GG19

1 Original Protocol

We follow the construction of Gennaro and Goldfeder from the eprint version of the paper [1]. We describe
the protocol from the point of view of party P;. We implicitly assume that all messages arrive (otherwise
abort).

PROTOCOL 1.1 (GG19 Distributed Key Generation)

The protocol runs between n parties: Pi,..., P,. the parties run on input threshold ¢ and elliptic curve
parameters.
1. Commitment Round: Broadcast a commit to random point Y; = u; - G

2. Broadcast decommitment to Y;. Check correctness for n — 1 received decommitments. Otherwise
abort

3. VSS round: Perform (¢,n) Feldman-VSS of the value ;. set the group public key to be Y =
>_; Y. set the local secret share to be z; =}, f;(7).

4. Broadcast zkPoK of x;. Verify n — 1 zkPoK of DLog, otherwise abort
5. Paillier keygen: Generate Paillier keypair and broadcast the public key e;

6. Broadcast zkPoK of p;, ¢; such that N; = p;q; (N; being Paillier modulus associated with e;). Verify
n — 1 proofs, otherwise abort

PROTOCOL 1.2 (GG19 Distributed Signing)

The protocol runs between t parties: Pi, ..., P;. All parties know m, the message to be signed.

1. Compute new t-additive secret share w; = x;\; where \; is Lagrangian coefficient.
2. Compute new local public keys (for all j: W; = X; - X;)
3. Commitment Round: Broadcast a commit to random point v; - G
4. MtA: Choose random k;. for all j # i do:
(a) Send ¢; = E.,(k;) to P;
(b) generate and send zk range proof,proving k; < K where K is chosen such that N; > K?q.
Verify t — 1 range proofs, otherwise abort
(c) compute and send c¢ji = i Xe; ¢j +e; Ee;(8;) where] is chosen at random from Zy;. Set
Bji = —B;
(d) generate and send a zk range proof that c;; decrypts to a value < K ((Appendix A.2 in [1])
(e) set aij = Da,(cij)
5. MtAwec: for all j # ¢ do:
(a) Send ¢; = E.,(k;) to P;. (done in 4(a))
(b) generate and send zk range proof, proving k; < K where K is chosen such that N; > KZq,
Verify ¢ — 1 range proofs, otherwise abort

(c) compute and send cj; = wi Xe; ¢j +e; Ee; (v

J) where 1/§- is chosen at random from ZNj. Set

_ /
Vji = —V]-

(d) generate and send a zk range proof that c¢j; decrypts to a value < K (Appendix A.2 in [1]).
Verify ¢ — 1 range proofs, otherwise abort

(e) Generate and send zkPoK with witness {w;, vj;} such that W; = w; -G and ¢j; = w; Xe; ¢+,
E.; (vj). Verify t — 1 proofs, otherwise abort

(f) set pij = Da, (cij)
Broadcast 6; = kivi + >0, @ij + 22,4, Bji- Set 6 =3, 6.
Decommit to 7; - G. check correctness for ¢ — 1 received decommitments. otherwise abort
Generate and Broadcast zkPoK of DLog for «;. Verify t — 1 zkPoK, otherwise abort

Compute R = §* >, Tj where T'; = v; - G. Compute r = H'(R) where H' is hash from group to
scalar. Set s; = mk; + ro;, where o; = k;w; + Z].# wij + Z].# Vji

© o N>

10. Commitment Round: Compute V; = s;- R+ 1; - G and A; = p; - G where l;, p; are chosen at
random. Broadcast a commitment to {V;, A;}

11. Broadcast Decommitment to {V;, A;}. Check correctness for ¢ — 1 received decommitments, other-
wise abort

12. Generate and broadcast zkPoK with witness {s;,l;} to prove V; = s; - R+1; - G. Verify t — 1 zkPoK,

otherwise abort

13. Generate and broadcast zkPoK with witness p; to prove A; = p; - G (typo in paper). Verify ¢t — 1
zkPoK, otherwise abort

14. Commitment Round: Compute V = —m -G —7-Y + 3, V; and A = > A;. Broadcast
commitment to {U;, T;} = {p: -V, l; - A}

15. Decommit to {U;, Ti}. Check correctness of ¢t — 1 decommitments and check 7, U; = >, T}.
Otherwise abort

16. Broadcast s;. ECDSA verify the signature (s =37, s;,7). If True output (s,r). Otherwise abort

2 KZen Version

KZen version [2] follows the original protocol with the following changes:

e In step (10) we add B; = I; - A; to the commitment. We use B; in step (12) to prove with the same
witness the statement {V; =s;- R+1;- G, B; =1; - A;}

e In MtAwc, we replace the proof in (e) with the following:

1. zkPoK of DLog for v} - G
2. check that ki-Wj—H/j’--G:,ui-G

e We change step (4) from MtA to be MtAwc. To do so we need P; to know I';. In the original protocol
this information is decommited at step (7). In our protoocl we keep the decommitment correctness
check but reveal I'; at MtAwec step (c). This is secure as long as all commitments from step (3) arrived.
We make sure at step (7) that the decomitted T'; is the same one used in the MtAwc. Finally we use
the same alternative proof as in previous bullet.

e We do not use range proofs in MtA and MtAwc (steps (b) and (d)). See [1] section 5 for reasoning

References

[1] https://eprint.iacr.org/2019/114. First version

[2] https://github.com/KZen-networks/multi-party-ecdsa. Commit b68db7a

	Original Protocol
	KZen Version

