
Towards Practical Formal Verification

of Smart Contracts
– Technical Report –

DRAFT – Implementation Only View

David Dill Wolfgang Grieskamp Junkil Park
Shaz Qadeer Meng Xu Emma Zhong

August 27, 2021

Contents

3 Move Prover Implementation 2
3.1 Basic Architecture . 2
3.2 Reference Elimination . 3

3.2.1 Immutable References . 3
3.2.2 Mutable References . 4

3.3 Function Condition Injection . 6
3.3.1 Modular Verification . 7
3.3.2 Pre- and Post conditions 7
3.3.3 Modifies . 8
3.3.4 Data Invariants . 9

3.4 Global Invariant Injection . 10
3.4.1 Basic Translation . 11
3.4.2 Genericity . 12
3.4.3 Modularity . 12
3.4.4 Suspending Invariants . 13
3.4.5 Invariant Consistency . 15

3.5 Monomorphization . 15
3.5.1 Basic Monomorphization 15
3.5.2 Type Dependent Code . 16

3.6 Translation to Boogie and Z3 . 17
3.6.1 Vectors and Extensionality 17
3.6.2 Encoding . 17
3.6.3 Butterflies . 17

1

Figure 1: Move Prover Architecture

3 Move Prover Implementation

In this section, an overview of the Move Prover implementation will be provided.
The formal content of the discussion is kept lightweight; a formalization of some
aspects is given in appendices.

3.1 Basic Architecture

The architecture of the Move Prover is illustrated in Fig. 1. Move code (con-
sisting of Move programs and specifications) is given as input to the Move tool
chain, which produces two artifacts: the abstract syntax tree (AST) of the spec-
ifications in the code, as well as the translated Move bytecode for the program
part. It is essential that the Prover interprets the Move program on bytecode
level, not on the intermediate AST: this way we verify the “source of truth”
which is also executed in the Move VM. Only the specification parts are passed
on as AST. The Move Model is a component which merges both bytecode and
specifications, as well as other metdata from the original code, into a unique
object model which is input to the remaining tool chain.

The next phase is the actual Prover Compiler, which is implemented as a
pipeline of bytecode transformations. Only an excerpt of the most important
transformations is shown (Reference Elimination, Specification Injection, and
Monomorphization). These transformations will be conceptually described in
more detail in subsequent sections. While they happen in reality on an ex-
tended version of the Move bytecode, we will illustrate them on a higher level
of abstraction, as Move source level transformations.

The transformed bytecode is next compiled into the Boogie intermediate
verification language [3]. Boogie supports an imperative programming model
which is well suited for the encoding of the transformed Move code. Boogie in

2

turn can translate to multiple SMT solver backends, namely Z3 [5] and CVC5
[4]; the default choice for the Move prover is currently Z3.

When the SMT solver produces a sat or unknown result (of the negation of
the verification condition Boogie generates), it produces a model witness. The
Move Prover undertakes some effort to translate this model back into diagnosis
which a user can associate it with the original Move code (as has been illustrated
in Sec. ??.) For example, execution traces leading to the verification failure are
shown, with assignments to variables used in this trace, extracted from the
model. Also the Move Model will be consulted to retrieve the original source
information and display it with the diagnosis.

Subsequently, we will focus on the major bytecode transformations as well
as the encoding and translation to Boogie.

3.2 Reference Elimination

The Move language supports references to data stored in global memory and
on the stack. Those references can point to interior parts of the data. The
reference system is based on borrow semantics [2] as it is also found in the Rust
programming language. One can create (immutable) references &x and mutable
references &mut x, and derive new references by field selection (&mut x.f and
&x.f). The borrow semantics of Move provides the following guarantees (ensured
by the borrow checker [1]):

• For any given location in global memory or on the stack, there can be
either exactly one mutable reference, or n immutable references. Hereby,
it does not matter to what interior part of the data is referred to.

• Dangling references to locations on the stack cannot exist; that is, the
lifetime of references to data on the stack is restricted to the lifetime of
the stack location.

