/* * MP3 huffman table selecting and bit counting * * Copyright (c) 1999-2005 Takehiro TOMINAGA * Copyright (c) 2002-2005 Gabriel Bouvigne * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ /* $Id: takehiro.c,v 1.80 2017/09/06 15:07:30 robert Exp $ */ #ifdef HAVE_CONFIG_H # include #endif #include "lame.h" #include "machine.h" #include "encoder.h" #include "util.h" #include "quantize_pvt.h" #include "tables.h" static const struct { const int region0_count; const int region1_count; } subdv_table[23] = { { 0, 0}, /* 0 bands */ { 0, 0}, /* 1 bands */ { 0, 0}, /* 2 bands */ { 0, 0}, /* 3 bands */ { 0, 0}, /* 4 bands */ { 0, 1}, /* 5 bands */ { 1, 1}, /* 6 bands */ { 1, 1}, /* 7 bands */ { 1, 2}, /* 8 bands */ { 2, 2}, /* 9 bands */ { 2, 3}, /* 10 bands */ { 2, 3}, /* 11 bands */ { 3, 4}, /* 12 bands */ { 3, 4}, /* 13 bands */ { 3, 4}, /* 14 bands */ { 4, 5}, /* 15 bands */ { 4, 5}, /* 16 bands */ { 4, 6}, /* 17 bands */ { 5, 6}, /* 18 bands */ { 5, 6}, /* 19 bands */ { 5, 7}, /* 20 bands */ { 6, 7}, /* 21 bands */ { 6, 7}, /* 22 bands */ }; /********************************************************************* * nonlinear quantization of xr * More accurate formula than the ISO formula. Takes into account * the fact that we are quantizing xr -> ix, but we want ix^4/3 to be * as close as possible to x^4/3. (taking the nearest int would mean * ix is as close as possible to xr, which is different.) * * From Segher Boessenkool 11/1999 * * 09/2000: ASM code removed in favor of IEEE754 hack by Takehiro * Tominaga. If you need the ASM code, check CVS circa Aug 2000. * * 01/2004: Optimizations by Gabriel Bouvigne *********************************************************************/ static void quantize_lines_xrpow_01(unsigned int l, FLOAT istep, const FLOAT * xr, int *ix) { const FLOAT compareval0 = (1.0f - 0.4054f) / istep; unsigned int i; assert(l > 0); assert(l % 2 == 0); for (i = 0; i < l; i += 2) { FLOAT const xr_0 = xr[i+0]; FLOAT const xr_1 = xr[i+1]; int const ix_0 = (compareval0 > xr_0) ? 0 : 1; int const ix_1 = (compareval0 > xr_1) ? 0 : 1; ix[i+0] = ix_0; ix[i+1] = ix_1; } } #ifdef TAKEHIRO_IEEE754_HACK typedef union { float f; int i; } fi_union; #define MAGIC_FLOAT (65536*(128)) #define MAGIC_INT 0x4b000000 static void quantize_lines_xrpow(unsigned int l, FLOAT istep, const FLOAT * xp, int *pi) { fi_union *fi; unsigned int remaining; assert(l > 0); fi = (fi_union *) pi; l = l >> 1; remaining = l % 2; l = l >> 1; while (l--) { double x0 = istep * xp[0]; double x1 = istep * xp[1]; double x2 = istep * xp[2]; double x3 = istep * xp[3]; x0 += MAGIC_FLOAT; fi[0].f = x0; x1 += MAGIC_FLOAT; fi[1].f = x1; x2 += MAGIC_FLOAT; fi[2].f = x2; x3 += MAGIC_FLOAT; fi[3].f = x3; fi[0].f = x0 + adj43asm[fi[0].i - MAGIC_INT]; fi[1].f = x1 + adj43asm[fi[1].i - MAGIC_INT]; fi[2].f = x2 + adj43asm[fi[2].i - MAGIC_INT]; fi[3].f = x3 + adj43asm[fi[3].i - MAGIC_INT]; fi[0].i -= MAGIC_INT; fi[1].i -= MAGIC_INT; fi[2].i -= MAGIC_INT; fi[3].i -= MAGIC_INT; fi += 4; xp += 4; }; if (remaining) { double x0 = istep * xp[0]; double x1 = istep * xp[1]; x0 += MAGIC_FLOAT; fi[0].f = x0; x1 += MAGIC_FLOAT; fi[1].f = x1; fi[0].f = x0 + adj43asm[fi[0].i - MAGIC_INT]; fi[1].f = x1 + adj43asm[fi[1].i - MAGIC_INT]; fi[0].i -= MAGIC_INT; fi[1].i -= MAGIC_INT; } } #else /********************************************************************* * XRPOW_FTOI is a macro to convert floats to ints. * if XRPOW_FTOI(x) = nearest_int(x), then QUANTFAC(x)=adj43asm[x] * ROUNDFAC= -0.0946 * * if XRPOW_FTOI(x) = floor(x), then QUANTFAC(x)=asj43[x] * ROUNDFAC=0.4054 * * Note: using floor() or (int) is extremely slow. On machines where * the TAKEHIRO_IEEE754_HACK