use unicode_width::UnicodeWidthChar; use super::*; #[cfg(test)] mod tests; /// Finds all newlines, multi-byte characters, and non-narrow characters in a /// SourceFile. /// /// This function will use an SSE2 enhanced implementation if hardware support /// is detected at runtime. pub fn analyze_source_file( src: &str, source_file_start_pos: BytePos) -> (Vec, Vec, Vec) { let mut lines = vec![source_file_start_pos]; let mut multi_byte_chars = vec![]; let mut non_narrow_chars = vec![]; // Calls the right implementation, depending on hardware support available. analyze_source_file_dispatch(src, source_file_start_pos, &mut lines, &mut multi_byte_chars, &mut non_narrow_chars); // The code above optimistically registers a new line *after* each \n // it encounters. If that point is already outside the source_file, remove // it again. if let Some(&last_line_start) = lines.last() { let source_file_end = source_file_start_pos + BytePos::from_usize(src.len()); assert!(source_file_end >= last_line_start); if last_line_start == source_file_end { lines.pop(); } } (lines, multi_byte_chars, non_narrow_chars) } cfg_if::cfg_if! { if #[cfg(all(any(target_arch = "x86", target_arch = "x86_64")))] { fn analyze_source_file_dispatch(src: &str, source_file_start_pos: BytePos, lines: &mut Vec, multi_byte_chars: &mut Vec, non_narrow_chars: &mut Vec) { if is_x86_feature_detected!("sse2") { unsafe { analyze_source_file_sse2(src, source_file_start_pos, lines, multi_byte_chars, non_narrow_chars); } } else { analyze_source_file_generic(src, src.len(), source_file_start_pos, lines, multi_byte_chars, non_narrow_chars); } } /// Checks 16 byte chunks of text at a time. If the chunk contains /// something other than printable ASCII characters and newlines, the /// function falls back to the generic implementation. Otherwise it uses /// SSE2 intrinsics to quickly find all newlines. #[target_feature(enable = "sse2")] unsafe fn analyze_source_file_sse2(src: &str, output_offset: BytePos, lines: &mut Vec, multi_byte_chars: &mut Vec, non_narrow_chars: &mut Vec) { #[cfg(target_arch = "x86")] use std::arch::x86::*; #[cfg(target_arch = "x86_64")] use std::arch::x86_64::*; const CHUNK_SIZE: usize = 16; let src_bytes = src.as_bytes(); let chunk_count = src.len() / CHUNK_SIZE; // This variable keeps track of where we should start decoding a // chunk. If a multi-byte character spans across chunk boundaries, // we need to skip that part in the next chunk because we already // handled it. let mut intra_chunk_offset = 0; for chunk_index in 0 .. chunk_count { let ptr = src_bytes.as_ptr() as *const __m128i; // We don't know if the pointer is aligned to 16 bytes, so we // use `loadu`, which supports unaligned loading. let chunk = _mm_loadu_si128(ptr.offset(chunk_index as isize)); // For character in the chunk, see if its byte value is < 0, which // indicates that it's part of a UTF-8 char. let multibyte_test = _mm_cmplt_epi8(chunk, _mm_set1_epi8(0)); // Create a bit mask from the comparison results. let multibyte_mask = _mm_movemask_epi8(multibyte_test); // If the bit mask is all zero, we only have ASCII chars here: if multibyte_mask == 0 { assert!(intra_chunk_offset == 0); // Check if there are any control characters in the chunk. All // control characters that we can encounter at this point have a // byte value less than 32 or ... let control_char_test0 = _mm_cmplt_epi8(chunk, _mm_set1_epi8(32)); let control_char_mask0 = _mm_movemask_epi8(control_char_test0); // ... it's the ASCII 'DEL' character with a value of 127. let control_char_test1 = _mm_cmpeq_epi8(chunk, _mm_set1_epi8(127)); let control_char_mask1 = _mm_movemask_epi8(control_char_test1); let control_char_mask = control_char_mask0 | control_char_mask1; if