// Copyright 2021 The Mugle Developers // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. use env_logger; use mugle_core as core; use mugle_store as store; use std::fs; use chrono::prelude::Utc; use croaring::Bitmap; use crate::core::core::hash::DefaultHashable; use crate::core::core::pmmr::{Backend, ReadablePMMR, PMMR}; use crate::core::ser::{ Error, PMMRIndexHashable, PMMRable, ProtocolVersion, Readable, Reader, Writeable, Writer, }; #[test] fn pmmr_leaf_idx_iter() { let (data_dir, elems) = setup("leaf_idx_iter"); { let mut backend = store::pmmr::PMMRBackend::new(data_dir.to_string(), true, ProtocolVersion(1), None) .unwrap(); // adding first set of 4 elements and sync let mmr_size = load(0, &elems[0..5], &mut backend); backend.sync().unwrap(); { let pmmr: PMMR<'_, TestElem, _> = PMMR::at(&mut backend, mmr_size); let leaf_idx = pmmr.leaf_idx_iter(0).collect::>(); let leaf_pos = pmmr.leaf_pos_iter().collect::>(); // The first 5 leaves [0,1,2,3,4] are at pos [1,2,4,5,8] in the MMR. assert_eq!(leaf_idx, vec![0, 1, 2, 3, 4]); assert_eq!(leaf_pos, vec![0, 1, 3, 4, 7]); } } teardown(data_dir); } #[test] fn pmmr_append() { let (data_dir, elems) = setup("append"); { let mut backend = store::pmmr::PMMRBackend::new(data_dir.to_string(), false, ProtocolVersion(1), None) .unwrap(); // adding first set of 4 elements and sync let mut mmr_size = load(0, &elems[0..4], &mut backend); backend.sync().unwrap(); let pos_0 = elems[0].hash_with_index(0); let pos_1 = elems[1].hash_with_index(1); let pos_2 = (pos_0, pos_1).hash_with_index(2); { // Note: 1-indexed PMMR API let pmmr: PMMR<'_, TestElem, _> = PMMR::at(&mut backend, mmr_size); assert_eq!(pmmr.n_unpruned_leaves(), 4); assert_eq!(pmmr.get_data(0), Some(elems[0])); assert_eq!(pmmr.get_data(1), Some(elems[1])); assert_eq!(pmmr.get_hash(0), Some(pos_0)); assert_eq!(pmmr.get_hash(1), Some(pos_1)); assert_eq!(pmmr.get_hash(2), Some(pos_2)); } // adding the rest and sync again mmr_size = load(mmr_size, &elems[4..9], &mut backend); backend.sync().unwrap(); // 0010012001001230 let pos_3 = elems[2].hash_with_index(3); let pos_4 = elems[3].hash_with_index(4); let pos_5 = (pos_3, pos_4).hash_with_index(5); let pos_6 = (pos_2, pos_5).hash_with_index(6); let pos_7 = elems[4].hash_with_index(7); let pos_8 = elems[5].hash_with_index(8); let pos_9 = (pos_7, pos_8).hash_with_index(9); let pos_10 = elems[6].hash_with_index(10); let pos_11 = elems[7].hash_with_index(11); let pos_12 = (pos_10, pos_11).hash_with_index(12); let pos_13 = (pos_9, pos_12).hash_with_index(13); let pos_14 = (pos_6, pos_13).hash_with_index(14); let pos_15 = elems[8].hash_with_index(15); { // Note: 1-indexed PMMR API let pmmr: PMMR<'_, TestElem, _> = PMMR::at(&mut backend, mmr_size); assert_eq!(pmmr.n_unpruned_leaves(), 9); // First pair of leaves. assert_eq!(pmmr.get_data(0), Some(elems[0])); assert_eq!(pmmr.get_data(1), Some(elems[1])); // Second pair of leaves. assert_eq!(pmmr.get_data(3), Some(elems[2])); assert_eq!(pmmr.get_data(4), Some(elems[3])); // Third pair of leaves. assert_eq!(pmmr.get_data(7), Some(elems[4])); assert_eq!(pmmr.get_data(8), Some(elems[5])); assert_eq!(pmmr.get_hash(9), Some(pos_9)); } // check the resulting backend store and the computation of the root let node_hash = elems[0].hash_with_index(0); assert_eq!(backend.get_hash(0).unwrap(), node_hash); { let pmmr: PMMR<'_, TestElem, _> = PMMR::at(&mut backend, mmr_size); assert_eq!