/* * Non-physical true random number generator based on timing jitter. * * Copyright Stephan Mueller , 2013 - 2022 * * License * ======= * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, and the entire permission notice in its entirety, * including the disclaimer of warranties. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote * products derived from this software without specific prior * written permission. * * ALTERNATIVELY, this product may be distributed under the terms of * the GNU General Public License, in which case the provisions of the GPL are * required INSTEAD OF the above restrictions. (This clause is * necessary due to a potential bad interaction between the GPL and * the restrictions contained in a BSD-style copyright.) * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. */ #ifndef _JITTERENTROPY_BASE_USER_H #define _JITTERENTROPY_BASE_USER_H /* * Set the following defines as needed for your environment * Compilation for AWS-LC #define AWSLC * Compilation for libgcrypt #define LIBGCRYPT * Compilation for OpenSSL #define OPENSSL */ #include #include #include #include #include #include #include #include #include #include #include #include /* Timer-less entropy source */ #ifdef JENT_CONF_ENABLE_INTERNAL_TIMER #include #endif /* JENT_CONF_ENABLE_INTERNAL_TIMER */ #ifdef LIBGCRYPT #include #include "g10lib.h" #endif #ifdef OPENSSL #include #ifdef OPENSSL_FIPS #include #endif #endif #if defined(AWSLC) #include #endif #ifdef __MACH__ #include #include #include #include #include #endif #if (__x86_64__) || (__i386__) /* Support rdtsc read on 64-bit and 32-bit x86 architectures */ #ifdef __x86_64__ # define DECLARE_ARGS(val, low, high) unsigned long low, high # define EAX_EDX_VAL(val, low, high) (((uint64_t)low) | ((uint64_t)high) << 32) # define EAX_EDX_RET(val, low, high) "=a" (low), "=d" (high) #elif __i386__ # define DECLARE_ARGS(val, low, high) unsigned long val # define EAX_EDX_VAL(val, low, high) val # define EAX_EDX_RET(val, low, high) "=A" (val) #endif static inline void jent_get_nstime(uint64_t *out) { DECLARE_ARGS(val, low, high); __asm__ __volatile__("rdtsc" : EAX_EDX_RET(val, low, high)); *out = EAX_EDX_VAL(val, low, high); } #elif defined(__aarch64__) static inline void jent_get_nstime(uint64_t *out) { uint64_t ctr_val; /* * Use the system counter for aarch64 (64 bit ARM). */ __asm__ volatile("mrs %0, cntvct_el0" : "=r" (ctr_val)); *out = ctr_val; } #else /* (__x86_64__) || (__i386__) || (__aarch64__) */ static inline void jent_get_nstime(uint64_t *out) { #ifdef _AIX /* clock_gettime() on AIX returns a timer value that increments in * steps of 1000 */ uint64_t tmp = 0; timebasestruct_t aixtime; read_real_time(&aixtime, TIMEBASE_SZ); tmp = aixtime.tb_high; tmp = tmp << 32; tmp = tmp | aixtime.tb_low; *out = tmp; # else /* __AIX */ /* we could use CLOCK_MONOTONIC(_RAW), but with CLOCK_REALTIME * we get some nice extra entropy once in a while from the NTP actions * that we want to use as well... though, we do not rely on that * extra little entropy */ uint64_t tmp = 0; struct timespec time; if (clock_gettime(CLOCK_REALTIME, &time) == 0) { tmp = ((uint64_t)time.tv_sec & 0xFFFFFFFF) * 1000000000UL; tmp = tmp + (uint64_t)time.tv_nsec; } *out = tmp; # endif /* __AIX */ } #endif /* (__x86_64__) || (__i386__) || (__aarch64__) */ static inline void *jent_zalloc(size_t len) { void *tmp = NULL; #ifdef LIBGCRYPT /* When using the libgcrypt secure memory mechanism, all precautions * are taken to protect our state. If the user disables secmem during * runtime, it is his decision and we thus try not to overrule his * decision for less memory protection. */ #define CONFIG_CRYPTO_CPU_JITTERENTROPY_SECURE_MEMORY tmp = gcry_xmalloc_secure(len); #elif defined(OPENSSL) || defined(AWSLC) /* Does this allocation implies secure memory use? */ tmp = OPENSSL_malloc(len); #else /* we have no secure memory allocation! Hence * we do not set CONFIG_CRYPTO_CPU_JITTERENTROPY_SECURE_MEMORY */ tmp = malloc(len); #endif /* LIBGCRYPT */ if(NULL != tmp) memset(tmp, 