
GG19

1 Original Protocol

We follow the construction of Gennaro and Goldfeder from the eprint version of the paper [1]. We describe
the protocol from the point of view of party Pi. We implicitly assume that all messages arrive (otherwise
abort).

PROTOCOL 1.1 (GG19 Distributed Key Generation)

The protocol runs between n parties: P1, ..., Pn. the parties run on input threshold t and elliptic curve
parameters.

1. Commitment Round: Broadcast a commit to random point Yi = ui ·G
2. Broadcast decommitment to Yi. Check correctness for n − 1 received decommitments. Otherwise

abort

3. VSS round: Perform (t, n) Feldman-VSS of the value ui. set the group public key to be Y =∑
j Yj . set the local secret share to be xi =

∑
j fj(i).

4. Broadcast zkPoK of xi. Verify n− 1 zkPoK of DLog, otherwise abort

5. Paillier keygen: Generate Paillier keypair and broadcast the public key ei

6. Broadcast zkPoK of pi, qi such that Ni = piqi (Ni being Paillier modulus associated with ei). Verify
n− 1 proofs, otherwise abort

1



PROTOCOL 1.2 (GG19 Distributed Signing)

The protocol runs between t parties: P1, ..., Pt. All parties know m, the message to be signed.

1. Compute new t-additive secret share wi = xiλi where λi is Lagrangian coefficient.

2. Compute new local public keys (for all j: Wj = λj ·Xj)

3. Commitment Round: Broadcast a commit to random point γi ·G
4. MtA: Choose random ki. for all j 6= i do:

(a) Send ci = Eei(ki) to Pj

(b) generate and send zk range proof,proving ki < K where K is chosen such that Ni > K2q.
Verify t− 1 range proofs, otherwise abort

(c) compute and send cji = γi ×ej cj +ej Eej (β′j) where β′j is chosen at random from ZNj . Set
βji = −β′j

(d) generate and send a zk range proof that cji decrypts to a value < K ((Appendix A.2 in [1])

(e) set αij = Ddi(cij)

5. MtAwc: for all j 6= i do:

(a) Send ci = Eei(ki) to Pj . (done in 4(a))

(b) generate and send zk range proof, proving ki < K where K is chosen such that Ni > K2q,
Verify t− 1 range proofs, otherwise abort

(c) compute and send cji = wi ×ej cj +ej Eej (ν′j) where ν′j is chosen at random from ZNj . Set
νji = −ν′j

(d) generate and send a zk range proof that cji decrypts to a value < K (Appendix A.2 in [1]).
Verify t− 1 range proofs, otherwise abort

(e) Generate and send zkPoK with witness {wi, νji} such that Wi = wi ·G and cji = wi×ej cj +ej

Eej (ν′j). Verify t− 1 proofs, otherwise abort

(f) set µij = Ddi(cij)

6. Broadcast δi = kiγi +
∑

j 6=i αij +
∑

j 6=i βji. Set δ =
∑

j δj .

7. Decommit to γi ·G. check correctness for t− 1 received decommitments. otherwise abort

8. Generate and Broadcast zkPoK of DLog for γi. Verify t− 1 zkPoK, otherwise abort

9. Compute R = δ−1 ∑
j Γj where Γj = γj ·G. Compute r = H ′(R) where H ′ is hash from group to

scalar. Set si = mki + rσi, where σi = kiwi +
∑

j 6=i µij +
∑

j 6=i νji

10. Commitment Round: Compute Vi = si · R + li · G and Ai = ρi · G where li, ρi are chosen at
random. Broadcast a commitment to {Vi, Ai}

11. Broadcast Decommitment to {Vi, Ai}. Check correctness for t− 1 received decommitments, other-
wise abort

12. Generate and broadcast zkPoK with witness {si, li} to prove Vi = si ·R+ li ·G. Verify t−1 zkPoK,
otherwise abort

13. Generate and broadcast zkPoK with witness ρi to prove Ai = ρi · G (typo in paper). Verify t − 1
zkPoK, otherwise abort

14. Commitment Round: Compute V = −m · G − r · Y +
∑

j Vj and A =
∑

j Aj . Broadcast
commitment to {Ui, Ti} = {ρi · V, li ·A}

15. Decommit to {Ui, Ti}. Check correctness of t − 1 decommitments and check
∑

j Uj =
∑

j Tj .
Otherwise abort

16. Broadcast si. ECDSA verify the signature (s =
∑

j sj , r). If True output (s, r). Otherwise abort

2 KZen Version

KZen version [2] follows the original protocol with the following changes:

• In step (10) we add Bi = li · Ai to the commitment. We use Bi in step (12) to prove with the same
witness the statement {Vi = si ·R+ li ·G,Bi = li ·Ai}

• In MtAwc, we replace the proof in (e) with the following:

2



1. zkPoK of DLog for ν′j ·G
2. check that ki ·Wj + ν′j ·G = µi ·G

• We change step (4) from MtA to be MtAwc. To do so we need Pj to know Γi. In the original protocol
this information is decommited at step (7). In our protoocl we keep the decommitment correctness
check but reveal Γi at MtAwc step (c). This is secure as long as all commitments from step (3) arrived.
We make sure at step (7) that the decomitted Γi is the same one used in the MtAwc. Finally we use
the same alternative proof as in previous bullet.

• We do not use range proofs in MtA and MtAwc (steps (b) and (d)). See [1] section 5 for reasoning

References

[1] https://eprint.iacr.org/2019/114. First version

[2] https://github.com/KZen-networks/multi-party-ecdsa. Commit b68db7a

3


	Original Protocol
	KZen Version