(pmmr.root().unwrap(), (pos_14, pos_15).hash_with_index(16)); } } teardown(data_dir); } #[test] fn pmmr_compact_leaf_sibling() { let (data_dir, elems) = setup("compact_leaf_sibling"); // setup the mmr store with all elements { let mut backend = store::pmmr::PMMRBackend::new(data_dir.to_string(), true, ProtocolVersion(1), None) .unwrap(); let mmr_size = load(0, &elems[..], &mut backend); backend.sync().unwrap(); assert_eq!(backend.n_unpruned_leaves(), 19); // On far left of the MMR - // pos 1 and 2 are leaves (and siblings) // the parent is pos 3 let (pos_0_hash, pos_1_hash, pos_2_hash) = { let pmmr = PMMR::at(&mut backend, mmr_size); ( pmmr.get_hash(0).unwrap(), pmmr.get_hash(1).unwrap(), pmmr.get_hash(2).unwrap(), ) }; // prune pos 1 { let mut pmmr = PMMR::at(&mut backend, mmr_size); pmmr.prune(0).unwrap(); // prune pos 8 as well to push the remove list past the cutoff pmmr.prune(7).unwrap(); } backend.sync().unwrap(); // // check pos 1, 2, 3 are in the state we expect after pruning { let pmmr = PMMR::at(&mut backend, mmr_size); assert_eq!(pmmr.n_unpruned_leaves(), 17); // check that pos 0 is "removed" assert_eq!(pmmr.get_hash(0), None); // check that pos 1 and 2 are unchanged assert_eq!(pmmr.get_hash(1).unwrap(), pos_1_hash); assert_eq!(pmmr.get_hash(2).unwrap(), pos_2_hash); } // check we can still retrieve the "removed" element at pos 0 // from the backend hash file. assert_eq!(backend.get_from_file(0).unwrap(), pos_0_hash); // aggressively compact the PMMR files backend.check_compact(1, &Bitmap::create()).unwrap(); // check pos 0, 1, 2 are in the state we expect after compacting { let pmmr = PMMR::at(&mut backend, mmr_size); // check that pos 0 is "removed" assert_eq!(pmmr.get_hash(0), None); // check that pos 1 and 2 are unchanged assert_eq!(pmmr.get_hash(1).unwrap(), pos_1_hash); assert_eq!(pmmr.get_hash(2).unwrap(), pos_2_hash); } // Check we can still retrieve the "removed" hash at pos 1 from the hash file. // It should still be available even after pruning and compacting. assert_eq!(backend.get_from_file(0).unwrap(), pos_0_hash); } teardown(data_dir); } #[test] fn pmmr_prune_compact() { let (data_dir, elems) = setup("prune_compact"); // setup the mmr store with all elements { let mut backend = store::pmmr::PMMRBackend::new(data_dir.to_string(), true, ProtocolVersion(1), None) .unwrap(); let mmr_size = load(0, &elems[..], &mut backend); backend.sync().unwrap(); // save the root let root = { let pmmr: PMMR<'_, TestElem, _> = PMMR::at(&mut backend, mmr_size); pmmr.root().unwrap() }; // pruning some choice nodes { let mut pmmr: PMMR<'_, TestElem, _> = PMMR::at(&mut backend, mmr_size); pmmr.prune(0).unwrap(); pmmr.prune(3).unwrap(); pmmr.prune(4).unwrap(); } backend.sync().unwrap(); // check the root and stored data { let pmmr: PMMR<'_, TestElem, _> = PMMR::at(&mut backend, mmr_size); assert_eq!(root, pmmr.root().unwrap()); // check we can still retrieve same element from leaf index 2 assert_eq!(pmmr.get_data(1).unwrap(), TestElem(2)); // and the same for leaf index 7 assert_eq!(pmmr.get_data(10).unwrap(), TestElem(7)); } // compact backend.check_compact(2, &Bitmap::create()).unwrap(); // recheck the root and stored data { let pmmr: PMMR<'_, TestElem, _> = PMMR::at(&mut backend, mmr_size); assert_eq!(root, pmmr.root().unwrap()); assert_eq!(pmmr.get_data(1).unwrap(), TestElem(2)); assert_eq!(pmmr.get_data(10).unwrap(), TestElem(7)); } } teardown(data_dir); } #[test] fn pmmr_reload() { let (data_dir, elems) = setup("reload"); // set everything up with an initial backend { let mut backend = store::pmmr::PMMRBackend::new(data_dir.to_string(), true, ProtocolVersion(1), None) .unwrap(); let mmr_size = load(0, &elems[..], &mut backend); // retrieve entries from the hash file for comparison later let pos_2_hash = backend.get_hash(2).unwrap(); let pos_3_hash = backend.get_hash(3).unwrap(); let pos_4_hash = backend.get_hash(4).unwrap(); // save the root let root = { let pmmr: PMMR<'_, TestElem, _> = PMMR::at(&mut backend, mmr_size); pmmr.root().unwrap() }; { backend.sync().unwrap(); assert_eq!