These properties enable us to effectively eliminate references from the Move
program, reducing the verification complexity significantly, as we do not need
to reason about sharing. It comes as no surprise that the same discipline of
borrowing which makes Move (and Rust) programs safer by design also makes
verification simpler.

3.2.1 Immutable References

Since during the existance of an immutable reference no mutation on the refer-
enced data can occur, we can simply replace references by the referred value.

An example of the applied transformation is shown below. We remove the
reference type constructor and all reference-taking operations from the code:

fun select_f(s: &S): &T { &s.f } fun select_f(s: S): T { s.f }

Notice that at Move execution time, immutable references serve performance
objectives (avoid copies); however, the symbolic reasoning engines we use have

3

a different representation of values, in which structure sharing is common and
copying is cheap.

3.2.2 Mutable References

Each mutation of a location l starts with an initial borrow for the whole
data stored in this location (in Move, borrow global mut<T>(addr) for global
memory, and &mut x for a local on the stack). Let’s call the reference resulting
from such a borrow r. As long as this reference is alive, Move code can either
update its value (*r = v), or replace it with a sub-reference (r’ = &mut r.f).
The mutation ends when r (or the derived r’) go out of scope. Because of the
guarantees of the borrow semantics, during the mutation of the data in l no
other reference can exist into data in l.

The fact that &mut has exclusive access to the whole value in a location
allows to reduce mutable references to a read-update-write cycle. One can create
a copy of the data in l and single-thread it to a sequence of mutation steps
which are represented as purely functional data updates. Once the last reference
for the data in l goes out of scope, the updated value is written back to l.
This effectively turns an imperative program with references into an imperative
program which only has state updates on global memory or variables on the
stack, a class of programs which is known to have a significant simpler semantics.
We illustrate the basics of this approach by an example:

fun increment(x: &mut u64) { *x = *x + 1 }
fun increment_field(s: &mut S) { increment (&mut s.f) }
fun caller (): S { let s = S{f:0}; update(&mut s); s }

fun increment(x: u64): u64 { x + 1 }
fun increment_field(s: S): S { s[f = increment(s.f)] }
fun caller (): S { let s = S{f:0}; s = update(s); s }

While the setup in this example covers a majority of the uses cases in every
day Move code, there are more complex ones to consider, namely that the value
of a reference depends on runtime decisions:

let r = i f (p) &mut s1 else &mut s2;
increment_field(r);

Additional runtime information is required to deal with such cases. At the
execution point a reference goes out of scope, we need to know from which
location it was derived from, so we can write back the updated value correctly.
Fig. 3.2.2 illustrates the approach for doing this. A new Move prover internal
type Mut<T> is introduced which carries the location from which T was derived
together with the value. It supports the following operations:

• Mvp::mklocal(value, LOCAL_ID) creates a new mutation value for a local
with the given local id. Local ids are transformation generated constants
kept opaque here.

4

• Similarily, Mvp::mkglobal(value, TYPE_ID, addr) creates a new muta-
tion for a global with given type and address. Notice that in the current
Move type system, we would not need to represent the address, since there
can be only one mutable reference into the entire type (via the acquires
mechanism). However, we keep this more general here, as the Move type
system might change.

• With r’ = Mvp::field(r, FIELD_ID) a mutation value for a subreference
is created for the identified field.

• The value of a mutation is replaced with r’ = Mvp::set(r, v) and re-
trieved with v = Mvp::get(r).

• With the predicate Mvp::is_local(r, LOCAL_ID) one can
test whether r was derived from the given local, and with
Mvp::is_global(r, TYPE_ID, addr) whether it was derived from
the specified global. The predicate Mvp::is_field(r, FIELD_ID) tests
whether it is derived from the given field.

Implementation The Move Prover has a partial implementation of the il-
lustrated transformation. The completeness of this implementation has not yet
been formally investigated, but we believe that it covers all of Move, with the
language’s simplification that we do not need to distinguish addresses in global
memory locations.1 (See discussion of Mvp::mkglobal above.) The transfor-
mation also relies on that in Move there are no recursive data types, so field
selection paths are statically known. While those things can be potentially
generalized, we have not yet investigated this direction.

