// FIXME: The assumes we're using the non-vector ABI, i.e., compiling // for a pre-z13 machine or using -mno-vx. use crate::abi::call::{FnType, ArgType, Reg}; use crate::abi::{self, HasDataLayout, LayoutOf, TyLayout, TyLayoutMethods}; fn classify_ret_ty<'a, Ty, C>(ret: &mut ArgType<'_, Ty>) where Ty: TyLayoutMethods<'a, C>, C: LayoutOf + HasDataLayout { if !ret.layout.is_aggregate() && ret.layout.size.bits() <= 64 { ret.extend_integer_width_to(64); } else { ret.make_indirect(); } } fn is_single_fp_element<'a, Ty, C>(cx: &C, layout: TyLayout<'a, Ty>) -> bool where Ty: TyLayoutMethods<'a, C>, C: LayoutOf> + HasDataLayout { match layout.abi { abi::Abi::Scalar(ref scalar) => scalar.value.is_float(), abi::Abi::Aggregate { .. } => { if layout.fields.count() == 1 && layout.fields.offset(0).bytes() == 0 { is_single_fp_element(cx, layout.field(cx, 0)) } else { false } } _ => false } } fn classify_arg_ty<'a, Ty, C>(cx: &C, arg: &mut ArgType<'a, Ty>) where Ty: TyLayoutMethods<'a, C> + Copy, C: LayoutOf> + HasDataLayout { if !arg.layout.is_aggregate() && arg.layout.size.bits() <= 64 { arg.extend_integer_width_to(64); return; } if is_single_fp_element(cx, arg.layout) { match arg.layout.size.bytes() { 4 => arg.cast_to(Reg::f32()), 8 => arg.cast_to(Reg::f64()), _ => arg.make_indirect() } } else { match arg.layout.size.bytes() { 1 => arg.cast_to(Reg::i8()), 2 => arg.cast_to(Reg::i16()), 4 => arg.cast_to(Reg::i32()), 8 => arg.cast_to(Reg::i64()), _ => arg.make_indirect() } } } pub fn compute_abi_info<'a, Ty, C>(cx: &C, fty: &mut FnType<'a, Ty>) where Ty: TyLayoutMethods<'a, C> + Copy, C: LayoutOf> + HasDataLayout { if !fty.ret.is_ignore() { classify_ret_ty(&mut fty.ret); } for arg in &mut fty.args { if arg.is_ignore() { continue; } classify_arg_ty(cx, arg); } }