (hidden). // // Historically, a number of APIs were implemented in OpenSSL as macros and // constants to 'ctrl' functions. To avoid breaking #ifdefs in consumers, this // section defines a number of legacy macros. // // Although using either the CTRL values or their wrapper macros in #ifdefs is // still supported, the CTRL values may not be passed to |SSL_ctrl| and // |SSL_CTX_ctrl|. Call the functions (previously wrapper macros) instead. // // See PORTING.md in the BoringSSL source tree for a table of corresponding // functions. // https://boringssl.googlesource.com/boringssl/+/master/PORTING.md#Replacements-for-values #define DTLS_CTRL_GET_TIMEOUT doesnt_exist #define DTLS_CTRL_HANDLE_TIMEOUT doesnt_exist #define SSL_CTRL_CHAIN doesnt_exist #define SSL_CTRL_CHAIN_CERT doesnt_exist #define SSL_CTRL_CHANNEL_ID doesnt_exist #define SSL_CTRL_CLEAR_EXTRA_CHAIN_CERTS doesnt_exist #define SSL_CTRL_CLEAR_MODE doesnt_exist #define SSL_CTRL_CLEAR_OPTIONS doesnt_exist #define SSL_CTRL_EXTRA_CHAIN_CERT doesnt_exist #define SSL_CTRL_GET_CHAIN_CERTS doesnt_exist #define SSL_CTRL_GET_CHANNEL_ID doesnt_exist #define SSL_CTRL_GET_CLIENT_CERT_TYPES doesnt_exist #define SSL_CTRL_GET_EXTRA_CHAIN_CERTS doesnt_exist #define SSL_CTRL_GET_MAX_CERT_LIST doesnt_exist #define SSL_CTRL_GET_NUM_RENEGOTIATIONS doesnt_exist #define SSL_CTRL_GET_READ_AHEAD doesnt_exist #define SSL_CTRL_GET_RI_SUPPORT doesnt_exist #define SSL_CTRL_GET_SERVER_TMP_KEY doesnt_exist #define SSL_CTRL_GET_SESSION_REUSED doesnt_exist #define SSL_CTRL_GET_SESS_CACHE_MODE doesnt_exist #define SSL_CTRL_GET_SESS_CACHE_SIZE doesnt_exist #define SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB doesnt_exist #define SSL_CTRL_GET_TLSEXT_TICKET_KEYS doesnt_exist #define SSL_CTRL_GET_TOTAL_RENEGOTIATIONS doesnt_exist #define SSL_CTRL_MODE doesnt_exist #define SSL_CTRL_NEED_TMP_RSA doesnt_exist #define SSL_CTRL_OPTIONS doesnt_exist #define SSL_CTRL_SESS_NUMBER doesnt_exist #define SSL_CTRL_SET_CURVES doesnt_exist #define SSL_CTRL_SET_CURVES_LIST doesnt_exist #define SSL_CTRL_SET_GROUPS doesnt_exist #define SSL_CTRL_SET_GROUPS_LIST doesnt_exist #define SSL_CTRL_SET_ECDH_AUTO doesnt_exist #define SSL_CTRL_SET_MAX_CERT_LIST doesnt_exist #define SSL_CTRL_SET_MAX_SEND_FRAGMENT doesnt_exist #define SSL_CTRL_SET_MSG_CALLBACK doesnt_exist #define SSL_CTRL_SET_MSG_CALLBACK_ARG doesnt_exist #define SSL_CTRL_SET_MTU doesnt_exist #define SSL_CTRL_SET_READ_AHEAD doesnt_exist #define SSL_CTRL_SET_SESS_CACHE_MODE doesnt_exist #define SSL_CTRL_SET_SESS_CACHE_SIZE doesnt_exist #define SSL_CTRL_SET_TLSEXT_HOSTNAME doesnt_exist #define SSL_CTRL_SET_TLSEXT_SERVERNAME_ARG doesnt_exist #define SSL_CTRL_SET_TLSEXT_SERVERNAME_CB doesnt_exist #define SSL_CTRL_SET_TLSEXT_TICKET_KEYS doesnt_exist #define SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB doesnt_exist #define SSL_CTRL_SET_TMP_DH doesnt_exist #define SSL_CTRL_SET_TMP_DH_CB doesnt_exist #define SSL_CTRL_SET_TMP_ECDH doesnt_exist #define SSL_CTRL_SET_TMP_ECDH_CB doesnt_exist #define