The transformation constructs a borrow graph from the program via a data
flow analysis. The borrow graph tracks both when references are released as well
as how they relate to each other: e.g. r’ = &mut r.f creates a edge from r to
r’ labelled with f, and r’ = &mut r.g creates another also starting from r. For
the matter of this problem, a reference is not released until a direct or indirect
borrow on it goes out of scope; notice that its lifetimes in terms of borrowing
is larger than the scope of its usage. The borrow analysis is inter-procedural
requiring computed summaries for the borrow graph of called functions.

The resulting borrow graph is then used to guide the transformation, insert-
ing the operations of the Mut<T> type as illustrated in Fig 3.2.2. Specifically,
when the borrow on a reference ends, the associated mutation value must be
written back to its parent mutation or the original location (e.g. line 29 in
Fig. 3.2.2). The presence of multiple possible origins leads to case distinctions
via Mvp::is_X predicates; however, these cases are rare in actual Move programs.

Performance TODO(wrwg): We may want to identify some historical benchmarks before

memory model.

1TODO(wrwg): Need to investigate loops!

5

Figure 2: Elimination of Mutable References

1 fun increment(x: &mut u64) { *x = *x + 1 }
2 fun increment_field(s: &mut S) {
3 let r = i f (s.f > 0) &mut s.f else &mut s.g;
4 increment(r)
5 }
6 fun caller(p: bool): (S, S) {
7 let s1 = S{f:0, g:0}; let s2 = S{f:1, g:1};
8 let r = i f (p) &mut s1 else &mut s2;
9 increment_field(r);

10 (s1, s2)
11 }
12
13 fun increment(x: Mut <u64 >): Mut <u64 > { Mvp::set(x, Mvp::get(x) + 1) }
14 fun increment_field(s: Mut <S>): Mut <S> {
15 let r = i f (s.f > 0) Mvp::field(s.f, S_F) else Mvp::field(s.g, S_G);
16 r = increment(r);
17 i f (Mvp:: is_field(r, S_F))
18 s = Mvp::set(s, Mvp::get(s)[f = Mvp::get(r)]);
19 i f (Mvp:: is_field(r, S_G))
20 s = Mvp::set(s, Mvp::get(s)[g = Mvp::get(r)]);
21 s
22 }
23 fun caller(p: bool): S {
24 let s1 = S{f:0, g:0}; let s2 = S{f:1, g:1};
25 let r = i f (p) Mvp:: mklocal(s1, CALLER_s1)
26 else Mvp:: mklocal(s2, CALLER_s2);
27 r = increment_field(r);
28 i f (Mvp:: is_local(r, CALLER_s1))
29 s1 = Mvp::get(r);
30 i f (Mvp:: is_local(r, CALLER_s2))
31 s2 = Mvp::get(r);
32 (s1, s2)
33 }

3.3 Function Condition Injection

During specification injection, move specifications are reduced to basic as-
sume/assert statements added to the Move code. Those statements represent
instructions to the solver backend about what propositions can be assumed and
which need to be asserted (verified) at a given program point. In this section,
we cover how function specification conditions are injected.

6

3.3.1 Modular Verification

Modular verification applies to all types of injections, and its principles are
therefore described first. When the Move prover is run, it takes as input a set of
Move modules which is closed under the transitive dependency relation (module
imports). However, only a subset of those modules are verification target (typ-
ically just one module). It is assumed that the tool environment ensures that
modules in the dependency relation which are not target of verification have
already successfully verified. This is possible since Move has an acyclic import
relation.

From the set of target modules, the set of target functions is derived. This
set might be enriched by additional functions which need verification because
of global invariants, as discussed in Sec. 3.4. The resulting set of target func-
tions will then be verified one-by-one, assuming that any called functions have
successfully verified. If a called function is among the target functions, it might
in fact not verify; however, in this case a verification error will be reported at
the called function, and the verification result at the caller side can be ignored.