code above does not work, it is worthwile * to write some ASM for XRPOW_FTOI(). *********************************************************************/ #define XRPOW_FTOI(src,dest) ((dest) = (int)(src)) #define QUANTFAC(rx) adj43[rx] #define ROUNDFAC 0.4054 static void quantize_lines_xrpow(unsigned int l, FLOAT istep, const FLOAT * xr, int *ix) { unsigned int remaining; assert(l > 0); l = l >> 1; remaining = l % 2; l = l >> 1; while (l--) { FLOAT x0, x1, x2, x3; int rx0, rx1, rx2, rx3; x0 = *xr++ * istep; x1 = *xr++ * istep; XRPOW_FTOI(x0, rx0); x2 = *xr++ * istep; XRPOW_FTOI(x1, rx1); x3 = *xr++ * istep; XRPOW_FTOI(x2, rx2); x0 += QUANTFAC(rx0); XRPOW_FTOI(x3, rx3); x1 += QUANTFAC(rx1); XRPOW_FTOI(x0, *ix++); x2 += QUANTFAC(rx2); XRPOW_FTOI(x1, *ix++); x3 += QUANTFAC(rx3); XRPOW_FTOI(x2, *ix++); XRPOW_FTOI(x3, *ix++); }; if (remaining) { FLOAT x0, x1; int rx0, rx1; x0 = *xr++ * istep; x1 = *xr++ * istep; XRPOW_FTOI(x0, rx0); XRPOW_FTOI(x1, rx1); x0 += QUANTFAC(rx0); x1 += QUANTFAC(rx1); XRPOW_FTOI(x0, *ix++); XRPOW_FTOI(x1, *ix++); } } #endif /********************************************************************* * Quantization function * This function will select which lines to quantize and call the * proper quantization function *********************************************************************/ static void quantize_xrpow(const FLOAT * xp, int *pi, FLOAT istep, gr_info const *const cod_info, calc_noise_data const *prev_noise) { /* quantize on xr^(3/4) instead of xr */ int sfb; int sfbmax; int j = 0; int prev_data_use; int *iData; int accumulate = 0; int accumulate01 = 0; int *acc_iData; const FLOAT *acc_xp; iData = pi; acc_xp = xp; acc_iData = iData; /* Reusing previously computed data does not seems to work if global gain is changed. Finding why it behaves this way would allow to use a cache of previously computed values (let's 10 cached values per sfb) that would probably provide a noticeable speedup */ prev_data_use = (prev_noise && (cod_info->global_gain == prev_noise->global_gain)); if (cod_info->block_type == SHORT_TYPE) sfbmax = 38; else sfbmax = 21; for (sfb = 0; sfb <= sfbmax; sfb++) { int step = -1; if (prev_data_use || cod_info->block_type == NORM_TYPE) { step = cod_info->global_gain - ((cod_info->scalefac[sfb] + (cod_info->preflag ? pretab[sfb] : 0)) << (cod_info->scalefac_scale + 1)) - cod_info->subblock_gain[cod_info->window[sfb]] * 8; } assert(cod_info->width[sfb] >= 0); if (prev_data_use && (prev_noise->step[sfb] == step)) { /* do not recompute this part, but compute accumulated lines */ if (accumulate) { quantize_lines_xrpow(accumulate, istep, acc_xp, acc_iData); accumulate = 0; } if (accumulate01) { quantize_lines_xrpow_01(accumulate01, istep, acc_xp, acc_iData); accumulate01 = 0; } } else { /*should compute this part */ int l; l = cod_info->width[sfb]; if ((j + cod_info->width[sfb]) > cod_info->max_nonzero_coeff) { /*do not compute upper zero part */ int usefullsize; usefullsize = cod_info->max_nonzero_coeff - j + 1; memset(&pi[cod_info->max_nonzero_coeff], 0, sizeof(int) * (576 - cod_info->max_nonzero_coeff)); l = usefullsize; if (l < 0) { l = 0; } /* no need to compute higher sfb values */ sfb = sfbmax + 1; } /*accumulate lines to quantize */ if (!accumulate && !accumulate01) { acc_iData = iData; acc_xp = xp; } if (prev_noise && prev_noise->sfb_count1 > 0 && sfb >= prev_noise->sfb_count1 && prev_noise->step[sfb] > 0 && step >= prev_noise->step[sfb]) { if (accumulate) { quantize_lines_xrpow(accumulate, istep, acc_xp, acc_iData); accumulate = 0; acc_iData = iData; acc_xp = xp; } accumulate01 += l; } else { if (accumulate01) { quantize_lines_xrpow_01(accumulate01, istep, acc_xp, acc_iData); accumulate01 = 0; acc_iData = iData; acc_xp = xp; } accumulate += l; } if (l <= 0) { /* rh: 20040215 * may happen due to "prev_data_use" optimization */ if (accumulate01) { quantize_lines_xrpow_01(accumulate01, istep, acc_xp, acc_iData); accumulate01 = 0; } if (accumulate) { quantize_lines_xrpow(accumulate, istep, acc_xp, acc_iData); accumulate = 0; } break; /* ends for-loop */ } } if (sfb <= sfbmax) { iData += cod_info->width[sfb]; xp += cod_info->width[sfb]; j += cod_info->width[sfb]; } } if (accumulate) { /*last data part */ quantize_lines_xrpow(accumulate, istep, acc_xp, acc_iData); accumulate = 0; } if (accumulate01) { /*last data part */ quantize_lines_xrpow_01(accumulate01, istep, acc_xp, acc_iData); accumulate01 = 0; } } /*************************************************************************/ /* ix_max */ /*************************************************************************/ static int ix_max(const int *ix, const int *end) { int max1 = 0, max2 = 0; do { int const x1 = *ix++; int const x2 = *ix++; if (max1 < x1) max1 = x1; if (max2 < x2) max2 = x2; } while (ix < end); if (max1 < max2) max1 = max2; return max1; } static int count_bit_ESC(const int *ix, const int *const end, int t1, const int t2, unsigned int *const s) { /* ESC-table is used */ unsigned int const linbits = ht[t1].xlen * 65536u + ht[t2].xlen; unsigned int sum = 0, sum2; do { unsigned int x = *ix++; unsigned int y = *ix++; if (x >= 15u) { x = 15u; sum += linbits; } if (y >= 15u) { y = 15u; sum += linbits; } x <<= 4u; x += y; sum += largetbl[x]; } while (ix < end); sum2 = sum & 0xffffu; sum >>= 16u; if (sum > sum2) { sum = sum2; t1 = t2; } *s += sum; return t1; } static int count_bit_noESC(const int *ix, const int *end, int mx, unsigned int *s) { /* No ESC-words */ unsigned int sum1 = 0; const uint8_t *const hlen1 = ht[1].hlen; (void) mx; do { unsigned int const x0 = *ix++; unsigned int const x1 = *ix++; sum1 += hlen1[ x0+x0 + x1 ]; } while (ix < end); *s += sum1; return 1; } static const int huf_tbl_noESC[] = { 1, 2, 5, 7, 7, 10, 10, 13, 13, 13, 13, 13, 13, 13, 13 }; static int count_bit_noESC_from2(const int *ix, const int *end, int max, unsigned int *s) { int t1 = huf_tbl_noESC[max - 1]; /* No ESC-words */ const unsigned int xlen = ht[t1].xlen; uint32_t const* table = (t1 == 2) ? &table23[0] : &table56[0]; unsigned int sum = 0, sum2; do { unsigned int const x0 = *ix++; unsigned int const x1 = *ix++; sum += table[ x0 * xlen + x1 ]; } while (ix < end); sum2 = sum & 0xffffu; sum >>= 16u; if (sum > sum2) { sum = sum2; t1++; } *s += sum; return t1; } inline static int count_bit_noESC_from3(const int *ix, const int *end, int max, unsigned int * s) { int t1 = huf_tbl_noESC[max - 1]; /* No ESC-words */ unsigned int sum1 = 0; unsigned int sum2 = 0; unsigned int sum3 = 0; const unsigned int xlen = ht[t1].xlen; const uint8_t *const hlen1 = ht[t1].hlen; const uint8_t *const hlen2 = ht[t1 + 1].hlen; const uint8_t *const hlen3 = ht[t1 + 2].hlen; int t; do { unsigned int x0 = *ix++; unsigned int x1 = *ix++; unsigned int x = x0 * xlen + x1; sum1 += hlen1[x]; sum2 += hlen2[x]; sum3 += hlen3[x]; } while (ix < end); t = t1; if (sum1 > sum2) { sum1 = sum2; t++; } if (sum1 > sum3) { sum1 = sum3; t = t1 + 2; } *s += sum1; return t; } /*************************************************************************/ /* choose table */ /*************************************************************************/ /* Choose the Huffman table that will encode ix[begin..end] with the fewest bits. Note: This code contains knowledge about the sizes and characteristics of the Huffman tables as defined in the IS (Table B.7), and will not work with any