/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * ECC cipher suite support in OpenSSL originally developed by * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "../crypto/internal.h" #include "internal.h" BSSL_NAMESPACE_BEGIN CERT::CERT(const SSL_X509_METHOD *x509_method_arg) : x509_method(x509_method_arg) { this->cert_private_key_idx = SSL_PKEY_RSA; if (!this->cert_private_keys.Init(SSL_PKEY_SIZE)) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); return; } } CERT::~CERT() { ssl_cert_clear_certs(this); x509_method->cert_free(this); } static CRYPTO_BUFFER *buffer_up_ref(const CRYPTO_BUFFER *buffer) { CRYPTO_BUFFER_up_ref(const_cast(buffer)); return const_cast(buffer); } UniquePtr ssl_cert_dup(CERT *cert) { if (cert == nullptr) { return nullptr; } UniquePtr ret = MakeUnique(cert->x509_method); if (!ret) { return nullptr; } ret->cert_private_key_idx = cert->cert_private_key_idx; if (!ssl_cert_check_cert_private_keys_usage(cert) || !ssl_cert_check_cert_private_keys_usage(ret.get())) { return nullptr; } for (int i = 0; i < SSL_PKEY_SIZE; i++) { CERT_PKEY &cert_pkey = cert->cert_private_keys[i]; CERT_PKEY &ret_pkey = ret->cert_private_keys[i]; if (cert_pkey.chain) { ret_pkey.chain.reset(sk_CRYPTO_BUFFER_deep_copy( cert_pkey.chain.get(), buffer_up_ref, CRYPTO_BUFFER_free)); if (!ret_pkey.chain) { return nullptr; } } if (cert_pkey.x509_leaf != nullptr) { X509_up_ref(cert_pkey.x509_leaf); ret_pkey.x509_leaf = cert_pkey.x509_leaf; } ret_pkey.privatekey = UpRef(cert_pkey.privatekey); } ret->key_method = cert->key_method; if (!ret->sigalgs.CopyFrom(cert->sigalgs)) { return nullptr; } ret->cert_cb = cert->cert_cb; ret->cert_cb_arg = cert->cert_cb_arg; ret->x509_method->cert_dup(ret.get(), cert); ret->signed_cert_timestamp_list = UpRef(cert->signed_cert_timestamp_list); ret->ocsp_response = UpRef(cert->ocsp_response); ret->sid_ctx_length = cert->sid_ctx_length; OPENSSL_memcpy(ret->sid_ctx, cert->sid_ctx, sizeof(ret->sid_ctx)); if (cert->dc) { ret->dc = cert->dc->Dup(); if (!ret->dc) { return nullptr; } } ret->dc_privatekey = UpRef(cert->dc_privatekey); ret->dc_key_method = cert->dc_key_method; return ret; } // Free up and clear all certificates and chains void ssl_cert_clear_certs(CERT *cert) { if (cert == nullptr) { return; } cert->x509_method->cert_clear(cert); cert->cert_private_key_idx = -1; for (auto &cert_private_key : cert->cert_private_keys) { cert_private_key.chain.reset(); cert_private_key.privatekey.reset(); } cert->key_method = nullptr; cert->dc.reset(); cert->dc_privatekey.reset(); cert->dc_key_method = nullptr; } static void ssl_cert_set_cert_cb(CERT *cert, int (*cb)(SSL *ssl, void *arg), void *arg) { cert->cert_cb = cb; cert->cert_cb_arg = arg; } enum leaf_cert_and_privkey_result_t { leaf_cert_and_privkey_error, leaf_cert_and_privkey_ok, leaf_cert_and_privkey_mismatch, }; // do_leaf_cert_and_privkey_checks does the necessary checks against |pubkey| // and |privkey|. It's expected that the |pubkey| has been parsed from // |cert_cbs|. static enum leaf_cert_and_privkey_result_t do_leaf_cert_and_privkey_checks( const CBS *cert_cbs, EVP_PKEY *pubkey, EVP_PKEY *privkey) { if (!ssl_is_key_type_supported(EVP_PKEY_id(pubkey))) { OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE); return leaf_cert_and_privkey_error; } // An ECC certificate