(backend.unpruned_size(), mmr_size); // prune a node so we have prune data { let mut pmmr: PMMR<'_, TestElem, _> = PMMR::at(&mut backend, mmr_size); pmmr.prune(0).unwrap(); } backend.sync().unwrap(); assert_eq!(backend.unpruned_size(), mmr_size); // now check and compact the backend backend.check_compact(1, &Bitmap::create()).unwrap(); assert_eq!(backend.unpruned_size(), mmr_size); backend.sync().unwrap(); assert_eq!(backend.unpruned_size(), mmr_size); // prune another node to force compact to actually do something { let mut pmmr: PMMR<'_, TestElem, _> = PMMR::at(&mut backend, mmr_size); pmmr.prune(3).unwrap(); pmmr.prune(1).unwrap(); } backend.sync().unwrap(); assert_eq!(backend.unpruned_size(), mmr_size); backend.check_compact(4, &Bitmap::create()).unwrap(); backend.sync().unwrap(); assert_eq!(backend.unpruned_size(), mmr_size); // prune some more to get rm log data { let mut pmmr: PMMR<'_, TestElem, _> = PMMR::at(&mut backend, mmr_size); pmmr.prune(4).unwrap(); } backend.sync().unwrap(); assert_eq!(backend.unpruned_size(), mmr_size); } // create a new backend referencing the data files // and check everything still works as expected { let mut backend = store::pmmr::PMMRBackend::new(data_dir.to_string(), true, ProtocolVersion(1), None) .unwrap(); assert_eq!(backend.unpruned_size(), mmr_size); { let pmmr: PMMR<'_, TestElem, _> = PMMR::at(&mut backend, mmr_size); assert_eq!(root, pmmr.root().unwrap()); } // pos 0 and pos 1 are both removed (via parent pos 2 in prune list) assert_eq!(backend.get_hash(0), None); assert_eq!(backend.get_hash(1), None); // pos 2 is "removed" but we keep the hash around for root of pruned subtree assert_eq!(backend.get_hash(2), Some(pos_2_hash)); // pos 3 is removed (via prune list) assert_eq!(backend.get_hash(3), None); // pos 4 is removed (via leaf_set) assert_eq!(backend.get_hash(4), None); // now check contents of the hash file // pos 0 and pos 1 are no longer in the hash file assert_eq!(backend.get_from_file(0), None); assert_eq!(backend.get_from_file(1), None); // pos 2 is still in there assert_eq!(backend.get_from_file(2), Some(pos_2_hash)); // pos 3 and pos 4 are also still in there assert_eq!(backend.get_from_file(3), Some(pos_3_hash)); assert_eq!(backend.get_from_file(4), Some(pos_4_hash)); } } teardown(data_dir); } #[test] fn pmmr_rewind() { let (data_dir, elems) = setup("rewind"); { let mut backend = store::pmmr::PMMRBackend::new(data_dir.clone(), true, ProtocolVersion(1), None) .unwrap(); // adding elements and keeping the corresponding root let mut mmr_size = load(0, &elems[0..4], &mut backend); backend.sync().unwrap(); let root1 = { let pmmr: PMMR<'_, TestElem, _> = PMMR::at(&mut backend, mmr_size); pmmr.root().unwrap() }; mmr_size = load(mmr_size, &elems[4..6], &mut backend); backend.sync().unwrap(); let root2 = { let pmmr: PMMR<'_, TestElem, _> = PMMR::at(&mut backend, mmr_size); assert_eq!(pmmr.unpruned_size(), 10); pmmr.root().unwrap() }; mmr_size = load(mmr_size, &elems[6..9], &mut backend); backend.sync().unwrap(); let root3 = { let pmmr: PMMR<'_, TestElem, _> = PMMR::at(&mut backend, mmr_size); assert_eq!