0, len); return tmp; } static inline void jent_zfree(void *ptr, unsigned int len) { #ifdef LIBGCRYPT memset(ptr, 0, len); gcry_free(ptr); #elif defined(AWSLC) /* AWS-LC stores the length of allocated memory internally and automatically wipes it in OPENSSL_free */ (void) len; OPENSSL_free(ptr); #elif defined(OPENSSL) OPENSSL_cleanse(ptr, len); OPENSSL_free(ptr); #else memset(ptr, 0, len); free(ptr); #endif /* LIBGCRYPT */ } static inline int jent_fips_enabled(void) { #ifdef LIBGCRYPT return fips_mode(); #elif defined(AWSLC) return FIPS_mode(); #elif defined(OPENSSL) #ifdef OPENSSL_FIPS return FIPS_mode(); #else return 0; #endif #else #define FIPS_MODE_SWITCH_FILE "/proc/sys/crypto/fips_enabled" char buf[2] = "0"; int fd = 0; if ((fd = open(FIPS_MODE_SWITCH_FILE, O_RDONLY)) >= 0) { while (read(fd, buf, sizeof(buf)) < 0 && errno == EINTR); close(fd); } if (buf[0] == '1') return 1; else return 0; #endif } static inline void jent_memset_secure(void *s, size_t n) { #if defined(AWSLC) OPENSSL_cleanse(s, n); #else memset(s, 0, n); __asm__ __volatile__("" : : "r" (s) : "memory"); #endif } static inline long jent_ncpu(void) { #ifdef _POSIX_SOURCE long ncpu = sysconf(_SC_NPROCESSORS_ONLN); if (ncpu == -1) return -errno; if (ncpu == 0) return -EFAULT; return ncpu; #else return 1; #endif } #ifdef __linux__ # if defined(_SC_LEVEL1_DCACHE_SIZE) && \ defined(_SC_LEVEL2_CACHE_SIZE) && \ defined(_SC_LEVEL3_CACHE_SIZE) static inline void jent_get_cachesize(long *l1, long *l2, long *l3) { *l1 = sysconf(_SC_LEVEL1_DCACHE_SIZE); *l2 = sysconf(_SC_LEVEL2_CACHE_SIZE); *l3 = sysconf(_SC_LEVEL3_CACHE_SIZE); } # else static inline void jent_get_cachesize(long *l1, long *l2, long *l3) { #define JENT_SYSFS_CACHE_DIR "/sys/devices/system/cpu/cpu0/cache" long val; unsigned int i; char buf[10], file[50]; int fd = 0; /* Iterate over all caches */ for (i = 0; i < 4; i++) { unsigned int shift = 0; char *ext; /* * Check the cache type - we are only interested in Unified * and Data caches. */ memset(buf, 0, sizeof(buf)); snprintf(file, sizeof(file), "%s/index%u/type", JENT_SYSFS_CACHE_DIR, i); fd = open(file, O_RDONLY); if (fd < 0) continue; while (read(fd, buf, sizeof(buf)) < 0 && errno == EINTR); close(fd); buf[sizeof(buf) - 1] = '\0'; if (strncmp(buf, "Data", 4) && strncmp(buf, "Unified", 7)) continue; /* Get size of cache */ memset(buf, 0, sizeof(buf)); snprintf(file, sizeof(file), "%s/index%u/size", JENT_SYSFS_CACHE_DIR, i); fd = open(file, O_RDONLY); if (fd < 0) continue; while (read(fd, buf, sizeof(buf)) < 0 && errno == EINTR); close(fd); buf[sizeof(buf) - 1] = '\0'; ext = strstr(buf, "K"); if (ext) { shift = 10; *ext = '\0'; } else { ext = strstr(buf, "M"); if (ext) { shift = 20; *ext = '\0'; } } val = strtol(buf, NULL, 10); if (val == LONG_MAX) continue; val <<= shift; if (!*l1) *l1 = val; else if (!*l2) *l2 = val; else { *l3 = val; break; } } #undef JENT_SYSFS_CACHE_DIR } # endif static inline uint32_t jent_cache_size_roundup(void) { static int checked = 0; static uint32_t cache_size = 0; if (!checked) { long l1 = 0, l2 = 0, l3 = 0; jent_get_cachesize(&l1, &l2, &l3); checked = 1; /* Cache size reported by system */ if (l1 > 0) cache_size += (uint32_t)l1; if (l2 > 0) cache_size += (uint32_t)l2; if (l3 > 0) cache_size += (uint32_t)l3; /* * Force the output_size to be of the form * (bounding_power_of_2 - 1). */ cache_size |= (cache_size >> 1); cache_size |= (cache_size >> 2); cache_size |= (cache_size >> 4); cache_size |= (cache_size >> 8); cache_size |= (cache_size >> 16); if (cache_size == 0) return 0; /* * Make the output_size the smallest power of 2 strictly * greater than cache_size. */ cache_size++; } return cache_size; } #else /* __linux__ */ static inline uint32_t jent_cache_size_roundup(void) { return 0; } #endif /* __linux__ */ static inline void jent_yield(void) { sched_yield(); } /* --- helpers needed in user space -- */ static inline uint64_t rol64(uint64_t x, int n) { return ( (x << (n&(64-1))) | (x >> ((64-n)&(64-1))) ); } #endif /* _JITTERENTROPY_BASE_USER_H */