SSL_CTRL_SET_TMP_RSA doesnt_exist #define SSL_CTRL_SET_TMP_RSA_CB doesnt_exist // |BORINGSSL_PREFIX| already makes each of these symbols into macros, so there // is no need to define conflicting macros. #if !defined(BORINGSSL_PREFIX) #define DTLSv1_get_timeout DTLSv1_get_timeout #define DTLSv1_handle_timeout DTLSv1_handle_timeout #define SSL_CTX_add0_chain_cert SSL_CTX_add0_chain_cert #define SSL_CTX_add1_chain_cert SSL_CTX_add1_chain_cert #define SSL_CTX_add_extra_chain_cert SSL_CTX_add_extra_chain_cert #define SSL_CTX_build_cert_chain SSL_CTX_build_cert_chain #define SSL_CTX_clear_extra_chain_certs SSL_CTX_clear_extra_chain_certs #define SSL_CTX_clear_chain_certs SSL_CTX_clear_chain_certs #define SSL_CTX_clear_mode SSL_CTX_clear_mode #define SSL_CTX_clear_options SSL_CTX_clear_options #define SSL_CTX_get0_chain_certs SSL_CTX_get0_chain_certs #define SSL_CTX_get_extra_chain_certs SSL_CTX_get_extra_chain_certs #define SSL_CTX_get_max_cert_list SSL_CTX_get_max_cert_list #define SSL_CTX_get_mode SSL_CTX_get_mode #define SSL_CTX_get_options SSL_CTX_get_options #define SSL_CTX_get_read_ahead SSL_CTX_get_read_ahead #define SSL_CTX_get_session_cache_mode SSL_CTX_get_session_cache_mode #define SSL_CTX_get_tlsext_status_cb SSL_CTX_get_tlsext_status_cb #define SSL_CTX_get_tlsext_ticket_keys SSL_CTX_get_tlsext_ticket_keys #define SSL_CTX_need_tmp_RSA SSL_CTX_need_tmp_RSA #define SSL_CTX_sess_get_cache_size SSL_CTX_sess_get_cache_size #define SSL_CTX_sess_number SSL_CTX_sess_number #define SSL_CTX_sess_set_cache_size SSL_CTX_sess_set_cache_size #define SSL_CTX_set0_chain SSL_CTX_set0_chain #define SSL_CTX_set1_chain SSL_CTX_set1_chain #define SSL_CTX_set1_curves SSL_CTX_set1_curves #define SSL_CTX_set1_groups SSL_CTX_set1_groups #define SSL_CTX_set_max_cert_list SSL_CTX_set_max_cert_list #define SSL_CTX_set_max_send_fragment SSL_CTX_set_max_send_fragment #define SSL_CTX_set_min_proto_version SSL_CTX_set_min_proto_version #define SSL_CTX_set_mode SSL_CTX_set_mode #define SSL_CTX_set_msg_callback_arg SSL_CTX_set_msg_callback_arg #define SSL_CTX_set_options SSL_CTX_set_options #define SSL_CTX_set_read_ahead SSL_CTX_set_read_ahead #define SSL_CTX_set_session_cache_mode SSL_CTX_set_session_cache_mode #define SSL_CTX_set_tlsext_servername_arg SSL_CTX_set_tlsext_servername_arg #define SSL_CTX_set_tlsext_servername_callback \ SSL_CTX_set_tlsext_servername_callback #define SSL_CTX_set_tlsext_ticket_key_cb SSL_CTX_set_tlsext_ticket_key_cb #define SSL_CTX_set_tlsext_ticket_keys SSL_CTX_set_tlsext_ticket_keys #define SSL_CTX_set_tmp_dh SSL_CTX_set_tmp_dh #define SSL_CTX_set_tmp_ecdh SSL_CTX_set_tmp_ecdh #define SSL_CTX_set_tmp_rsa SSL_CTX_set_tmp_rsa #define SSL_add0_chain_cert SSL_add0_chain_cert #define SSL_add1_chain_cert SSL_add1_chain_cert #define SSL_build_cert_chain SSL_build_cert_chain #define SSL_clear_chain_certs SSL_clear_chain_certs #define SSL_clear_mode SSL_clear_mode #define SSL_clear_options SSL_clear_options #define SSL_get0_certificate_types SSL_get0_certificate_types #define