3.3.2 Pre- and Post conditions

The injection of basic function specifications is illustrated in Fig. 3. An
extension of the Move source language is used to specify abort behavior.
With fun f() { .. } onabort { conditions } a Move function is defined
where conditions are assume or assert statements that are evaluated at every
program point the function aborts (either implicitly or with an abort state-
ment). This construct simplifies the presentation and corresponds to a per-
function abort block on bytecode level which is target of branching.

An aborts condition is translated into two different asserts: one where the
function aborts and the condition must hold (line 21), and one where it returns
and the condition must not hold (line 17). If there are multiple aborts if,
they are or-ed. If there is no aborts condition, no asserts are generated. This
means that once a user specifies aborts conditions, they must completely cover
the abort behavior of the code. (The prover also provides an option to relax
this behavior, where aborts conditions can be partial and are only enforced on
function return.)

For a function call site we distinguish two variants: the call is inlined (line 25)
or it is opaque (line 27). In both cases, it is assumed that the called function
is verified (see Modular Verification, Sec. 3.3.1). For inlined calls, the function
definition, with all injected assumptions and assertions turned into assump-
tions (as those are considered proven) is substituted. For opaque functions the
specification conditions are inserted as assumptions. Methodologically, opaque
functions need precise specifications relative to a particular objective, where as
in the case of inlined functions the code is still the source of truth and specifi-
cations can be partial or omitted. However, inlining does not scale arbitrarily,
and can be only used for small function systems.

Notice we have not discussed the way how to deal with relat-

7

Figure 3: Requires, Ensures, and AbortsIf Injection

1 fun f(x: u64 , y: u64): u64 { x + y }
2 spec f {
3 requires x < y;
4 aborts if x + y > MAX_U64;
5 ensures result == x + y;
6 }
7 fun g(x: u64): u64 { f(x, x + 1) }
8 spec g {
9 ensures result > x;

10 }
11
12 fun f(x: u64 , y: u64): u64 {
13 spec assume x < y;
14 let result = x + y;
15 spec assert result == x + y; // ensures of of
16 spec assert // negated abort_if of f
17 !(x + y > MAX_U64);
18 result
19 } onabort {
20 spec assert // abort_if of f
21 x + y > MAX_U64;
22 }
23 fun g(x: u64): u64 {
24 spec assert x < x + 1; // requires of f
25 if inlined
26 let result = inline f(x, x + 1);
27 elif opaque
28 i f (x + x + 1 > MAX_U64) abort; // aborts_if of f
29 spec assume result == x + x + 1; // ensures of f
30 endif
31 spec assert result > x; // ensures of g
32 result
33 }

ing pre and post states yet, which requires taking snapshots of state
(e.g. ensures x == old(x) + 1); the example in Fig. 3 does not need it. Snap-
shots of state will be discussed for global update invariants in Sec. 3.4.

3.3.3 Modifies

The modifies condition specifies that a function only changes specific memory.
It comes in the form modifies global<T>(addr), and its injection is illustrated
in Fig. 4.

A type check is used to ensure that if a function has one or more modifies
conditions all called functions which are opaque have a matching modifies dec-

8

Figure 4: Modifies Injection

1 fun f(addr: address) { move to<T>(addr , T{}) }
2 spec f {
3 pragma opaque;
4 ensures exists <T>(addr);
5 modifies global <T>(addr);
6 }
7 fun g() { f(0x1) }
8 spec g {
9 modifies global <T>(0x1); modifies global <T>(0x2);

10 }
11
12 fun f(addr: address) {
13 let can_modify_T = {addr}; // modifies of f
14 spec assert addr in can_modify; // permission check
15 move to<T>(addr , T{});
16 }
17 fun g() {
18 let can_modify_T = {0x1, 0x2}; // modifies of g
19 spec assert {0x1} <= can_modify_T; // permission check
20 spec havoc global <T>(0x1); // havoc modified memory
21 spec assume exists <T>(0x1); // ensures of f
22 }

laration. This is important so we can relate the callees memory modifications
to that what is allowed at caller side.