(pmmr.unpruned_size(), 16); pmmr.root().unwrap() }; // prune the first 4 elements (leaves at pos 1, 2, 4, 5) { let mut pmmr: PMMR<'_, TestElem, _> = PMMR::at(&mut backend, mmr_size); pmmr.prune(0).unwrap(); pmmr.prune(1).unwrap(); pmmr.prune(3).unwrap(); pmmr.prune(4).unwrap(); } backend.sync().unwrap(); // and compact the MMR to remove the pruned elements backend.check_compact(6, &Bitmap::create()).unwrap(); backend.sync().unwrap(); println!("root1 {:?}, root2 {:?}, root3 {:?}", root1, root2, root3); // rewind and check the roots still match { let mut pmmr: PMMR<'_, TestElem, _> = PMMR::at(&mut backend, mmr_size); pmmr.rewind(9, &Bitmap::of(&vec![11, 12, 16])).unwrap(); assert_eq!(pmmr.unpruned_size(), 10); assert_eq!(pmmr.root().unwrap(), root2); } backend.sync().unwrap(); { let pmmr: PMMR<'_, TestElem, _> = PMMR::at(&mut backend, 10); assert_eq!(pmmr.root().unwrap(), root2); } // Also check the data file looks correct. // pos 0, 1, 3, 4 are all leaves but these have been pruned. for pos in vec![0, 1, 3, 4] { assert_eq!(backend.get_data(pos), None); } // pos 2, 5, 6 are non-leaves so we have no data for these for pos in vec![2, 5, 6] { assert_eq!(backend.get_data(pos), None); } // pos 7 and 8 are both leaves and should be unaffected by prior pruning assert_eq!(backend.get_data(7), Some(elems[4])); assert_eq!(backend.get_hash(7), Some(elems[4].hash_with_index(7))); assert_eq!(backend.get_data(8), Some(elems[5])); assert_eq!(backend.get_hash(8), Some(elems[5].hash_with_index(8))); // TODO - Why is this 2 here? println!("***** backend size here: {}", backend.data_size()); assert_eq!(backend.data_size(), 2); { let mut pmmr: PMMR<'_, TestElem, _> = PMMR::at(&mut backend, 10); pmmr.rewind(5, &Bitmap::create()).unwrap(); assert_eq!(pmmr.root().unwrap(), root1); } backend.sync().unwrap(); { let pmmr: PMMR<'_, TestElem, _> = PMMR::at(&mut backend, 7); assert_eq!(pmmr.root().unwrap(), root1); } // also check the data file looks correct // everything up to and including pos 6 should be pruned from the data file // but we have rewound to pos 4 so everything after that should be None for pos in 0..16 { assert_eq!(backend.get_data(pos), None); } println!("***** backend hash size here: {}", backend.hash_size()); println!("***** backend data size here: {}", backend.data_size()); // check we have no data in the backend after // pruning, compacting and rewinding assert_eq!(backend.hash_size(), 1); assert_eq!(backend.data_size(), 0); } teardown(data_dir); } #[test] fn pmmr_compact_single_leaves() { let (data_dir, elems) = setup("compact_single_leaves"); { let mut backend = store::pmmr::PMMRBackend::new(data_dir.clone(), true, ProtocolVersion(1), None) .unwrap(); let mmr_size = load(0, &elems[0..5], &mut backend); backend.sync().unwrap(); { let mut pmmr: PMMR<'_, TestElem, _> = PMMR::at(&mut backend, mmr_size); pmmr.prune(0).unwrap(); pmmr.prune(3).unwrap(); } backend.sync().unwrap(); // compact backend.check_compact(2, &Bitmap::create()).unwrap(); { let mut pmmr: PMMR<'_, TestElem, _> = PMMR::at(&mut backend, mmr_size); pmmr.prune(1).unwrap(); pmmr.prune(4).unwrap(); } backend.sync().unwrap(); // compact backend.check_compact(2, &Bitmap::create()).unwrap(); } teardown(data_dir); } #[test] fn pmmr_compact_entire_peak() { let (data_dir, elems) = setup("compact_entire_peak"); { let mut backend = store::pmmr::PMMRBackend::new(data_dir.clone(), true, ProtocolVersion(1), None) .unwrap(); let mmr_size = load(0, &elems[0..5], &mut backend); backend.sync().unwrap(); let pos_6_hash = backend.get_hash(6).unwrap(); let pos_7 = backend.get_data(7).unwrap(); let pos_7_hash = backend.get_hash(7).unwrap(); // prune all leaves under the peak at pos 7 { let mut pmmr: PMMR<'_, TestElem, _> = PMMR::at(&mut backend, mmr_size); pmmr.prune(0).unwrap(); pmmr.prune(1).unwrap(); pmmr.prune(3).unwrap(); pmmr.prune(4).unwrap(); } backend.sync().unwrap(); // compact backend.check_compact(2, &Bitmap::create()).unwrap(); // now check we have pruned up to and including the peak at pos 7 // hash still available in underlying hash file assert_eq!