SSL_get0_chain_certs SSL_get0_chain_certs #define SSL_get_max_cert_list SSL_get_max_cert_list #define SSL_get_mode SSL_get_mode #define SSL_get_options SSL_get_options #define SSL_get_secure_renegotiation_support \ SSL_get_secure_renegotiation_support #define SSL_need_tmp_RSA SSL_need_tmp_RSA #define SSL_num_renegotiations SSL_num_renegotiations #define SSL_session_reused SSL_session_reused #define SSL_set0_chain SSL_set0_chain #define SSL_set1_chain SSL_set1_chain #define SSL_set1_curves SSL_set1_curves #define SSL_set1_groups SSL_set1_groups #define SSL_set_max_cert_list SSL_set_max_cert_list #define SSL_set_max_send_fragment SSL_set_max_send_fragment #define SSL_set_mode SSL_set_mode #define SSL_set_msg_callback_arg SSL_set_msg_callback_arg #define SSL_set_mtu SSL_set_mtu #define SSL_set_options SSL_set_options #define SSL_set_tlsext_host_name SSL_set_tlsext_host_name #define SSL_set_tmp_dh SSL_set_tmp_dh #define SSL_set_tmp_ecdh SSL_set_tmp_ecdh #define SSL_set_tmp_rsa SSL_set_tmp_rsa #define SSL_total_renegotiations SSL_total_renegotiations #endif // !defined(BORINGSSL_PREFIX) #if defined(__cplusplus) } // extern C #if !defined(BORINGSSL_NO_CXX) extern "C++" { BSSL_NAMESPACE_BEGIN BORINGSSL_MAKE_DELETER(SSL, SSL_free) BORINGSSL_MAKE_DELETER(SSL_CTX, SSL_CTX_free) BORINGSSL_MAKE_UP_REF(SSL_CTX, SSL_CTX_up_ref) BORINGSSL_MAKE_DELETER(SSL_ECH_KEYS, SSL_ECH_KEYS_free) BORINGSSL_MAKE_UP_REF(SSL_ECH_KEYS, SSL_ECH_KEYS_up_ref) BORINGSSL_MAKE_DELETER(SSL_SESSION, SSL_SESSION_free) BORINGSSL_MAKE_UP_REF(SSL_SESSION, SSL_SESSION_up_ref) // *** DEPRECATED EXPERIMENT — DO NOT USE *** // // Split handshakes. // // WARNING: This mechanism is deprecated and should not be used. It is very // fragile and difficult to use correctly. The relationship between // configuration options across the two halves is ill-defined and not // self-consistent. Additionally, version skew across the two halves risks // unusual behavior and connection failure. New development should use the // handshake hints API. Existing deployments should migrate to handshake hints // to reduce the risk of service outages. // // Split handshakes allows the handshake part of a TLS connection to be // performed in a different process (or on a different machine) than the data // exchange. This only applies to servers. // // In the first part of a split handshake, an |SSL| (where the |SSL_CTX| has // been configured with |SSL_CTX_set_handoff_mode|) is used normally. Once the // ClientHello message has been received, the handshake will stop and // |SSL_get_error| will indicate |SSL_ERROR_HANDOFF|. At this point (and only // at this point), |SSL_serialize_handoff| can be called to write the “handoff” // state of the connection. // // Elsewhere, a fresh |SSL| can be used with |SSL_apply_handoff| to continue // the connection. The connection from the client is fed into this |SSL|, and // the handshake resumed. When the handshake stops again and |SSL_get_error| // indicates |SSL_ERROR_HANDBACK|, |SSL_serialize_handback| should