arbitrary tables. */ static int count_bit_null(const int* ix, const int* end, int max, unsigned int* s) { (void) ix; (void) end; (void) max; (void) s; return 0; } typedef int (*count_fnc)(const int* ix, const int* end, int max, unsigned int* s); static const count_fnc count_fncs[] = { &count_bit_null , &count_bit_noESC , &count_bit_noESC_from2 , &count_bit_noESC_from2 , &count_bit_noESC_from3 , &count_bit_noESC_from3 , &count_bit_noESC_from3 , &count_bit_noESC_from3 , &count_bit_noESC_from3 , &count_bit_noESC_from3 , &count_bit_noESC_from3 , &count_bit_noESC_from3 , &count_bit_noESC_from3 , &count_bit_noESC_from3 , &count_bit_noESC_from3 , &count_bit_noESC_from3 }; static int choose_table_nonMMX(const int *ix, const int *const end, int *const _s) { unsigned int* s = (unsigned int*)_s; unsigned int max; int choice, choice2; max = ix_max(ix, end); if (max <= 15) { return count_fncs[max](ix, end, max, s); } /* try tables with linbits */ if (max > IXMAX_VAL) { *s = LARGE_BITS; return -1; } max -= 15u; for (choice2 = 24; choice2 < 32; choice2++) { if (ht[choice2].linmax >= max) { break; } } for (choice = choice2 - 8; choice < 24; choice++) { if (ht[choice].linmax >= max) { break; } } return count_bit_ESC(ix, end, choice, choice2, s); } /*************************************************************************/ /* count_bit */ /*************************************************************************/ int noquant_count_bits(lame_internal_flags const *const gfc, gr_info * const gi, calc_noise_data * prev_noise) { SessionConfig_t const *const cfg = &gfc->cfg; int bits = 0; int i, a1, a2; int const *const ix = gi->l3_enc; i = Min(576, ((gi->max_nonzero_coeff + 2) >> 1) << 1); if (prev_noise) prev_noise->sfb_count1 = 0; /* Determine count1 region */ for (; i > 1; i -= 2) if (ix[i - 1] | ix[i - 2]) break; gi->count1 = i; /* Determines the number of bits to encode the quadruples. */ a1 = a2 = 0; for (; i > 3; i -= 4) { int x4 = ix[i-4]; int x3 = ix[i-3]; int x2 = ix[i-2]; int x1 = ix[i-1]; int p; /* hack to check if all values <= 1 */ if ((unsigned int) (x4 | x3 | x2 | x1) > 1) break; p = ((x4 * 2 + x3) * 2 + x2) * 2 + x1; a1 += t32l[p]; a2 += t33l[p]; } bits = a1; gi->count1table_select = 0; if (a1 > a2) { bits = a2; gi->count1table_select = 1; } gi->count1bits = bits; gi->big_values = i; if (i == 0) return bits; if (gi->block_type == SHORT_TYPE) { a1 = 3 * gfc->scalefac_band.s[3]; if (a1 > gi->big_values) a1 = gi->big_values; a2 = gi->big_values; } else if (gi->block_type == NORM_TYPE) { assert(i <= 576); /* bv_scf has 576 entries (0..575) */ a1 = gi->region0_count = gfc->sv_qnt.bv_scf[i - 2]; a2 = gi->region1_count = gfc->sv_qnt.bv_scf[i - 1]; assert(a1 + a2 + 2 < SBPSY_l); a2 = gfc->scalefac_band.l[a1 + a2 + 2]; a1 = gfc->scalefac_band.l[a1 + 1]; if (a2 < i) gi->table_select[2] = gfc->choose_table(ix + a2, ix + i, &bits); } else { gi->region0_count = 7; /*gi->region1_count = SBPSY_l - 7 - 1; */ gi->region1_count = SBMAX_l - 1 - 7 - 1; a1 = gfc->scalefac_band.l[7 + 1]; a2 = i; if (a1 > a2) { a1 = a2; } } /* have to allow for the case when bigvalues < region0 < region1 */ /* (and region0, region1 are ignored) */ a1 = Min(a1, i); a2 = Min(a2, i); assert(a1 >= 0); assert(a2 >= 0); /* Count the number of bits necessary to code the bigvalues region. */ if (0 < a1) gi->table_select[0] = gfc->choose_table(ix, ix + a1, &bits); if (a1 < a2) gi->table_select[1] = gfc->choose_table(ix + a1, ix + a2, &bits); if (cfg->use_best_huffman == 2) { gi->part2_3_length = bits; best_huffman_divide(gfc, gi); bits = gi->part2_3_length; } if (prev_noise) { if (gi->block_type == NORM_TYPE) { int sfb = 0; while (gfc->scalefac_band.l[sfb] < gi->big_values) { sfb++; } prev_noise->sfb_count1 = sfb; } } return bits; } int count_bits(lame_internal_flags const *const gfc, const FLOAT * const xr, gr_info * const gi, calc_noise_data * prev_noise) { int *const ix = gi->l3_enc; /* since quantize_xrpow uses table lookup, we need to check this first: */ FLOAT const w = (IXMAX_VAL) / IPOW20(gi->global_gain); if (gi->xrpow_max > w) return LARGE_BITS; quantize_xrpow(xr, ix, IPOW20(gi->global_gain), gi, prev_noise); if (gfc->sv_qnt.substep_shaping & 2) { int sfb, j = 0; /* 0.634521682242439 = 0.5946*2**(.5*0.1875) */ int const gain = gi->global_gain + gi->scalefac_scale; const FLOAT roundfac = 0.634521682242439 / IPOW20(gain); for (sfb = 0; sfb < gi->sfbmax; sfb++) { int const width = gi->width[sfb]; assert(width >= 0); if (!gfc->sv_qnt.pseudohalf[sfb]) { j += width; } else { int k; for (k = j, j += width; k < j; ++k) { ix[k] = (xr[k] >= roundfac) ? ix[k] : 0; } } } } return noquant_count_bits(gfc, gi, prev_noise); } /*********************************************************************** re-calculate the best scalefac_compress using scfsi the saved bits are kept in the bit reservoir. **********************************************************************/ inline static void recalc_divide_init(const lame_internal_flags * const gfc, gr_info const *cod_info, int const *const ix, int r01_bits[], int r01_div[], int r0_tbl[], int r1_tbl[]) { int r0, r1, bigv, r0t, r1t, bits; bigv = cod_info->big_values; for (r0 = 0; r0 <= 7 + 15; r0++) { r01_bits[r0] = LARGE_BITS; } for (r0 = 0; r0 < 16; r0++) { int const a1 = gfc->scalefac_band.l[r0 + 1]; int r0bits; if (a1 >= bigv) break; r0bits = 0; r0t = gfc->choose_table(ix, ix + a1, &r0bits); for (r1 = 0; r1 < 8; r1++) { int const a2 = gfc->scalefac_band.l[r0 + r1 + 2]; if (a2 >= bigv) break; bits = r0bits; r1t = gfc->choose_table(ix + a1, ix + a2, &bits); if (r01_bits[r0 + r1] > bits) { r01_bits[r0 + r1] = bits; r01_div[r0 + r1] = r0; r0_tbl[r0 + r1] = r0t; r1_tbl[r0 + r1] = r1t; } } } } inline static void recalc_divide_sub(const lame_internal_flags * const gfc, const gr_info * cod_info2, gr_info * const gi, const int *const ix, const int r01_bits[], const int r01_div[], const int r0_tbl[], const int r1_tbl[]) { int bits, r2, a2, bigv, r2t; bigv = cod_info2->big_values; for (r2 = 2; r2 < SBMAX_l + 1; r2++) { a2 = gfc->scalefac_band.l[r2]; if (a2 >= bigv) break; bits = r01_bits[r2 - 2] + cod_info2->count1bits; if (gi->part2_3_length <= bits) break; r2t = gfc->choose_table(ix + a2, ix + bigv, &bits); if (gi->part2_3_length <= bits) continue; memcpy(gi, cod_info2, sizeof(gr_info)); gi->part2_3_length = bits; gi->region0_count = r01_div[r2 - 2]; gi->region1_count = r2 - 2 - r01_div[r2 - 2]; gi->table_select[0] = r0_tbl[r2 - 2]; gi->table_select[1] = r1_tbl[r2 - 2]; gi->table_select[2] = r2t; } } void best_huffman_divide(const lame_internal_flags * const gfc, gr_info * const gi) { SessionConfig_t const *const cfg = &gfc->cfg; int i, a1, a2; gr_info cod_info2; int const *const ix = gi->l3_enc; int r01_bits[7 + 15 + 1]; int r01_div[7 + 15 + 1]; int r0_tbl[7 + 15 + 1]; int r1_tbl[7 + 15 + 1]; /* SHORT BLOCK stuff fails for MPEG2 */ if (gi->block_type == SHORT_TYPE && cfg->mode_gr == 1) return; memcpy(&cod_info2, gi, sizeof(gr_info)); if (gi->block_type == NORM_TYPE) { recalc_divide_init(gfc, gi, ix, r01_bits, r01_div, r0_tbl, r1_tbl); recalc_divide_sub(gfc, &cod_info2, gi, ix, r01_bits, r01_div, r0_tbl, r1_tbl); } i = cod_info2.big_values; if (i == 0 || (unsigned int) (ix[i - 2] | ix[i - 1]) > 1) return; i = gi->count1 + 2; if (i > 576) return; /* Determines the number of bits to encode the quadruples. */ memcpy(&cod_info2, gi, sizeof(gr_info)); cod_info2.count1 = i; a1 = a2 = 0; assert(i <= 576); for (; i > cod_info2.big_values; i -= 4) { int const p = ((ix[i - 4] * 2 + ix[i - 3]) * 2 + ix[i - 2]) * 2 + ix[i - 1]; a1 += t32l[p]; a2 += t33l[p]; } cod_info2.big_values = i; cod_info2.count1table_select = 0; if (a1 > a2) { a1 = a2; cod_info2.count1table_select = 1; } cod_info2.count1bits = a1; if (cod_info2.block_type == NORM_TYPE) recalc_divide_sub(gfc, &cod_info2, gi, ix, r01_bits, r01_div, r0_tbl, r1_tbl); else { /* Count the number of bits necessary to code the bigvalues region. */ cod_info2.part2_3_length = a1; a1 = gfc->scalefac_band.l[7 + 1]; if (a1 > i) { a1 = i; } if (a1 > 0) cod_info2.table_select[0] = gfc->choose_table(ix, ix + a1, (int *) &cod_info2.part2_3_length); if (i > a1) cod_info2.table_select[1] = gfc->choose_table(ix + a1, ix + i, (int *) &cod_info2.part2_3_length); if (gi->part2_3_length > cod_info2.part2_3_length) memcpy(gi, &cod_info2, sizeof(gr_info)); } } static const int slen1_n[16] = { 1, 1, 1, 1, 8, 2, 2, 2, 4, 4, 4, 8, 8, 8, 16, 16 }; static const int slen2_n[16] = { 1, 2, 4, 8, 1, 2, 4, 8, 2, 4, 8, 2, 4, 8, 4, 8 }; const int slen1_tab[16] = { 0, 0, 0, 0, 3, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4 }; const int slen2_tab[16] = { 0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 1, 2, 3, 2, 3 }; static void scfsi_calc(int ch, III_side_info_t * l3_side) { unsigned int i; int s1, s2, c1, c2; int sfb; gr_info *const gi = &l3_side->tt[1][ch]; gr_info const *const g0 = &l3_side->tt[0][ch]; for (i = 0; i < (sizeof(scfsi_band) / sizeof(int)) - 1; i++) { for (sfb = scfsi_band[i]; sfb < scfsi_band[i + 1]; sfb++) { if (g0->scalefac[sfb] != gi->scalefac[sfb] && gi->scalefac[sfb] >= 0) break; } if (sfb == scfsi_band[i + 1]) { for (sfb = scfsi_band[i]; sfb < scfsi_band[i + 1]; sfb++) { gi->scalefac[sfb] = -1; } l3_side->scfsi[ch][i] = 1; } } s1 = c1 = 0; for (sfb = 0; sfb < 11; sfb++) { if (gi->scalefac[sfb] == -1) continue; c1++; if (s1 < gi->scalefac[sfb]) s1 = gi->scalefac[sfb]; } s2 = c2 = 0; for (; sfb < SBPSY_l; sfb++) { if (gi->scalefac[sfb] == -1) continue; c2++; if (s2 < gi->scalefac[sfb]) s2 = gi->scalefac[sfb]; } for (i = 0; i < 16; i++) { if (s1 < slen1_n[i] && s2 < slen2_n[i]) { int const c = slen1_tab[i] * c1 + slen2_tab[i] * c2; if (gi->part2_length > c) { gi->part2_length = c; gi->scalefac_compress = (int)i; } } } } /* Find the optimal way to store the scalefactors. Only call this routine after final scalefactors have been chosen and the channel/granule will not be re-encoded. */ void best_scalefac_store(const lame_internal_flags * gfc, const int gr, const int ch, III_side_info_t * const l3_side) { SessionConfig_t const *const cfg = &gfc->cfg; /* use scalefac_scale if we can */ gr_info *const gi = &l3_side->tt[gr][ch]; int sfb, i, j, l; int recalc = 0; /* remove scalefacs from bands with ix=0. This idea comes * from the AAC ISO docs. added mt 3/00 */ /* check if l3_enc=0 */ j = 0; for (sfb = 0; sfb < gi->sfbmax; sfb++) { int const width = gi->width[sfb]; assert(width >= 0); for (l = j, j += width; l < j; ++l) { if (gi->l3_enc[l] != 0) break; } if (l == j) gi->scalefac[sfb] = recalc = -2; /* anything goes. */ /* only best_scalefac_store and calc_scfsi * know--and only they should know--about the magic number -2. */ } if (!gi->scalefac_scale && !gi->preflag) { int s = 0; for (sfb = 0; sfb < gi->sfbmax; sfb++) if (gi->scalefac[sfb] > 0) s |= gi->scalefac[sfb]; if (!