may be usable for ECDH or ECDSA. We only support ECDSA // certificates, so sanity-check the key usage extension. if (EVP_PKEY_id(pubkey) == EVP_PKEY_EC && !ssl_cert_check_key_usage(cert_cbs, key_usage_digital_signature)) { OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE); return leaf_cert_and_privkey_error; } if (privkey != nullptr && // Sanity-check that the private key and the certificate match. !ssl_compare_public_and_private_key(pubkey, privkey)) { ERR_clear_error(); return leaf_cert_and_privkey_mismatch; } return leaf_cert_and_privkey_ok; } // check_leaf_cert_and_privkey checks whether the certificate in |leaf_buffer| // and the private key in |privkey| are suitable and coherent. It returns // |leaf_cert_and_privkey_error| and pushes to the error queue if a problem is // found. If the certificate and private key are valid, but incoherent, it // returns |leaf_cert_and_privkey_mismatch|. Otherwise it returns // |leaf_cert_and_privkey_ok|. static enum leaf_cert_and_privkey_result_t check_leaf_cert_and_privkey( CRYPTO_BUFFER *leaf_buffer, EVP_PKEY *privkey) { CBS cert_cbs; CRYPTO_BUFFER_init_CBS(leaf_buffer, &cert_cbs); UniquePtr pubkey = ssl_cert_parse_pubkey(&cert_cbs); if (pubkey == nullptr) { OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); return leaf_cert_and_privkey_error; } return do_leaf_cert_and_privkey_checks(&cert_cbs, pubkey.get(), privkey); } static int cert_set_chain_and_key( CERT *cert, CRYPTO_BUFFER *const *certs, size_t num_certs, EVP_PKEY *privkey, const SSL_PRIVATE_KEY_METHOD *privkey_method) { if (num_certs == 0 || (privkey == NULL && privkey_method == NULL)) { OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); return 0; } if (privkey != NULL && privkey_method != NULL) { OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_HAVE_BOTH_PRIVKEY_AND_METHOD); return 0; } switch (check_leaf_cert_and_privkey(certs[0], privkey)) { case leaf_cert_and_privkey_error: return 0; case leaf_cert_and_privkey_mismatch: OPENSSL_PUT_ERROR(SSL, SSL_R_CERTIFICATE_AND_PRIVATE_KEY_MISMATCH); return 0; case leaf_cert_and_privkey_ok: break; } UniquePtr certs_sk(sk_CRYPTO_BUFFER_new_null()); if (!certs_sk) { return 0; } for (size_t i = 0; i < num_certs; i++) { if (!PushToStack(certs_sk.get(), UpRef(certs[i]))) { return 0; } } if (!ssl_cert_check_cert_private_keys_usage(cert)) { return 0; } // Update certificate slot index once all checks have passed. // Certificate slot validity already checked in |check_leaf_cert_and_privkey|. int idx = ssl_get_certificate_slot_index(privkey); cert->cert_private_keys[idx].privatekey = UpRef(privkey); cert->key_method = privkey_method; cert->cert_private_keys[idx].chain = std::move(certs_sk); cert->cert_private_key_idx = idx; return 1; } bool ssl_set_cert(CERT *cert, UniquePtr buffer) { if (!ssl_cert_check_cert_private_keys_usage(cert)) { return false; } // Parse the right certificate slot index from |buffer|. CBS cert_cbs; CRYPTO_BUFFER_init_CBS(buffer.get(), &cert_cbs); UniquePtr pubkey = ssl_cert_parse_pubkey(&cert_cbs); if (!pubkey) { OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); return false; } int slot_index = ssl_get_certificate_slot_index(pubkey.get()); if (slot_index < 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE); return false; } CERT_PKEY &cert_pkey = cert->cert_private_keys[slot_index]; switch (do_leaf_cert_and_privkey_checks(&cert_cbs, pubkey.get(), cert_pkey.privatekey.get())) { case leaf_cert_and_privkey_error: return false; case leaf_cert_and_privkey_mismatch: // don't fail for a cert/key mismatch, just free current private key // (when switching to a different cert & key, first this function should // be used, then |ssl_set_pkey|. cert_pkey.privatekey.reset(); break; case leaf_cert_and_privkey_ok: break; } if (cert_pkey.chain != nullptr) { CRYPTO_BUFFER_free(sk_CRYPTO_BUFFER_value(cert_pkey.chain.get(), 0)); sk_CRYPTO_BUFFER_set(cert_pkey.chain.get(), 0, buffer.release()); // Update certificate slot index if all checks have passed. cert->cert_private_key_idx = slot_index; return true; } cert_pkey.chain.reset(sk_CRYPTO_BUFFER_new_null()); if (cert_pkey.chain == nullptr) { return false; } if (!PushToStack(cert_pkey.chain.get(), std::move(buffer))) { cert_pkey.chain.reset(); return false; } // Update certificate slot index if all checks have passed. cert->cert_private_key_idx = slot_index; return true; } bool ssl_has_certificate(const SSL_HANDSHAKE *hs) { if (!ssl_cert_check_cert_private_keys_usage(hs->config->cert.get())) { return false; } CERT_PKEY &cert_pkey = hs->config->cert ->cert_private_keys[hs->config->cert->cert_private_key_idx]; return cert_pkey.chain != nullptr && sk_CRYPTO_BUFFER_value(cert_pkey.chain.get(), 0) != nullptr && ssl_has_private_key(hs); } bool ssl_parse_cert_chain(uint8_t *out_alert, UniquePtr *out_chain, UniquePtr *out_pubkey, uint8_t *out_leaf_sha256, CBS *cbs, CRYPTO_BUFFER_POOL *pool) { out_chain->reset(); out_pubkey->reset(); CBS certificate_list; if (!CBS_get_u24_length_prefixed(cbs, &certificate_list)) { *out_alert = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); return false; } if (CBS_len(&certificate_list) == 0) { return true; } UniquePtr chain(sk_CRYPTO_BUFFER_new_null()); if (!chain) { *out_alert = SSL_AD_INTERNAL_ERROR; return false; } UniquePtr pubkey; while (CBS_len(&certificate_list) > 0) { CBS certificate; if (!CBS_get_u24_length_prefixed(&certificate_list, &certificate) || CBS_len(&certificate) == 0) { *out_alert = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, SSL_R_CERT_LENGTH_MISMATCH); return false; } if (sk_CRYPTO_BUFFER_num(chain.get()) == 0) { pubkey = ssl_cert_parse_pubkey(&certificate); if (!pubkey) { *out_alert = SSL_AD_DECODE_ERROR; return false; } // Retain the hash of the leaf certificate if requested. if (out_leaf_sha256 != NULL) { SHA256(CBS_data(&certificate), CBS_len(&certificate), out_leaf_sha256); } } UniquePtr buf( CRYPTO_BUFFER_new_from_CBS(&certificate, pool)); if (!buf || !PushToStack(chain.get(), std::move(buf))) { *out_alert = SSL_AD_INTERNAL_ERROR; return false; } } *out_chain = std::move(chain); *out_pubkey = std::move(pubkey); return true; } bool ssl_add_cert_chain(SSL_HANDSHAKE *hs, CBB *cbb) { if (!ssl_has_certificate(hs)) { return CBB_add_u24(cbb, 0); } CBB certs; if (!CBB_add_u24_length_prefixed(cbb, &certs)) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return false; } // |cert_private_keys| already checked above in |ssl_has_certificate|. int idx = hs->config->cert->cert_private_key_idx; STACK_OF(CRYPTO_BUFFER) *chain = hs->config->cert->cert_private_keys[idx].chain.get(); for (size_t i = 0; i < sk_CRYPTO_BUFFER_num(chain); i++) { CRYPTO_BUFFER *buffer = sk_CRYPTO_BUFFER_value(chain, i); CBB child; if (!CBB_add_u24_length_prefixed(&certs, &child) || !CBB_add_bytes(&child, CRYPTO_BUFFER_data(buffer), CRYPTO_BUFFER_len(buffer)) || !CBB_flush(&certs)) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return false; } } return CBB_flush(cbb); } // ssl_cert_skip_to_spki parses a DER-encoded, X.509 certificate from |in| and // positions |*out_tbs_cert| to cover the TBSCertificate, starting at the // subjectPublicKeyInfo. static bool ssl_cert_skip_to_spki(const CBS *in, CBS *out_tbs_cert) { /* From RFC 5280, section 4.1 * Certificate ::= SEQUENCE { * tbsCertificate TBSCertificate, * signatureAlgorithm AlgorithmIdentifier, * signatureValue BIT STRING } * TBSCertificate ::= SEQUENCE { * version [0] EXPLICIT Version DEFAULT v1, * serialNumber CertificateSerialNumber, * signature AlgorithmIdentifier, * issuer Name, * validity Validity, * subject Name, * subjectPublicKeyInfo SubjectPublicKeyInfo, * ... } */ CBS buf = *in; CBS toplevel; if (!CBS_get_asn1(&buf, &toplevel, CBS_ASN1_SEQUENCE) || CBS_len(&buf) != 0 || !CBS_get_asn1(&toplevel, out_tbs_cert, CBS_ASN1_SEQUENCE) || // version !CBS_get_optional_asn1( out_tbs_cert, NULL, NULL, CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || // serialNumber !CBS_get_asn1(out_tbs_cert, NULL, CBS_ASN1_INTEGER) || // signature algorithm !CBS_get_asn1(out_tbs_cert, NULL, CBS_ASN1_SEQUENCE) || // issuer !CBS_get_asn1(out_tbs_cert, NULL, CBS_ASN1_SEQUENCE) || // validity !CBS_get_asn1(out_tbs_cert, NULL, CBS_ASN1_SEQUENCE) || // subject !CBS_get_asn1(out_tbs_cert, NULL, CBS_ASN1_SEQUENCE)) { return false; } return true; } UniquePtr ssl_cert_parse_pubkey(const CBS *in) { CBS buf = *in, tbs_cert; if (!ssl_cert_skip_to_spki(&buf, &tbs_cert)) { OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_PARSE_LEAF_CERT); return nullptr; } return UniquePtr(EVP_parse_public_key(&tbs_cert)); } bool ssl_compare_public_and_private_key(const EVP_PKEY *pubkey, const EVP_PKEY *privkey) { if (EVP_PKEY_is_opaque(privkey)) { // We cannot check an opaque private key and have to trust that it // matches. return true; } switch (EVP_PKEY_cmp(pubkey, privkey)) { case 1: return true; case 0: OPENSSL_PUT_ERROR(X509, X509_R_KEY_VALUES_MISMATCH); return false; case -1: OPENSSL_PUT_ERROR(X509, X509_R_KEY_TYPE_MISMATCH); return false; case -2: OPENSSL_PUT_ERROR(X509, X509_R_UNKNOWN_KEY_TYPE); return false; } assert(0); return false; } bool ssl_cert_check_private_key(const CERT *cert, const EVP_PKEY *privkey) { if (privkey == nullptr) { OPENSSL_PUT_ERROR(SSL, SSL_R_NO_PRIVATE_KEY_ASSIGNED); return false; } // |cert_private_keys| already checked before usages of // |ssl_cert_check_private_key|. STACK_OF(CRYPTO_BUFFER) *chain = cert->cert_private_keys[cert->cert_private_key_idx].chain.get(); if (chain == nullptr || sk_CRYPTO_BUFFER_value(chain, 0) == nullptr) { OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CERTIFICATE_ASSIGNED); return false; } CBS cert_cbs; CRYPTO_BUFFER_init_CBS(sk_CRYPTO_BUFFER_value(chain, 0), &cert_cbs); UniquePtr pubkey = ssl_cert_parse_pubkey(&cert_cbs); if (!pubkey) { OPENSSL_PUT_ERROR(X509, X509_R_UNKNOWN_KEY_TYPE); return false; } return ssl_compare_public_and_private_key(pubkey.get(), privkey); } bool ssl_cert_check_key_usage(const CBS *in, enum ssl_key_usage_t bit) { CBS buf = *in; CBS tbs_cert, outer_extensions; int has_extensions; if (!ssl_cert_skip_to_spki(&buf, &tbs_cert) || // subjectPublicKeyInfo !CBS_get_asn1(&tbs_cert, NULL, CBS_ASN1_SEQUENCE) || // issuerUniqueID !CBS_get_optional_asn1(&tbs_cert, NULL, NULL, CBS_ASN1_CONTEXT_SPECIFIC | 1) || // subjectUniqueID !CBS_get_optional_asn1(&tbs_cert, NULL, NULL, CBS_ASN1_CONTEXT_SPECIFIC | 2) || !CBS_get_optional_asn1( &tbs_cert, &outer_extensions, &has_extensions, CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 3)) { OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_PARSE_LEAF_CERT); return false; } if (!has_extensions) { return true; } CBS extensions; if (!CBS_get_asn1(&outer_extensions, &extensions, CBS_ASN1_SEQUENCE)) { OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_PARSE_LEAF_CERT); return false; } while (CBS_len(&extensions) > 0) { CBS extension, oid, contents; if (!CBS_get_asn1(&extensions, &extension, CBS_ASN1_SEQUENCE) || !CBS_get_asn1(&extension, &oid, CBS_ASN1_OBJECT) || (CBS_peek_asn1_tag(&extension, CBS_ASN1_BOOLEAN) && !CBS_get_asn1(&extension, NULL, CBS_ASN1_BOOLEAN)) || !CBS_get_asn1(&extension, &contents, CBS_ASN1_OCTETSTRING) || CBS_len(&extension) != 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_PARSE_LEAF_CERT); return false; } static const uint8_t kKeyUsageOID[3] = {0x55, 0x1d, 0x0f}; if (CBS_len(&oid) != sizeof(kKeyUsageOID) || OPENSSL_memcmp(CBS_data(&oid), kKeyUsageOID, sizeof(kKeyUsageOID)) != 0) { continue; } CBS bit_string; if (!CBS_get_asn1(&contents, &bit_string, CBS_ASN1_BITSTRING) || CBS_len(&contents) != 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_PARSE_LEAF_CERT); return false; } // This is the KeyUsage extension. See // https://tools.ietf.org/html/rfc5280#section-4.2.1.3 if (!CBS_is_valid_asn1_bitstring(&bit_string)) { OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_PARSE_LEAF_CERT); return false; } if (!CBS_asn1_bitstring_has_bit(&bit_string, bit)) { OPENSSL_PUT_ERROR(SSL, SSL_R_KEY_USAGE_BIT_INCORRECT); return false; } return true; } // No KeyUsage extension found. return true; } UniquePtr ssl_parse_client_CA_list(SSL *ssl, uint8_t *out_alert, CBS *cbs) { CRYPTO_BUFFER_POOL *const pool = ssl->ctx->pool; UniquePtr ret(sk_CRYPTO_BUFFER_new_null()); if (!ret) { *out_alert = SSL_AD_INTERNAL_ERROR; return nullptr; } CBS child; if (!CBS_get_u16_length_prefixed(cbs, &child)) { *out_alert = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, SSL_R_LENGTH_MISMATCH); return nullptr; } while (CBS_len(&child) > 0) { CBS distinguished_name; if (!CBS_get_u16_length_prefixed(&child, &distinguished_name)) { *out_alert = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, SSL_R_CA_DN_TOO_LONG); return nullptr; } UniquePtr buffer( CRYPTO_BUFFER_new_from_CBS(&distinguished_name, pool)); if (!buffer || !PushToStack(ret.get(), std::move(buffer))) { *out_alert = SSL_AD_INTERNAL_ERROR; return nullptr; } } if (!ssl->ctx->x509_method->check_client_CA_list(ret.get())) { *out_alert = SSL_AD_DECODE_ERROR; OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); return nullptr; } return ret; } bool ssl_has_client_CAs(const SSL_CONFIG *cfg) { const STACK_OF(CRYPTO_BUFFER) *names = cfg->client_CA.get(); if (names == nullptr) { names = cfg->ssl->ctx->client_CA.get(); } if (names == nullptr) { return false; } return sk_CRYPTO_BUFFER_num(names) > 0; } bool ssl_add_client_CA_list(SSL_HANDSHAKE *hs, CBB *cbb) { CBB child, name_cbb; if (!CBB_add_u16_length_prefixed(cbb, &child)) { return false; } const STACK_OF(CRYPTO_BUFFER) *names = hs->config->client_CA.get(); if (names == NULL) { names = hs->ssl->ctx->client_CA.get(); } if (names == NULL) { return CBB_flush(cbb); } for (const CRYPTO_BUFFER *name : names) { if (!CBB_add_u16_length_prefixed(&child, &name_cbb) || !CBB_add_bytes(&name_cbb, CRYPTO_BUFFER_data(name), CRYPTO_BUFFER_len(name))) { return false; } } return CBB_flush(cbb); } bool ssl_check_leaf_certificate(SSL_HANDSHAKE *hs, EVP_PKEY *pkey, const CRYPTO_BUFFER *leaf) { assert(ssl_protocol_version(hs->ssl) < TLS1_3_VERSION); // Check the certificate's type matches the cipher. if (!(hs->new_cipher->algorithm_auth & ssl_cipher_auth_mask_for_key(pkey))) { OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CERTIFICATE_TYPE); return false; } if (EVP_PKEY_id(pkey) == EVP_PKEY_EC) { // Check the key's group and point format are acceptable. EC_KEY *ec_key = EVP_PKEY_get0_EC_KEY(pkey); uint16_t group_id; if (!ssl_nid_to_group_id( &group_id, EC_GROUP_get_curve_name(EC_KEY_get0_group(ec_key))) || !tls1_check_group_id(hs, group_id) || EC_KEY_get_conv_form(ec_key) != POINT_CONVERSION_UNCOMPRESSED) { OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_ECC_CERT); return false; } } return true; } bool ssl_on_certificate_selected(SSL_HANDSHAKE *hs) { SSL *const ssl = hs->ssl; if (!ssl_has_certificate(hs)) { // Nothing to do. return true; } if (!ssl->ctx->x509_method->ssl_auto_chain_if_needed(hs) || !ssl_handshake_load_local_pubkey(hs)) { return false; } // Sanity check that cached certificate public key type matches the chosen // certificate slot index type. assert(ssl_signing_with_dc(hs) || (ssl_get_certificate_slot_index(hs->local_pubkey.get()) == hs->config->cert->cert_private_key_idx)); return true; } bool ssl_handshake_load_local_pubkey(SSL_HANDSHAKE *hs) { if (!ssl_cert_check_cert_private_keys_usage(hs->config->cert.get())) { return false; } STACK_OF(CRYPTO_BUFFER) *chain = hs->config->cert ->cert_private_keys[hs->config->cert->cert_private_key_idx] .chain.get(); if (ssl_signing_with_dc(hs)) { hs->local_pubkey = UpRef(hs->config->cert->dc->pkey); } else { hs->local_pubkey = ssl_cert_parse_leaf_pubkey(chain); } return hs->local_pubkey != nullptr; } // Delegated credentials. DC::DC() = default; DC::~DC() = default; UniquePtr DC::Dup() { bssl::UniquePtr ret = MakeUnique(); if (!ret) { return nullptr; } ret->raw = UpRef(raw); ret->expected_cert_verify_algorithm = expected_cert_verify_algorithm; ret->pkey = UpRef(pkey); return ret; } // static UniquePtr DC::Parse(CRYPTO_BUFFER *in, uint8_t *out_alert) { UniquePtr dc = MakeUnique(); if (!dc) { *out_alert = SSL_AD_INTERNAL_ERROR; return nullptr; } dc->raw = UpRef(in); CBS pubkey, deleg, sig; uint32_t valid_time; uint16_t algorithm; CRYPTO_BUFFER_init_CBS(dc->raw.get(), &deleg); if (!CBS_get_u32(&deleg, &valid_time) || !CBS_get_u16(&deleg, &dc->expected_cert_verify_algorithm) || !CBS_get_u24_length_prefixed(&deleg, &pubkey) || !CBS_get_u16(&deleg, &algorithm) || !CBS_get_u16_length_prefixed(&deleg, &sig) || CBS_len(&deleg) != 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); *out_alert = SSL_AD_DECODE_ERROR; return nullptr; } dc->pkey.reset(EVP_parse_public_key(&pubkey)); if (dc->pkey == nullptr) { OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); *out_alert = SSL_AD_DECODE_ERROR; return nullptr; } return dc; } // ssl_can_serve_dc returns true if the host has configured a DC that it can // serve in the handshake. Specifically, it checks that a DC has been // configured and that the DC signature algorithm is supported by the peer. static bool ssl_can_serve_dc(const SSL_HANDSHAKE *hs) { // Check that a DC has been configured. const CERT *cert = hs->config->cert.get(); if (cert->dc == nullptr || cert->dc->raw == nullptr || (cert->dc_privatekey == nullptr && cert->dc_key_method == nullptr)) { return false; } // Check that 1.3 or higher has been negotiated. const DC *dc = cert->dc.get(); assert(hs->ssl->s3->have_version); if (ssl_protocol_version(hs->ssl) < TLS1_3_VERSION) { return false; } // Check that the DC signature algorithm is supported by the peer. Span peer_sigalgs = hs->peer_delegated_credential_sigalgs; for (uint16_t peer_sigalg : peer_sigalgs) { if (dc->expected_cert_verify_algorithm == peer_sigalg) { return true; } } return false; } bool ssl_signing_with_dc(const SSL_HANDSHAKE *hs) { // As of draft-ietf-tls-subcert-03, only the server may use delegated // credentials to authenticate itself. return hs->ssl->server && hs->delegated_credential_requested && ssl_can_serve_dc(hs); } static int cert_set_dc(CERT *cert, CRYPTO_BUFFER *const raw, EVP_PKEY *privkey, const SSL_PRIVATE_KEY_METHOD *key_method) { if (privkey == nullptr && key_method == nullptr) { OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); return 0; } if (privkey != nullptr && key_method != nullptr) { OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_HAVE_BOTH_PRIVKEY_AND_METHOD); return 0; } uint8_t alert; UniquePtr dc = DC::Parse(raw, &alert); if (dc == nullptr) { OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_DELEGATED_CREDENTIAL); return 0; } if (privkey) { // Check that the public and private keys match. if (!ssl_compare_public_and_private_key(dc->pkey.get(), privkey)) { OPENSSL_PUT_ERROR(SSL, SSL_R_CERTIFICATE_AND_PRIVATE_KEY_MISMATCH); return 0; } } cert->dc = std::move(dc); cert->dc_privatekey = UpRef(privkey); cert->dc_key_method = key_method; return 1; } bool ssl_cert_check_cert_private_keys_usage(const CERT *cert) { if (cert == nullptr || cert->cert_private_keys.size() != SSL_PKEY_SIZE || cert->cert_private_key_idx < 0 || cert->cert_private_key_idx >= SSL_PKEY_SIZE) { return false; } return true; } BSSL_NAMESPACE_END using namespace bssl; int SSL_set_chain_and_key(SSL *ssl, CRYPTO_BUFFER *const *certs, size_t num_certs, EVP_PKEY *privkey, const SSL_PRIVATE_KEY_METHOD *privkey_method) { if (!ssl->config) { return 0; } return cert_set_chain_and_key(ssl->config->cert.get(), certs, num_certs, privkey, privkey_method); } int SSL_CTX_set_chain_and_key(SSL_CTX *ctx, CRYPTO_BUFFER *const *certs, size_t num_certs, EVP_PKEY *privkey, const SSL_PRIVATE_KEY_METHOD *privkey_method) { return cert_set_chain_and_key(ctx->cert.get(), certs, num_certs, privkey, privkey_method); } const STACK_OF(CRYPTO_BUFFER) *SSL_CTX_get0_chain(const SSL_CTX *ctx) { if (!ssl_cert_check_cert_private_keys_usage(ctx->cert.get())) { return nullptr; } return