be called to // serialize the state of the handshake again. // // Back at the first location, a fresh |SSL| can be used with // |SSL_apply_handback|. Then the client's connection can be processed mostly // as normal. // // Lastly, when a connection is in the handoff state, whether or not // |SSL_serialize_handoff| is called, |SSL_decline_handoff| will move it back // into a normal state where the connection can proceed without impact. // // WARNING: Currently only works with TLS 1.0–1.2. // WARNING: The serialisation formats are not yet stable: version skew may be // fatal. // WARNING: The handback data contains sensitive key material and must be // protected. // WARNING: Some calls on the final |SSL| will not work. Just as an example, // calls like |SSL_get0_session_id_context| and |SSL_get_privatekey| won't // work because the certificate used for handshaking isn't available. // WARNING: |SSL_apply_handoff| may trigger “msg” callback calls. OPENSSL_EXPORT void SSL_CTX_set_handoff_mode(SSL_CTX *ctx, bool on); OPENSSL_EXPORT void SSL_set_handoff_mode(SSL *SSL, bool on); OPENSSL_EXPORT bool SSL_serialize_handoff(const SSL *ssl, CBB *out, SSL_CLIENT_HELLO *out_hello); OPENSSL_EXPORT bool SSL_decline_handoff(SSL *ssl); OPENSSL_EXPORT bool SSL_apply_handoff(SSL *ssl, Span handoff); OPENSSL_EXPORT bool SSL_serialize_handback(const SSL *ssl, CBB *out); OPENSSL_EXPORT bool SSL_apply_handback(SSL *ssl, Span handback); // SSL_get_traffic_secrets sets |*out_read_traffic_secret| and // |*out_write_traffic_secret| to reference the TLS 1.3 traffic secrets for // |ssl|. This function is only valid on TLS 1.3 connections that have // completed the handshake. It returns true on success and false on error. OPENSSL_EXPORT bool SSL_get_traffic_secrets( const SSL *ssl, Span *out_read_traffic_secret, Span *out_write_traffic_secret); // SSL_CTX_set_aes_hw_override_for_testing sets |override_value| to // override checking for aes hardware support for testing. If |override_value| // is set to true, the library will behave as if aes hardware support is // present. If it is set to false, the library will behave as if aes hardware // support is not present. OPENSSL_EXPORT void SSL_CTX_set_aes_hw_override_for_testing( SSL_CTX *ctx, bool override_value); // SSL_set_aes_hw_override_for_testing acts the same as // |SSL_CTX_set_aes_override_for_testing| but only configures a single |SSL*|. OPENSSL_EXPORT void SSL_set_aes_hw_override_for_testing(SSL *ssl, bool override_value); BSSL_NAMESPACE_END } // extern C++ #endif // !defined(BORINGSSL_NO_CXX) #endif // Define some reason codes from OpenSSL to ease compilation against AWS-LC. // None of these reason codes are actually returned by AWS-LC. // Code paths that condition on these codes might break. Grep for // |ERR_GET_REASON| and |ERR_GET_FUNC| to inspect. // Per C99 standard 6.8.4.2.1 the controlling expression in the switch statement // has integer type. Hence it can handle quite large offset values assuming just // two bytes. Just pick