At verification time, when an operation is performed which modifies memory,
an assertion is emitted that modification is allowed (e.g. line 14). The permitted
addresses derived from the modifies clause are stored in a set can_modify_T
generated by the transformation. Instructions which modify memory are either
primitives (like move to in the example) or function calls. If the function
call is inlined, modifies injection proceeds (conceptually) with the inlined body.
For opaque function calls, the static analysis has ensured that the target has a
modifies clause. This clause is used to derive the modified memory, which must
be a subset of the modified memory of the caller (line 19).

For opaque calls, we also need to havoc the memory they modify (line 20), by
which is meant assigning an unconstrained value to it. If present, ensures from
the called function, injected as subsequent assumptions, are further constraining
the modified memory.

3.3.4 Data Invariants

A data invariant specifies a constraint over a struct value. The value is guaran-
teed to satisfy this constraint at any time. Thus, when a value is constructed,
the data invariant needs to be verified, and when it is consumed, it can be

9

Figure 5: Data Invariant Injection

1 struct S { a: u64 , b: u64 }
2 spec S { invariant a < b }
3 fun f(s: S): S {
4 let r = &mut s;
5 r.a = r.a + 1;
6 r.b = r.b + 1;
7 s
8 }
9

10 fun f(s: S): S {
11 spec assume s.a < s.b; // assume invariant for s
12 let r = Mvp::local(s, F_s); // begin mutation of s
13 r = Mvp::set(r, Mvp::get(r)[a = Mvp::get(r).a + 1]);
14 r = Mvp::set(r, Mvp::get(r)[b = Mvp::get(r).b + 1]);
15 spec assert // invariant enforced
16 Mvp::get(r).a < Mvp::get(r).b;
17 s = Mvp::get(r); // write back to s
18 s
19 }

assumed to hold.
In Move’s reference semantics, construction of struct values is often done via

a sequence of mutations via mutable references. It is desirable that during such
mutations, assertion of the data invariant is suspended. This allows to state
invariants which reference multiple fields, where the fields are updated step-by-
step. Move’s borrow semantics and concept of mutations provides a natural way
how to defer invariant evaluation: at the point a mutable reference is released,
mutation ends, and the data invariant can be enforced. In other specification
formalisms, we would need a special language construct for invariant suspen-
sion. Fig. 5 gives an example, and shows how data invariants are reduced to
assert/assume statements.

Implementation The implementation hooks into the reference elimination
(Sec. 3.2). As part of this the lifetime of references is computed. Whenever a
reference is released and the mutated value is written back, we also enforce the
data invariant. In addition, the data invariant is enforced when a struct value
is directly constructed.

3.4 Global Invariant Injection

Global invariants appear on Move module level and constraint the content of the
memory. While the basic injection of global invariants is relative simple, they
cause significant complexity with features like modular verification, suspension,

10

and generics. We first discuss the basic model, then extend it step wise.

3.4.1 Basic Translation

Figure 6: Basic Global Invariant Injection

1 fun f(a: address) {
2 let r = borrow global mut<S>(a);
3 r.value = r.value + 1
4 }
5 invariant [I1] fora l l a: address: global <S>(a).value > 0;
6 invariant [I2] update fora l l a: address:
7 global <S>(a).value > old(global <S>(a).value);
8
9 fun f(a: address) {

10 spec assume I1;
11 Mvp:: snapshot_state(I2_BEFORE);
12 r = <increment mutation >;
13 spec assert I1;
14 spec assert I2[old = I2_BEFORE];
15 }

Fig. 6 contains an example for the supported invariant types and their injec-
tion into code. The first invariant, I1, is a regular state invariant. It is assumed
on function entry, and asserted after the state update. The second, I2, is a state
update invariant, which relates pre and post states. For this a state snapshot is
stored under some label I2_BEFORE, which is then used in an assertion.