(s & 1) && s != 0) { for (sfb = 0; sfb < gi->sfbmax; sfb++) if (gi->scalefac[sfb] > 0) gi->scalefac[sfb] >>= 1; gi->scalefac_scale = recalc = 1; } } if (!gi->preflag && gi->block_type != SHORT_TYPE && cfg->mode_gr == 2) { for (sfb = 11; sfb < SBPSY_l; sfb++) if (gi->scalefac[sfb] < pretab[sfb] && gi->scalefac[sfb] != -2) break; if (sfb == SBPSY_l) { for (sfb = 11; sfb < SBPSY_l; sfb++) if (gi->scalefac[sfb] > 0) gi->scalefac[sfb] -= pretab[sfb]; gi->preflag = recalc = 1; } } for (i = 0; i < 4; i++) l3_side->scfsi[ch][i] = 0; if (cfg->mode_gr == 2 && gr == 1 && l3_side->tt[0][ch].block_type != SHORT_TYPE && l3_side->tt[1][ch].block_type != SHORT_TYPE) { scfsi_calc(ch, l3_side); recalc = 0; } for (sfb = 0; sfb < gi->sfbmax; sfb++) { if (gi->scalefac[sfb] == -2) { gi->scalefac[sfb] = 0; /* if anything goes, then 0 is a good choice */ } } if (recalc) { (void) scale_bitcount(gfc, gi); } } #ifndef NDEBUG static int all_scalefactors_not_negative(int const *scalefac, int n) { int i; for (i = 0; i < n; ++i) { if (scalefac[i] < 0) return 0; } return 1; } #endif /* number of bits used to encode scalefacs */ /* 18*slen1_tab[i] + 18*slen2_tab[i] */ static const int scale_short[16] = { 0, 18, 36, 54, 54, 36, 54, 72, 54, 72, 90, 72, 90, 108, 108, 126 }; /* 17*slen1_tab[i] + 18*slen2_tab[i] */ static const int scale_mixed[16] = { 0, 18, 36, 54, 51, 35, 53, 71, 52, 70, 88, 69, 87, 105, 104, 122 }; /* 11*slen1_tab[i] + 10*slen2_tab[i] */ static const int scale_long[16] = { 0, 10, 20, 30, 33, 21, 31, 41, 32, 42, 52, 43, 53, 63, 64, 74 }; /*************************************************************************/ /* scale_bitcount */ /*************************************************************************/ /* Also calculates the number of bits necessary to code the scalefactors. */ static int mpeg1_scale_bitcount(const lame_internal_flags * gfc, gr_info * const cod_info) { int k, sfb, max_slen1 = 0, max_slen2 = 0; /* maximum values */ const int *tab; int *const scalefac = cod_info->scalefac; (void) gfc; assert(all_scalefactors_not_negative(scalefac, cod_info->sfbmax)); if (cod_info->block_type == SHORT_TYPE) { tab = scale_short; if (cod_info->mixed_block_flag) tab = scale_mixed; } else { /* block_type == 1,2,or 3 */ tab = scale_long; if (!cod_info->preflag) { for (sfb = 11; sfb < SBPSY_l; sfb++) if (scalefac[sfb] < pretab[sfb]) break; if (sfb == SBPSY_l) { cod_info->preflag = 1; for (sfb = 11; sfb < SBPSY_l; sfb++) scalefac[sfb] -= pretab[sfb]; } } } for (sfb = 0; sfb < cod_info->sfbdivide; sfb++) if (max_slen1 < scalefac[sfb]) max_slen1 = scalefac[sfb]; for (; sfb < cod_info->sfbmax; sfb++) if (max_slen2 < scalefac[sfb]) max_slen2 = scalefac[sfb]; /* from Takehiro TOMINAGA 10/99 * loop over *all* posible values of scalefac_compress to find the * one which uses the smallest number of bits. ISO would stop * at first valid index */ cod_info->part2_length = LARGE_BITS; for (k = 0; k < 16; k++) { if (max_slen1 < slen1_n[k] && max_slen2 < slen2_n[k] && cod_info->part2_length > tab[k]) { cod_info->part2_length = tab[k]; cod_info->scalefac_compress = k; } } return cod_info->part2_length == LARGE_BITS; } /* table of largest scalefactor values for MPEG2 */ static const int max_range_sfac_tab[6][4] = { {15, 15, 7, 7}, {15, 15, 7, 0}, {7, 3, 0, 0}, {15, 31, 31, 0}, {7, 7, 7, 0}, {3, 3, 0, 0} }; /*************************************************************************/ /* scale_bitcount_lsf */ /*************************************************************************/ /* Also counts the number of bits to encode the scalefacs but for MPEG 2 */ /* Lower sampling frequencies (24, 22.05 and 16 kHz.) */ /* This is reverse-engineered from section 2.4.3.2 of the MPEG2 IS, */ /* "Audio Decoding Layer III" */ static int mpeg2_scale_bitcount(const lame_internal_flags * gfc, gr_info * const cod_info) { int table_number, row_in_table, partition, nr_sfb, window, over; int