a somewhat large random value to prevent collisions on // later macro definitions from upstream. #define SSL_R_BACKWARDS_COMPATABILITY_OFFSET 0x5D21 // See CryptoAlg-954. #define SSL_R_NO_PROTOCOLS_AVAILABLE (SSL_R_BACKWARDS_COMPATABILITY_OFFSET + 1) #define SSL_R_BAD_PROTOCOL_VERSION_NUMBER \ (SSL_R_BACKWARDS_COMPATABILITY_OFFSET + 2) #define SSL_R_UNSUPPORTED_SSL_VERSION (SSL_R_BACKWARDS_COMPATABILITY_OFFSET + 3) #define SSL_R_VERSION_TOO_HIGH (SSL_R_BACKWARDS_COMPATABILITY_OFFSET + 4) #define SSL_R_VERSION_TOO_LOW (SSL_R_BACKWARDS_COMPATABILITY_OFFSET + 5) #define SSL_R_APP_DATA_IN_HANDSHAKE 100 #define SSL_R_ATTEMPT_TO_REUSE_SESSION_IN_DIFFERENT_CONTEXT 101 #define SSL_R_BAD_ALERT 102 #define SSL_R_BAD_CHANGE_CIPHER_SPEC 103 #define SSL_R_BAD_DATA_RETURNED_BY_CALLBACK 104 #define SSL_R_BAD_DH_P_LENGTH 105 #define SSL_R_BAD_DIGEST_LENGTH 106 #define SSL_R_BAD_ECC_CERT 107 #define SSL_R_BAD_ECPOINT 108 #define SSL_R_BAD_HANDSHAKE_RECORD 109 #define SSL_R_BAD_HELLO_REQUEST 110 #define SSL_R_BAD_LENGTH 111 #define SSL_R_BAD_PACKET_LENGTH 112 #define SSL_R_BAD_RSA_ENCRYPT 113 #define SSL_R_BAD_SIGNATURE 114 #define SSL_R_BAD_SRTP_MKI_VALUE 115 #define SSL_R_BAD_SRTP_PROTECTION_PROFILE_LIST 116 #define SSL_R_BAD_SSL_FILETYPE 117 #define SSL_R_BAD_WRITE_RETRY 118 #define SSL_R_BIO_NOT_SET 119 #define SSL_R_BN_LIB 120 #define SSL_R_BUFFER_TOO_SMALL 121 #define SSL_R_CA_DN_LENGTH_MISMATCH 122 #define SSL_R_CA_DN_TOO_LONG 123 #define SSL_R_CCS_RECEIVED_EARLY 124 #define SSL_R_CERTIFICATE_VERIFY_FAILED 125 #define SSL_R_CERT_CB_ERROR 126 #define SSL_R_CERT_LENGTH_MISMATCH 127 #define SSL_R_CHANNEL_ID_NOT_P256 128 #define SSL_R_CHANNEL_ID_SIGNATURE_INVALID 129 #define SSL_R_CIPHER_OR_HASH_UNAVAILABLE 130 #define SSL_R_CLIENTHELLO_PARSE_FAILED 131 #define SSL_R_CLIENTHELLO_TLSEXT 132 #define SSL_R_CONNECTION_REJECTED 133 #define SSL_R_CONNECTION_TYPE_NOT_SET 134 #define SSL_R_CUSTOM_EXTENSION_ERROR 135 #define SSL_R_DATA_LENGTH_TOO_LONG 136 #define SSL_R_DECODE_ERROR 137 #define SSL_R_DECRYPTION_FAILED 138 #define SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC 139 #define SSL_R_DH_PUBLIC_VALUE_LENGTH_IS_WRONG 140 #define SSL_R_DH_P_TOO_LONG 141 #define SSL_R_DIGEST_CHECK_FAILED 142 #define SSL_R_DTLS_MESSAGE_TOO_BIG 143 #define SSL_R_ECC_CERT_NOT_FOR_SIGNING 144 #define SSL_R_EMS_STATE_INCONSISTENT 145 #define SSL_R_ENCRYPTED_LENGTH_TOO_LONG 146 #define SSL_R_ERROR_ADDING_EXTENSION 147 #define SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST 148 #define SSL_R_ERROR_PARSING_EXTENSION 149 #define SSL_R_EXCESSIVE_MESSAGE_SIZE 150 #define SSL_R_EXTRA_DATA_IN_MESSAGE 151 #define SSL_R_FRAGMENT_MISMATCH 152 #define SSL_R_GOT_NEXT_PROTO_WITHOUT_EXTENSION 153 #define SSL_R_HANDSHAKE_FAILURE_ON_CLIENT_HELLO 154 #define SSL_R_HTTPS_PROXY_REQUEST 155 #define SSL_R_HTTP_REQUEST 156 #define SSL_R_INAPPROPRIATE_FALLBACK 157 #define SSL_R_INVALID_COMMAND 158 #define SSL_R_INVALID_MESSAGE 159 #define SSL_R_INVALID_SSL_SESSION 160 #define SSL_R_INVALID_TICKET_KEYS_LENGTH 161 #define SSL_R_LENGTH_MISMATCH 162 #define SSL_R_MISSING_EXTENSION 164 #define SSL_R_MISSING_RSA_CERTIFICATE 165 #define SSL_R_MISSING_TMP_DH_KEY 166 #define SSL_R_MISSING_TMP_ECDH_KEY 167 #define SSL_R_MIXED_SPECIAL_OPERATOR_WITH_GROUPS 168 #define SSL_R_MTU_TOO_SMALL 169 #define SSL_R_NEGOTIATED_BOTH_NPN_AND_ALPN 170 #define SSL_R_NESTED_GROUP 171 #define SSL_R_NO_CERTIFICATES_RETURNED 172 #define SSL_R_NO_CERTIFICATE_ASSIGNED 173 #define SSL_R_NO_CERTIFICATE_SET 174 #define SSL_R_NO_CIPHERS_AVAILABLE 175 #define SSL_R_NO_CIPHERS_PASSED 176 #define SSL_R_NO_CIPHER_MATCH 177 #define SSL_R_NO_COMPRESSION_SPECIFIED 178 #define SSL_R_NO_METHOD_SPECIFIED 179 #define SSL_R_NO_PRIVATE_KEY_ASSIGNED 181 #define SSL_R_NO_RENEGOTIATION 182 #define SSL_R_NO_REQUIRED_DIGEST 183 #define SSL_R_NO_SHARED_CIPHER 184 #define SSL_R_NULL_SSL_CTX 185 #define SSL_R_NULL_SSL_METHOD_PASSED 186 #define SSL_R_OLD_SESSION_CIPHER_NOT_RETURNED 187 #define SSL_R_OLD_SESSION_VERSION_NOT_RETURNED 188 #define SSL_R_OUTPUT_ALIASES_INPUT 189 #define SSL_R_PARSE_TLSEXT 190 #define SSL_R_PATH_TOO_LONG 191 #define SSL_R_PEER_DID_NOT_RETURN_A_CERTIFICATE 192 #define SSL_R_PEER_ERROR_UNSUPPORTED_CERTIFICATE_TYPE 193 #define SSL_R_PROTOCOL_IS_SHUTDOWN 194 #define SSL_R_PSK_IDENTITY_NOT_FOUND 195 #define SSL_R_PSK_NO_CLIENT_CB 196 #define SSL_R_PSK_NO_SERVER_CB 197 #define SSL_R_READ_TIMEOUT_EXPIRED 198 #define SSL_R_RECORD_LENGTH_MISMATCH 199 #define SSL_R_RECORD_TOO_LARGE 200 #define SSL_R_RENEGOTIATION_ENCODING_ERR 201 #define SSL_R_RENEGOTIATION_MISMATCH 202 #define SSL_R_REQUIRED_CIPHER_MISSING 203 #define SSL_R_RESUMED_EMS_SESSION_WITHOUT_EMS_EXTENSION 204 #define SSL_R_RESUMED_NON_EMS_SESSION_WITH_EMS_EXTENSION 205 #define SSL_R_SCSV_RECEIVED_WHEN_RENEGOTIATING 206 #define SSL_R_SERVERHELLO_TLSEXT 207 #define SSL_R_SESSION_ID_CONTEXT_UNINITIALIZED 208 #define SSL_R_SESSION_MAY_NOT_BE_CREATED 209 #define SSL_R_SIGNATURE_ALGORITHMS_EXTENSION_SENT_BY_SERVER 210 #define SSL_R_SRTP_COULD_NOT_ALLOCATE_PROFILES 211 #define SSL_R_SRTP_UNKNOWN_PROTECTION_PROFILE 212 #define SSL_R_SSL3_EXT_INVALID_SERVERNAME 213 #define SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION 214 #define SSL_R_SSL_HANDSHAKE_FAILURE 215 #define SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG 216 #define SSL_R_TLS_PEER_DID_NOT_RESPOND_WITH_CERTIFICATE_LIST 217 #define SSL_R_TLS_RSA_ENCRYPTED_VALUE_LENGTH_IS_WRONG 218 #define SSL_R_TOO_MANY_EMPTY_FRAGMENTS 219 #define SSL_R_TOO_MANY_WARNING_ALERTS 220 #define SSL_R_UNABLE_TO_FIND_ECDH_PARAMETERS 221 #define SSL_R_UNEXPECTED_EXTENSION 222 #define SSL_R_UNEXPECTED_MESSAGE 223 #define SSL_R_UNEXPECTED_OPERATOR_IN_GROUP 224 #define SSL_R_UNEXPECTED_RECORD 225 #define SSL_R_UNINITIALIZED 226 #define SSL_R_UNKNOWN_ALERT_TYPE 227 #define SSL_R_UNKNOWN_CERTIFICATE_TYPE 228 #define SSL_R_UNKNOWN_CIPHER_RETURNED 229 #define SSL_R_UNKNOWN_CIPHER_TYPE 230 #define SSL_R_UNKNOWN_DIGEST 231 #define SSL_R_UNKNOWN_KEY_EXCHANGE_TYPE 232 #define SSL_R_UNKNOWN_PROTOCOL 233 #define