Global invariant injection is optimized by knowledge of the prover, obtained
by static analysis, about (transitively) accessed memory. For opaque functions
(including also builtin functions) this information is obtained via the modifies
clause. For other functions it is determined from the code. Assuming that the
prover has precise knowledge (up to symbolic address representation) of memory
usage, it can determine which invariants to inject. Let f be a target function:

• Inject assume I at entry to f if read*(f) has overlap with read*(I).

• At every point in f where a memory location M is updated inject assert I
after the update if M in read*(I). Also, if I is an update invariant, before
the update inject a memory snapshot save.

Notice that we do not inject any invariants in functions which are not ver-
ification target. However, the set of target functions may need to be extended
because of invariants, as described later.

11

Figure 7: Genericity

1 invariant [I1] global <S<u64 >>(0). value > 1;
2 invariant <T> [I2] global <S<T>>(0). value > 0;
3 fun f(a: address) { borrow global mut<S<u8 >>(0). value = 2 }
4 fun g<R>(a: address) { borrow global mut<S<R>>(0). value = 3 }
5
6 fun f(a: address) {
7 spec assume I2[T = u8];
8 <<mutate >>
9 spec assert I2[T = u8];

10 }
11 fun g<R>(a: address) {
12 spec assume I1;
13 spec assume I2[T = R];
14 <<mutate >>
15 spec assert I1;
16 spec assert I2[T = R];
17 }

3.4.2 Genericity

In the case of generic invariants and functions, we must use type unification
to determine which invariants are injected. Consider the example in Fig. 7.
Invariant I1 holds for a specific type instantiation S<u64>, whereas I2 is generic
over all type instantiations for S<T>.

The non-generic function f which works on the instantiation S<u8> will have
to inject the specialized instance I2[T = u8]. The invariant I1, however, does
not apply for this function, because there is no overlap with S<u64>. In contrast,
in the generic function g we have to inject both invariants. Because this function
works on arbitrary instances, it is also relevant for the specific case of S<u64>.

In the general case, we are looking at a unification problem of the following
kind. Given the accessed memory of a function f<R> and an invariant I<T>,
we compute the pairwise unification of memory types. Those types are param-
eterized over R resp. T, and successful unification will result in a substitution
for both. On successful unification, we include the invariant with T specialized
according to the substitution.

Notice that there are implications related to monomorphization coming from
the injection of global invariants; those are discussed in Sec. 3.5.

3.4.3 Modularity

In Sec. 3.3.1, the general mechanism of modular verification was described, de-
riving the set of verified target functions from the set of target modules, provided
by the user on the command line. Global invariants add additional functions
by possibly requiring re-verification of non-target functions which can influence

12

Figure 8: Modular Verification and Invariants

1 module Store {
2 struct T has key { x: u64 }
3 public fun read (): u64 { borrow global<S>(0).x }
4 public fun write(x: u64) { borrow_global_mut_ <S>(0).x = x }
5 }
6 module Actor {
7 use Store;
8 invariant global <S>(0).x > 0;
9 public fun set(x: u64) {

10 i f (x == 0) then abort 1;
11 Store::set(x);
12 }
13 }

the invariant.
Consider the example in Fig. 8. The module Store provides an API for

some storage location which is shared between a set of modules. The module
Actor, one of those modules, establishes an invariant on the content of the
store. When Actor is verified, one must also verify the function Store::write,
because this invariant is verification target. (In this example, verification cannot
succeed, because the function Store::write is not restricting the values for the
parameter x; we see in the next section how to fix this.)

In general, the set of additional functions to verify is computed as follows.
Let I be a target invariant which appears in some target module, and f some
function in the dependency relation. If modify(f) has an overlap with read*(I)
then f needs to be added to the target functions. Notice it is not modify*(f);
only direct modifications make a function to a verification target (with excep-
tions as discussed in the next section).