control_char_mask != 0 { // Check for newlines in the chunk let newlines_test = _mm_cmpeq_epi8(chunk, _mm_set1_epi8(b'\n' as i8)); let newlines_mask = _mm_movemask_epi8(newlines_test); if control_char_mask == newlines_mask { // All control characters are newlines, record them let mut newlines_mask = 0xFFFF0000 | newlines_mask as u32; let output_offset = output_offset + BytePos::from_usize(chunk_index * CHUNK_SIZE + 1); loop { let index = newlines_mask.trailing_zeros(); if index >= CHUNK_SIZE as u32 { // We have arrived at the end of the chunk. break } lines.push(BytePos(index) + output_offset); // Clear the bit, so we can find the next one. newlines_mask &= (!1) << index; } // We are done for this chunk. All control characters were // newlines and we took care of those. continue } else { // Some of the control characters are not newlines, // fall through to the slow path below. } } else { // No control characters, nothing to record for this chunk continue } } // The slow path. // There are control chars in here, fallback to generic decoding. let scan_start = chunk_index * CHUNK_SIZE + intra_chunk_offset; intra_chunk_offset = analyze_source_file_generic( &src[scan_start .. ], CHUNK_SIZE - intra_chunk_offset, BytePos::from_usize(scan_start) + output_offset, lines, multi_byte_chars, non_narrow_chars ); } // There might still be a tail left to analyze let tail_start = chunk_count * CHUNK_SIZE + intra_chunk_offset; if tail_start < src.len() { analyze_source_file_generic(&src[tail_start as usize ..], src.len() - tail_start, output_offset + BytePos::from_usize(tail_start), lines, multi_byte_chars, non_narrow_chars); } } } else { // The target (or compiler version) does not support SSE2 ... fn analyze_source_file_dispatch(src: &str, source_file_start_pos: BytePos, lines: &mut Vec, multi_byte_chars: &mut Vec, non_narrow_chars: &mut Vec) { analyze_source_file_generic(src, src.len(), source_file_start_pos, lines, multi_byte_chars, non_narrow_chars); } } } // `scan_len` determines the number of bytes in `src` to scan. Note that the // function can read past `scan_len` if a multi-byte character start within the // range but extends past it. The overflow is returned by the function. fn analyze_source_file_generic(src: &str, scan_len: usize, output_offset: BytePos, lines: &mut Vec, multi_byte_chars: &mut Vec, non_narrow_chars: &mut Vec) -> usize { assert!(src.len() >= scan_len); let mut i = 0; let src_bytes = src.as_bytes(); while i < scan_len { let byte = unsafe { // We verified that i < scan_len <= src.len() *src_bytes.get_unchecked(i as usize) }; // How much to advance in order to get to the next UTF-8 char in the // string. let mut char_len = 1; if byte < 32 { // This is an ASCII control character, it could be one of the cases // that are interesting to us. let pos = BytePos::from_usize(i) + output_offset; match byte { b'\n' => { lines.push(pos + BytePos(1)); } b'\t' => { non_narrow_chars.push(NonNarrowChar::Tab(pos)); } _ => { non_narrow_chars.push(NonNarrowChar::ZeroWidth(pos)); } } } else if byte >= 127 { // The slow path: // This is either ASCII control character "DEL" or the beginning of // a multibyte char. Just decode to `char`. let c = (&src[i..]).chars().next().unwrap(); char_len = c.len_utf8(); let pos = BytePos::from_usize(i) + output_offset; if char_len > 1 { assert!(char_len >=2 && char_len <= 4); let mbc = MultiByteChar { pos, bytes: char_len as u8, }; multi_byte_chars.push(mbc); } // Assume control characters are zero width. // FIXME: How can we decide between `width` and `width_cjk`? let char_width = UnicodeWidthChar::width(c).unwrap_or(0); if char_width != 1 { non_narrow_chars.push(NonNarrowChar::new(pos, char_width)); } } i += char_len; } i - scan_len }