SSL_R_UNKNOWN_SSL_VERSION 234 #define SSL_R_UNKNOWN_STATE 235 #define SSL_R_UNSAFE_LEGACY_RENEGOTIATION_DISABLED 236 #define SSL_R_UNSUPPORTED_CIPHER 237 #define SSL_R_UNSUPPORTED_COMPRESSION_ALGORITHM 238 #define SSL_R_UNSUPPORTED_ELLIPTIC_CURVE 239 #define SSL_R_UNSUPPORTED_PROTOCOL 240 #define SSL_R_WRONG_CERTIFICATE_TYPE 241 #define SSL_R_WRONG_CIPHER_RETURNED 242 #define SSL_R_WRONG_CURVE 243 #define SSL_R_WRONG_MESSAGE_TYPE 244 #define SSL_R_WRONG_SIGNATURE_TYPE 245 #define SSL_R_WRONG_SSL_VERSION 246 #define SSL_R_WRONG_VERSION_NUMBER 247 #define SSL_R_X509_LIB 248 #define SSL_R_X509_VERIFICATION_SETUP_PROBLEMS 249 #define SSL_R_SHUTDOWN_WHILE_IN_INIT 250 #define SSL_R_INVALID_OUTER_RECORD_TYPE 251 #define SSL_R_UNSUPPORTED_PROTOCOL_FOR_CUSTOM_KEY 252 #define SSL_R_NO_COMMON_SIGNATURE_ALGORITHMS 253 #define SSL_R_DOWNGRADE_DETECTED 254 #define SSL_R_EXCESS_HANDSHAKE_DATA 255 #define SSL_R_INVALID_COMPRESSION_LIST 256 #define SSL_R_DUPLICATE_EXTENSION 257 #define SSL_R_MISSING_KEY_SHARE 258 #define SSL_R_INVALID_ALPN_PROTOCOL 259 #define SSL_R_TOO_MANY_KEY_UPDATES 260 #define SSL_R_BLOCK_CIPHER_PAD_IS_WRONG 261 #define SSL_R_NO_CIPHERS_SPECIFIED 262 #define SSL_R_RENEGOTIATION_EMS_MISMATCH 263 #define SSL_R_DUPLICATE_KEY_SHARE 264 #define SSL_R_NO_GROUPS_SPECIFIED 265 #define SSL_R_NO_SHARED_GROUP 266 #define SSL_R_PRE_SHARED_KEY_MUST_BE_LAST 267 #define SSL_R_OLD_SESSION_PRF_HASH_MISMATCH 268 #define SSL_R_INVALID_SCT_LIST 269 #define SSL_R_TOO_MUCH_SKIPPED_EARLY_DATA 270 #define SSL_R_PSK_IDENTITY_BINDER_COUNT_MISMATCH 271 #define SSL_R_CANNOT_PARSE_LEAF_CERT 272 #define SSL_R_SERVER_CERT_CHANGED 273 #define SSL_R_CERTIFICATE_AND_PRIVATE_KEY_MISMATCH 274 #define SSL_R_CANNOT_HAVE_BOTH_PRIVKEY_AND_METHOD 275 #define SSL_R_TICKET_ENCRYPTION_FAILED 276 #define SSL_R_ALPN_MISMATCH_ON_EARLY_DATA 277 #define SSL_R_WRONG_VERSION_ON_EARLY_DATA 278 #define SSL_R_UNEXPECTED_EXTENSION_ON_EARLY_DATA 279 #define SSL_R_NO_SUPPORTED_VERSIONS_ENABLED 280 #define SSL_R_APPLICATION_DATA_INSTEAD_OF_HANDSHAKE 281 #define SSL_R_EMPTY_HELLO_RETRY_REQUEST 282 #define SSL_R_EARLY_DATA_NOT_IN_USE 283 #define SSL_R_HANDSHAKE_NOT_COMPLETE 284 #define SSL_R_NEGOTIATED_TB_WITHOUT_EMS_OR_RI 285 #define SSL_R_SERVER_ECHOED_INVALID_SESSION_ID 286 #define SSL_R_PRIVATE_KEY_OPERATION_FAILED 287 #define SSL_R_SECOND_SERVERHELLO_VERSION_MISMATCH 288 #define SSL_R_OCSP_CB_ERROR 289 #define SSL_R_SSL_SESSION_ID_TOO_LONG 290 #define SSL_R_APPLICATION_DATA_ON_SHUTDOWN 291 #define SSL_R_CERT_DECOMPRESSION_FAILED 292 #define SSL_R_UNCOMPRESSED_CERT_TOO_LARGE 293 #define SSL_R_UNKNOWN_CERT_COMPRESSION_ALG 294 #define SSL_R_INVALID_SIGNATURE_ALGORITHM 295 #define SSL_R_DUPLICATE_SIGNATURE_ALGORITHM 296 #define SSL_R_TLS13_DOWNGRADE 297 #define SSL_R_QUIC_INTERNAL_ERROR 298 #define SSL_R_WRONG_ENCRYPTION_LEVEL_RECEIVED 299 #define SSL_R_TOO_MUCH_READ_EARLY_DATA 300 #define SSL_R_INVALID_DELEGATED_CREDENTIAL 301 #define SSL_R_KEY_USAGE_BIT_INCORRECT 302 #define SSL_R_INCONSISTENT_CLIENT_HELLO 303 #define