(backend.get_hash(6), Some(pos_6_hash)); assert_eq!(backend.get_from_file(6), Some(pos_6_hash)); // now check we still have subsequent hash and data where we expect assert_eq!(backend.get_data(7), Some(pos_7)); assert_eq!(backend.get_hash(7), Some(pos_7_hash)); assert_eq!(backend.get_from_file(7), Some(pos_7_hash)); } teardown(data_dir); } #[test] fn pmmr_compact_horizon() { let (data_dir, elems) = setup("compact_horizon"); { let pos_0_hash; let pos_1_hash; let pos_2_hash; let pos_5_hash; let pos_6_hash; let pos_7; let pos_7_hash; let pos_10; let pos_10_hash; let mmr_size; { let mut backend = store::pmmr::PMMRBackend::new(data_dir.clone(), true, ProtocolVersion(1), None) .unwrap(); mmr_size = load(0, &elems[..], &mut backend); backend.sync().unwrap(); // 0010012001001230 // 9 leaves assert_eq!(backend.data_size(), 19); assert_eq!(backend.hash_size(), 35); pos_0_hash = backend.get_hash(0).unwrap(); pos_1_hash = backend.get_hash(1).unwrap(); pos_2_hash = backend.get_hash(2).unwrap(); pos_5_hash = backend.get_hash(5).unwrap(); pos_6_hash = backend.get_hash(6).unwrap(); pos_7 = backend.get_data(7).unwrap(); pos_7_hash = backend.get_hash(7).unwrap(); pos_10 = backend.get_data(10).unwrap(); pos_10_hash = backend.get_hash(10).unwrap(); // pruning some choice nodes { let mut pmmr: PMMR<'_, TestElem, _> = PMMR::at(&mut backend, mmr_size); pmmr.prune(3).unwrap(); pmmr.prune(4).unwrap(); pmmr.prune(0).unwrap(); pmmr.prune(1).unwrap(); } backend.sync().unwrap(); // check we can read hashes and data correctly after pruning { // assert_eq!(backend.get_hash(3), None); assert_eq!(backend.get_from_file(2), Some(pos_2_hash)); // assert_eq!(backend.get_hash(6), None); assert_eq!(backend.get_from_file(5), Some(pos_5_hash)); // assert_eq!(backend.get_hash(7), None); assert_eq!(backend.get_from_file(6), Some(pos_6_hash)); assert_eq!(backend.get_hash(7), Some(pos_7_hash)); assert_eq!(backend.get_data(7), Some(pos_7)); assert_eq!(backend.get_from_file(7), Some(pos_7_hash)); assert_eq!(backend.get_hash(10), Some(pos_10_hash)); assert_eq!(backend.get_data(10), Some(pos_10)); assert_eq!(backend.get_from_file(10), Some(pos_10_hash)); } // compact backend.check_compact(4, &Bitmap::of(&vec![1, 2])).unwrap(); backend.sync().unwrap(); // check we can read a hash by pos correctly after compaction { assert_eq!(backend.get_hash(0), None); assert_eq!(backend.get_from_file(0), Some(pos_0_hash)); assert_eq!(backend.get_hash(1), None); assert_eq!(backend.get_from_file(1), Some(pos_1_hash)); assert_eq!(backend.get_hash(2), Some(pos_2_hash)); assert_eq!(backend.get_hash(3), None); assert_eq!(backend.get_hash(4), None); assert_eq!(backend.get_hash(5), Some(pos_5_hash)); assert_eq!(backend.get_from_file(6), Some(pos_6_hash)); assert_eq!(backend.get_hash(7), Some(pos_7_hash)); assert_eq!(backend.get_from_file(7), Some(pos_7_hash)); } } // recheck stored data { // recreate backend let backend = store::pmmr::PMMRBackend::::new( data_dir.to_string(), true, ProtocolVersion(1), None, ) .unwrap(); assert_eq!(backend.data_size(), 19); assert_eq!(backend.hash_size(), 35); // check we can read a hash by pos correctly from recreated backend assert_eq!(backend.get_hash(6), Some(pos_6_hash)); assert_eq!(backend.get_from_file(6), Some(pos_6_hash)); assert_eq!