ctx->cert->cert_private_keys[ctx->cert->cert_private_key_idx] .chain.get(); } int SSL_CTX_use_certificate_ASN1(SSL_CTX *ctx, size_t der_len, const uint8_t *der) { UniquePtr buffer(CRYPTO_BUFFER_new(der, der_len, NULL)); if (!buffer) { return 0; } return ssl_set_cert(ctx->cert.get(), std::move(buffer)); } int SSL_use_certificate_ASN1(SSL *ssl, const uint8_t *der, size_t der_len) { UniquePtr buffer(CRYPTO_BUFFER_new(der, der_len, NULL)); if (!buffer || !ssl->config) { return 0; } return ssl_set_cert(ssl->config->cert.get(), std::move(buffer)); } void SSL_CTX_set_cert_cb(SSL_CTX *ctx, int (*cb)(SSL *ssl, void *arg), void *arg) { ssl_cert_set_cert_cb(ctx->cert.get(), cb, arg); } void SSL_set_cert_cb(SSL *ssl, int (*cb)(SSL *ssl, void *arg), void *arg) { if (!ssl->config) { return; } ssl_cert_set_cert_cb(ssl->config->cert.get(), cb, arg); } const STACK_OF(CRYPTO_BUFFER) *SSL_get0_peer_certificates(const SSL *ssl) { SSL_SESSION *session = SSL_get_session(ssl); if (session == NULL) { return NULL; } return session->certs.get(); } const STACK_OF(CRYPTO_BUFFER) *SSL_get0_server_requested_CAs(const SSL *ssl) { if (ssl->s3->hs == NULL) { return NULL; } return ssl->s3->hs->ca_names.get(); } static int set_signed_cert_timestamp_list(CERT *cert, const uint8_t *list, size_t list_len) { CBS sct_list; CBS_init(&sct_list, list, list_len); if (!ssl_is_sct_list_valid(&sct_list)) { OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SCT_LIST); return 0; } cert->signed_cert_timestamp_list.reset( CRYPTO_BUFFER_new(CBS_data(&sct_list), CBS_len(&sct_list), nullptr)); return cert->signed_cert_timestamp_list != nullptr; } int SSL_CTX_set_signed_cert_timestamp_list(SSL_CTX *ctx, const uint8_t *list, size_t list_len) { return set_signed_cert_timestamp_list(ctx->cert.get(), list, list_len); } int SSL_set_signed_cert_timestamp_list(SSL *ssl, const uint8_t *list, size_t list_len) { if (!ssl->config) { return 0; } return set_signed_cert_timestamp_list(ssl->config->cert.get(), list, list_len); } int SSL_CTX_set_ocsp_response(SSL_CTX *ctx, const uint8_t *response, size_t response_len) { ctx->cert->ocsp_response.reset( CRYPTO_BUFFER_new(response, response_len, nullptr)); return ctx->cert->ocsp_response != nullptr; } int SSL_set_ocsp_response(SSL *ssl, const uint8_t *response, size_t response_len) { if (!ssl->config) { return 0; } ssl->config->cert->ocsp_response.reset( CRYPTO_BUFFER_new(response, response_len, nullptr)); return ssl->config->cert->ocsp_response != nullptr; } void SSL_CTX_set0_client_CAs(SSL_CTX *ctx, STACK_OF(CRYPTO_BUFFER) *name_list) { ctx->x509_method->ssl_ctx_flush_cached_client_CA(ctx); ctx->client_CA.reset(name_list); } void SSL_set0_client_CAs(SSL *ssl, STACK_OF(CRYPTO_BUFFER) *name_list) { if (!ssl->config) { return; } ssl->ctx->x509_method->ssl_flush_cached_client_CA(ssl->config.get()); ssl->config->client_CA.reset(name_list); } int SSL_set1_delegated_credential(SSL *ssl, CRYPTO_BUFFER *dc, EVP_PKEY *pkey, const SSL_PRIVATE_KEY_METHOD *key_method) { if (!ssl->config) { return 0; } return cert_set_dc(ssl->config->cert.get(), dc, pkey, key_method); } int SSL_delegated_credential_used(const SSL *ssl) { return ssl->s3->delegated_credential_used; } int SSL_CTX_get_security_level(const SSL_CTX *ctx) { return 0; } void SSL_CTX_set_security_level(const SSL_CTX *ctx, int level) {}