SSL_R_CIPHER_MISMATCH_ON_EARLY_DATA 304 #define SSL_R_QUIC_TRANSPORT_PARAMETERS_MISCONFIGURED 305 #define SSL_R_UNEXPECTED_COMPATIBILITY_MODE 306 #define SSL_R_NO_APPLICATION_PROTOCOL 307 #define SSL_R_NEGOTIATED_ALPS_WITHOUT_ALPN 308 #define SSL_R_ALPS_MISMATCH_ON_EARLY_DATA 309 #define SSL_R_ECH_SERVER_CONFIG_AND_PRIVATE_KEY_MISMATCH 310 #define SSL_R_ECH_SERVER_CONFIG_UNSUPPORTED_EXTENSION 311 #define SSL_R_UNSUPPORTED_ECH_SERVER_CONFIG 312 #define SSL_R_ECH_SERVER_WOULD_HAVE_NO_RETRY_CONFIGS 313 #define SSL_R_INVALID_CLIENT_HELLO_INNER 314 #define SSL_R_INVALID_ALPN_PROTOCOL_LIST 315 #define SSL_R_COULD_NOT_PARSE_HINTS 316 #define SSL_R_INVALID_ECH_PUBLIC_NAME 317 #define SSL_R_INVALID_ECH_CONFIG_LIST 318 #define SSL_R_ECH_REJECTED 319 #define SSL_R_INVALID_OUTER_EXTENSION 320 #define SSL_R_INCONSISTENT_ECH_NEGOTIATION 321 #define SSL_R_INVALID_ALPS_CODEPOINT 322 #define SSL_R_SERIALIZATION_UNSUPPORTED 500 #define SSL_R_SERIALIZATION_INVALID_SSL 501 #define SSL_R_SERIALIZATION_INVALID_SSL_CONFIG 502 #define SSL_R_SERIALIZATION_INVALID_SSL3_STATE 503 #define SSL_R_SERIALIZATION_INVALID_SSL_BUFFER 505 #define SSL_R_SERIALIZATION_INVALID_SSL_AEAD_CONTEXT 506 #define SSL_R_BAD_HYBRID_KEYSHARE 507 #define SSL_R_BAD_KEM_CIPHERTEXT 508 #define SSL_R_SSLV3_ALERT_CLOSE_NOTIFY 1000 #define SSL_R_SSLV3_ALERT_UNEXPECTED_MESSAGE 1010 #define SSL_R_SSLV3_ALERT_BAD_RECORD_MAC 1020 #define SSL_R_TLSV1_ALERT_DECRYPTION_FAILED 1021 #define SSL_R_TLSV1_ALERT_RECORD_OVERFLOW 1022 #define SSL_R_SSLV3_ALERT_DECOMPRESSION_FAILURE 1030 #define SSL_R_SSLV3_ALERT_HANDSHAKE_FAILURE 1040 #define SSL_R_SSLV3_ALERT_NO_CERTIFICATE 1041 #define SSL_R_SSLV3_ALERT_BAD_CERTIFICATE 1042 #define SSL_R_SSLV3_ALERT_UNSUPPORTED_CERTIFICATE 1043 #define SSL_R_SSLV3_ALERT_CERTIFICATE_REVOKED 1044 #define SSL_R_SSLV3_ALERT_CERTIFICATE_EXPIRED 1045 #define SSL_R_SSLV3_ALERT_CERTIFICATE_UNKNOWN 1046 #define SSL_R_SSLV3_ALERT_ILLEGAL_PARAMETER 1047 #define SSL_R_TLSV1_ALERT_UNKNOWN_CA 1048 #define SSL_R_TLSV1_ALERT_ACCESS_DENIED 1049 #define SSL_R_TLSV1_ALERT_DECODE_ERROR 1050 #define SSL_R_TLSV1_ALERT_DECRYPT_ERROR 1051 #define SSL_R_TLSV1_ALERT_EXPORT_RESTRICTION 1060 #define SSL_R_TLSV1_ALERT_PROTOCOL_VERSION 1070 #define SSL_R_TLSV1_ALERT_INSUFFICIENT_SECURITY 1071 #define SSL_R_TLSV1_ALERT_INTERNAL_ERROR 1080 #define SSL_R_TLSV1_ALERT_INAPPROPRIATE_FALLBACK 1086 #define SSL_R_TLSV1_ALERT_USER_CANCELLED 1090 #define SSL_R_TLSV1_ALERT_NO_RENEGOTIATION 1100 #define SSL_R_TLSV1_ALERT_UNSUPPORTED_EXTENSION 1110 #define SSL_R_TLSV1_ALERT_CERTIFICATE_UNOBTAINABLE 1111 #define SSL_R_TLSV1_ALERT_UNRECOGNIZED_NAME 1112 #define SSL_R_TLSV1_ALERT_BAD_CERTIFICATE_STATUS_RESPONSE 1113 #define SSL_R_TLSV1_ALERT_BAD_CERTIFICATE_HASH_VALUE 1114 #define SSL_R_TLSV1_ALERT_UNKNOWN_PSK_IDENTITY 1115 #define SSL_R_TLSV1_ALERT_CERTIFICATE_REQUIRED 1116 #define SSL_R_TLSV1_ALERT_NO_APPLICATION_PROTOCOL 1120 #define SSL_R_TLSV1_ALERT_ECH_REQUIRED 1121 #define SSL_R_SERIALIZATION_INVALID_SERDE_VERSION 1122 #endif // OPENSSL_HEADER_SSL_H