(backend.get_hash(7), Some(pos_7_hash)); assert_eq!(backend.get_from_file(7), Some(pos_7_hash)); } { let mut backend = store::pmmr::PMMRBackend::::new( data_dir.to_string(), true, ProtocolVersion(1), None, ) .unwrap(); { let mut pmmr: PMMR<'_, TestElem, _> = PMMR::at(&mut backend, mmr_size); pmmr.prune(7).unwrap(); pmmr.prune(8).unwrap(); } // compact some more backend.check_compact(9, &Bitmap::create()).unwrap(); } // recheck stored data { // recreate backend let backend = store::pmmr::PMMRBackend::::new( data_dir.to_string(), true, ProtocolVersion(1), None, ) .unwrap(); // 0010012001001230 assert_eq!(backend.data_size(), 13); assert_eq!(backend.hash_size(), 27); // check we can read a hash by pos correctly from recreated backend // get_hash() and get_from_file() should return the same value // and we only store leaves in the leaf_set so pos 6 still has a hash in there assert_eq!(backend.get_hash(6), Some(pos_6_hash)); assert_eq!(backend.get_from_file(6), Some(pos_6_hash)); assert_eq!(backend.get_hash(10), Some(pos_10_hash)); assert_eq!(backend.get_data(10), Some(pos_10)); assert_eq!(backend.get_from_file(10), Some(pos_10_hash)); } } teardown(data_dir); } #[test] fn compact_twice() { let (data_dir, elems) = setup("compact_twice"); // setup the mmr store with all elements // Scoped to allow Windows to teardown { let mut backend = store::pmmr::PMMRBackend::new(data_dir.to_string(), true, ProtocolVersion(1), None) .unwrap(); let mmr_size = load(0, &elems[..], &mut backend); backend.sync().unwrap(); // save the root let root = { let pmmr: PMMR<'_, TestElem, _> = PMMR::at(&mut backend, mmr_size); pmmr.root().unwrap() }; // pruning some choice nodes { let mut pmmr: PMMR<'_, TestElem, _> = PMMR::at(&mut backend, mmr_size); pmmr.prune(0).unwrap(); pmmr.prune(1).unwrap(); pmmr.prune(3).unwrap(); } backend.sync().unwrap(); // check the root and stored data { let pmmr: PMMR<'_, TestElem, _> = PMMR::at(&mut backend, mmr_size); assert_eq!(root, pmmr.root().unwrap()); assert_eq!(pmmr.get_data(4).unwrap(), TestElem(4)); assert_eq!(pmmr.get_data(10).unwrap(), TestElem(7)); } // compact backend.check_compact(2, &Bitmap::create()).unwrap(); // recheck the root and stored data { let pmmr: PMMR<'_, TestElem, _> = PMMR::at(&mut backend, mmr_size); assert_eq!(root, pmmr.root().unwrap()); assert_eq!(pmmr.get_data(4).unwrap(), TestElem(4)); assert_eq!(pmmr.get_data(10).unwrap(), TestElem(7)); } // now prune some more nodes { let mut pmmr: PMMR<'_, TestElem, _> = PMMR::at(&mut backend, mmr_size); pmmr.prune(4).unwrap(); pmmr.prune(7).unwrap(); pmmr.prune(8).unwrap(); } backend.sync().unwrap(); // recheck the root and stored data { let pmmr: PMMR<'_, TestElem, _> = PMMR::at(&mut backend, mmr_size); assert_eq!(root, pmmr.root().unwrap()); assert_eq!(pmmr.get_data(10).unwrap(), TestElem(7)); } // compact backend.check_compact(2, &Bitmap::create()).unwrap(); // recheck the root and stored data { let pmmr: PMMR<'_, TestElem, _> = PMMR::at(&mut backend, mmr_size); assert_eq!(root, pmmr.root().unwrap()); assert_eq!(pmmr.get_data(10).unwrap(), TestElem(7)); } } teardown(data_dir); } #[test] fn cleanup_rewind_files_test() { let expected = 10; let prefix_to_delete = "foo"; let prefix_to_save = "bar"; let seconds_to_delete_after = 100; // create the scenario let (data_dir, _) = setup("cleanup_rewind_files_test"); // create some files with the delete prefix that aren't yet old enough to delete create_numbered_files(&data_dir, expected, prefix_to_delete, 0, 0); // create some files with the delete prefix that are old enough to delete create_numbered_files( &data_dir, expected, prefix_to_delete, seconds_to_delete_after + 1, expected, ); // create some files with the save prefix that are old enough to delete, but will be saved because they don't start // with the right prefix create_numbered_files( &data_dir, expected, prefix_to_save, seconds_to_delete_after, 0, ); // run the cleaner let actual = store::pmmr::clean_files_by_prefix(&data_dir, prefix_to_delete, seconds_to_delete_after) .unwrap(); assert_eq!