3.4.4 Suspending Invariants

The example in Fig. 8 is not quite right from a design viewpoint, since a global
store accessible to everybody is constrained by a specific module. Consequently,
it cannot be successfully verified. Fig. 9 modifies the example to fix this. First,
Move’s friend mechanism is used to restrict visibility of Store::write to the
Actor module. Note one could add other modules to the friends list as needed.
Second, the Store::write function is declared to suspend invariant evaluation to
callers. Only private and friend functions can have such a declaration, ensuring
the all call sites are known and the suspended invariants are actually verified in
all call contexts. An invariant needs to be explicitly marked via [suspendable]
do be eligible for suspension.

When an invariant I is suspended for a function f, the injection scheme
changes as follows:

13

Figure 9: Suspension of Invariants

1 module Store {
2 friend Actor;
3 ...
4 public(friend) fun write(x: u64) {
5 borrow_global_mut_ <S>(0).x = x
6 }
7 spec write { pragma suspend_invariants; }
8 }
9 module Actor {

10 ...
11 invariant [suspendable] global <S>(0).x > 0;
12 }

• At the definition side of f, I is neither assumed nor asserted.

• At every call side of f (whether opaque or inlined), the invariant is asserted
right after the call. It will also be assumed at the entry point of the caller.

• Instead of f becoming a target function because it modifies the memory
read in I (see above paragraph about modular verification), all callers will
become target functions.

• If the caller is itself suspended, the process is instead continued with the
parent callers.

Once a function is suspended, automatically all functions it calls which mod-
ify memory effected by the suspended invariants are suspended as well. This
is because when those functions are called, the relevant invariants cannot be
assumed to hold, and therefore it is likely not fruitful to try to verify something
related to them.

For update invariants it should be noted that suspension may change their
meaning, depending on the form of the predicate. Without suspension, an up-
date invariant is implemented by snapshotting the memory before the update
and then asserting a predicate after the update which refers to the previous
state and the current one. For suspended update invariants, the snapshot is
taken before the suspended function is called, and the assertion injected after it
returns, which might be earlier resp. later states. An example of an update in-
variant which works well for suspension is e.g. a requirement for a monotonically
increasing value, as in invariant [suspendable] old(value()) <= value().

Methodologically, the suspension mechanism should be used with care, be-
cause it may complicate the verification problem by propagating verification er-
rors to more complex application contexts. The Move prover supports a further
pragma to suspend invariant verification which draws a clear boundary to func-
tion systems with suspension. With pragma suspend_invariants_in_body a

14

function can be marked to suspend invariants only in its body but ensure they
hold at caller side. This is conceptually syntactic sugar for introducing a helper
function:

public fun f(P) { S }
spec f { pragma suspend_invariants_in_body; }

public fun f(P) { f’(P) }
fun f’(P) { S } spec f’ { pragma suspend_invariants; }

3.4.5 Invariant Consistency

TODO(wrwg): Describe solution to the below problem via induction

Notice that invariant injection can lead to inconsistencies. Consider the
following code fragment:

invariant [I] fora l l a: address: global <S>(a).value > 0;

spec assume global <S>(0). value == 0;

// context , e.g. from a requires
spec assume I; // injected

We currently do not check whether an invariant is satisfiable before we assume
it, but rather rely on a generic consistency checker for specifications.

3.5 Monomorphization

Monomorphization is the process of removing all generic types from a Move
program by specializing the program for all relevant type instantiations. Like
with genericity in most modern program languages, this is possible in Move
because the number of instantiations is statically known for a given program
fragment. For verification of Move, monomorphization greatly improves the
performance of the backend solvers (see ??).

3.5.1 Basic Monomorphization

Figure 10: Basic Monomorphization

1 struct S<T> { .. }
2 fun f<T>(x: T) { g<S<T>>(S(x)) }
3 fun g<S:key>(s: S) { move to<S>(.., s) }
4
5 struct T{}
6 struct S_T{ .. }
7 fun f_T(x: T) { g_S_T(S_T(x)) }
8 fun g_S_T(s: S_T) { move to<S_T >(.., s) }

15

To verify a generic function, monomorphization skolemizes the type param-
eter into a given type. It then, for all functions which are inlined, inserts their
code specializing it for the given type instantiation, including specialization of
all used types. Fig. 10 sketches this approach.