i, sfb, max_sfac[4]; const int *partition_table; int const *const scalefac = cod_info->scalefac; /* Set partition table. Note that should try to use table one, but do not yet... */ if (cod_info->preflag) table_number = 2; else table_number = 0; for (i = 0; i < 4; i++) max_sfac[i] = 0; if (cod_info->block_type == SHORT_TYPE) { row_in_table = 1; partition_table = &nr_of_sfb_block[table_number][row_in_table][0]; for (sfb = 0, partition = 0; partition < 4; partition++) { nr_sfb = partition_table[partition] / 3; for (i = 0; i < nr_sfb; i++, sfb++) for (window = 0; window < 3; window++) if (scalefac[sfb * 3 + window] > max_sfac[partition]) max_sfac[partition] = scalefac[sfb * 3 + window]; } } else { row_in_table = 0; partition_table = &nr_of_sfb_block[table_number][row_in_table][0]; for (sfb = 0, partition = 0; partition < 4; partition++) { nr_sfb = partition_table[partition]; for (i = 0; i < nr_sfb; i++, sfb++) if (scalefac[sfb] > max_sfac[partition]) max_sfac[partition] = scalefac[sfb]; } } for (over = 0, partition = 0; partition < 4; partition++) { if (max_sfac[partition] > max_range_sfac_tab[table_number][partition]) over++; } if (!over) { /* Since no bands have been over-amplified, we can set scalefac_compress and slen[] for the formatter */ static const int log2tab[] = { 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4 }; int slen1, slen2, slen3, slen4; cod_info->sfb_partition_table = nr_of_sfb_block[table_number][row_in_table]; for (partition = 0; partition < 4; partition++) cod_info->slen[partition] = log2tab[max_sfac[partition]]; /* set scalefac_compress */ slen1 = cod_info->slen[0]; slen2 = cod_info->slen[1]; slen3 = cod_info->slen[2]; slen4 = cod_info->slen[3]; switch (table_number) { case 0: cod_info->scalefac_compress = (((slen1 * 5) + slen2) << 4) + (slen3 << 2) + slen4; break; case 1: cod_info->scalefac_compress = 400 + (((slen1 * 5) + slen2) << 2) + slen3; break; case 2: cod_info->scalefac_compress = 500 + (slen1 * 3) + slen2; break; default: ERRORF(gfc, "intensity stereo not implemented yet\n"); break; } } #ifdef DEBUG if (over) ERRORF(gfc, "---WARNING !! Amplification of some bands over limits\n"); #endif if (!over) { assert(cod_info->sfb_partition_table); cod_info->part2_length = 0; for (partition = 0; partition < 4; partition++) cod_info->part2_length += cod_info->slen[partition] * cod_info->sfb_partition_table[partition]; } return over; } int scale_bitcount(const lame_internal_flags * gfc, gr_info * cod_info) { if (gfc->cfg.mode_gr == 2) { return mpeg1_scale_bitcount(gfc, cod_info); } else { return mpeg2_scale_bitcount(gfc, cod_info); } } #ifdef MMX_choose_table extern int choose_table_MMX(const int *ix, const int *const end, int *const s); #endif void huffman_init(lame_internal_flags * const gfc) { int i; gfc->choose_table = choose_table_nonMMX; #ifdef MMX_choose_table if (gfc->CPU_features.MMX) { gfc->choose_table = choose_table_MMX; } #endif for (i = 2; i <= 576; i += 2) { int scfb_anz = 0, bv_index; while (gfc->scalefac_band.l[++scfb_anz] < i); bv_index = subdv_table[scfb_anz].region0_count; while (gfc->scalefac_band.l[bv_index + 1] > i) bv_index--; if (bv_index < 0) { /* this is an indication that everything is going to be encoded as region0: bigvalues < region0 < region1 so lets set region0, region1 to some value larger than bigvalues */ bv_index = subdv_table[scfb_anz].region0_count; } gfc->sv_qnt.bv_scf[i - 2] = bv_index; bv_index = subdv_table[scfb_anz].region1_count; while (gfc->scalefac_band.l[bv_index + gfc->sv_qnt.bv_scf[i - 2] + 2] > i) bv_index--; if (bv_index < 0) { bv_index = subdv_table[scfb_anz].region1_count; } gfc->sv_qnt.bv_scf[i - 1] = bv_index; } }