( actual, expected, "the clean files by prefix function did not report the correct number of files deleted" ); // check that the reported number is actually correct, the block is to borrow data_dir for the closure { // this function simply counts the number of files in the directory based on the prefix let count_fn = |prefix| { let mut remaining_count = 0; for entry in fs::read_dir(&data_dir).unwrap() { if entry .unwrap() .file_name() .into_string() .unwrap() .starts_with(prefix) { remaining_count += 1; } } remaining_count }; assert_eq!( count_fn(prefix_to_delete), expected, // we expect this many to be left because they weren't old enough to be deleted yet "it should delete all of the files it is supposed to delete" ); assert_eq!( count_fn(prefix_to_save), expected, "it should delete none of the files it is not supposed to" ); } teardown(data_dir); } /// Create some files for testing with, for example /// /// ```text /// create_numbered_files(".", 3, "hello.txt.", 100, 2) /// ``` /// /// will create files /// /// ```text /// hello.txt.2 /// hello.txt.3 /// hello.txt.4 /// ``` /// /// in the current working directory that are all 100 seconds old (modified and accessed time) /// fn create_numbered_files( data_dir: &str, num_files: u32, prefix: &str, last_accessed_delay_seconds: u64, start_index: u32, ) { let now = std::time::SystemTime::now(); let time_to_set = now - std::time::Duration::from_secs(last_accessed_delay_seconds); let time_to_set_ft = filetime::FileTime::from_system_time(time_to_set); for rewind_file_num in 0..num_files { let path = std::path::Path::new(&data_dir).join(format!( "{}.{}", prefix, start_index + rewind_file_num )); let file = fs::File::create(path.clone()).unwrap(); let _metadata = file.metadata().unwrap(); filetime::set_file_times(path, time_to_set_ft, time_to_set_ft).unwrap(); } } fn setup(tag: &str) -> (String, Vec) { match env_logger::try_init() { Ok(_) => println!("Initializing env logger"), Err(e) => println!("env logger already initialized: {:?}", e), }; let t = Utc::now(); let data_dir = format!( "./target/tmp/{}.{}-{}", t.timestamp(), t.timestamp_subsec_nanos(), tag ); fs::create_dir_all(data_dir.clone()).unwrap(); let mut elems = vec![]; for x in 1..20 { elems.push(TestElem(x)); } (data_dir, elems) } /// note that taking ownership of the data_dir is a feature /// because it will not be able to be used after teardown as intended fn teardown(data_dir: String) { fs::remove_dir_all(data_dir).unwrap(); } fn load(pos: u64, elems: &[TestElem], backend: &mut store::pmmr::PMMRBackend) -> u64 { let mut pmmr = PMMR::at(backend, pos); for elem in elems { pmmr.push(elem).unwrap(); } pmmr.unpruned_size() } #[derive(Copy, Clone, Debug, PartialEq, Eq)] struct TestElem(u32); impl DefaultHashable for TestElem {} impl PMMRable for TestElem { type E = Self; fn as_elmt(&self) -> Self::E { self.clone() } fn elmt_size() -> Option { Some(4) } } impl Writeable for TestElem { fn write(&self, writer: &mut W) -> Result<(), Error> { writer.write_u32(self.0) } } impl Readable for TestElem { fn read(reader: &mut R) -> Result { Ok(TestElem(reader.read_u32()?)) } }