The underlying conjecture is that if we verify f_T, we have also verified it
for all possible instantiations. However, this statement is only correct for code
which does not depend on runtime type information.

3.5.2 Type Dependent Code

The type of genericity Move provides does not allow for full type erasure as
often found in programming languages. That is because types are used to index
global memory (e.g. global<S<T>>(addr) where T is a generic type). Consider
the following Move function:

fun f<T>(..) { move to<S<T>>(s, ..); move to<S<u64 >>(s, ..) }

Depending on how T is instantiated, this function behaves differently. Specifi-
cally, if T is instantiated with u64 the function will always abort at the second
move to, since the target location is already occupied.

The important property enabling monomorphization in the presence of type
dependent code is that one can identify the situation by looking at the memory
accessed by code and injected specifications. From this one can derive additional
instantiations of the function which need to be verified. For the example above,
verifying both f_T and an instantiation f_u64 will cover all relevant cases of the
function behavior. Notice that this treatment of type dependent code is specific
to the problem of verification, and cannot directly be applied to execution.

The algorithm for computing the instances which require verification works
as follows. Let f<T1,..,Tn> be a verified target function which has all specifi-
cations injected and inlined function calls expanded.

• Foreach memory M in modify(f), if there is a mem-
ory M’ in modify(f)+read(f) such that M and M’ can unify via
T1,..,Tn, collect an instaniation of the type parameters Ti from the
resulting substitution. This instantiation may not assign values to all type
parameters, and those unassigned parameters stay as is. For instance,
f<T1, T2> might have a partial instantiation f<T1, u8>.

• Once the set of all those partial instantiations is computed, it is extended
by unifying the instantiations against each other. If <t> and <t’> are in
the set, and they unify under the substitution s, then <s(t)> will also be
part of the set. For example, consider f<T1, T2> which modifies M<T1> and
R<T2>, as well as accesses M<u64> and R<u8>. From this the instantiations
<u64, T2> and <T1, u8> are computed, and the additional instantiation
<u64, u8> will be added to the set.

• If after computing and extending instantiations any type parameters re-
main, they are skolemized into a given type as described in the previous
section.

16

To understand the correctness of this procedure, consider the following ar-
guments:

• Direct interaction Whenever a modified memory M<t> can influence the
interpretation of M<t’>, a unifier must exist for the types t and t’, and
an instantiation will be verified which covers the overlap of t and t’.

• Indirect interaction If there is an overlap between two types which influ-
ences whether another overlap is semantically relevant, the combination
of both overlaps will be verified via the extension step.

Notice that even though it is not common in regular Move code to work
with both memory S<T> and, say, S<u64> in one function, there is a scenario
where such code is implicitly created by injection of global invariants. Consider
the example in Fig. 7. The invariant I1 which works on S<u64> is injected into
the function g<R> which works on S<R>. When monomorphizing g, we need to
verify an instance g_u64 in order to ensure that I1 holds.

3.6 Translation to Boogie and Z3

3.6.1 Vectors and Extensionality

3.6.2 Encoding

3.6.3 Butterflies

References

[1] Sam Blackshear, Todd Nowacki, Shaz Qadeer, and John Mitchell. The move
borrow checker, 2021.

[2] Dave Clarke, Johan Östlund, Ilya Sergey, and Tobias Wrigstad. Ownership
types: A survey. In Dave Clarke, James Noble, and Tobias Wrigstad, editors,
Aliasing in Object-Oriented Programming. Types, Analysis and Verification,
volume 7850 of Lecture Notes in Computer Science, pages 15–58. Springer,
2013.

[3] The Boogie Team. Boogie Intermediate Verification Language.

[4] The CVC Team. CVC5.

[5] The Z3 Team. Z3 Prover.

17

