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1 Introduction

In this paper, we describe methodology and design of formal verification for
the Move language. Move [1] is a new high-level programming language for
writing smart contracts, which has been been designed from the ground up with
formal verification in mind. Specification related language support is integrated
into Move, and the Move Prover [14] (abbreviated MVP) has been developed,
enabling practical formal verification integrated into the regular development
process.

Since the earlier tools paper in [14], many changes have been made to the
Move specification language and MVP. Those changes went hand-in-hand with
the evolution of the Diem framework [9], which is a Move library for smart con-
tracts running on the Diem blockchain [8]. The framework provides functionality
for managing accounts and their interaction, including multiple currencies, ac-
count roles, and rules for transactions. It consists of approximately 12,000 lines
of Move program code and specifications. The framework is exhaustively spec-
ified, and verification runs fully automated alongside with unit and integration
tests, and as such can be seen as one of the larger recent success stories of formal
methods in industry.

In this report, we aim to describe both the Move specification language as
well as the implementation design of MVP. The specification language comes
with a number of novel features, among them a powerful concept of invariants
which leverages Move’s borrow semantics. The implementation is described by
means of transforming high-level Move code with specifications into lower-level
Move code which only contains simple assume and assert statements. This
tranformation utilizes a number of novel ideas, among them the elimination
of references from the original Move program and the injection of invariants
into the code. The lower-level Move code is translated via Boogie [6] to an
SMT solver like Z3 [12], and the counter-examples resulting from SMT runs are
mapped back in full fidelity to the source level of Move.

While performed in the context of Move and the Diem blockchain project,
we believe this work has wider implications. The Move language uses a model of
references and borrow semantics very similar to the safe subset of Rust [5], for
which the same ideas could be applied as described here. The Move language
can be also used for other domains than blockchains: the major aspects of
Move are that it has persistent global memory which can be directly accessed
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from the language and that it supports deterministic, transactional semantics to
update this memory – properties which are relevant for other domains as well.
Nevertheless, one major factor for the success of this work are specific to one
aspect of the blockchain context: Move code is fully sandboxed, and we do not
need to deal with a myriad of unspecified, unsafe external code.

While our results look promising for the application of formal methods in the
domain, there are a number of open problems as well. A major classical obstacle
of SMT-based verification remains: as we are dealing with undecidable prob-
lems, heuristics in the solver can fail, leading to occasional false positives and
verification timeouts, which require support of specialized engineers to solve.
Also, specifications are arguably harder to write than code, and require signif-
icant effort. We describe the obstacles for mainstream usability, and our ideas
how they might be overcome in the conclusion of this report.

Acknowledgement Many more people have contributed to the Move Prover:
Sam Blackshear, Mathieu Baudet, Todd Nowacki, Bob Wilson, Tim Zaikan,
. . . (list interns and other Move team members)

2 Overview of Move

Move was developed for the Diem blockchain [8], but its design is not specific
to blockchains. A Move execution consists of a sequence of updates evolving a
global persistent memory state, which we just call the (global) memory. Updates
are executed in a transactional style: the next memory state they compute will
only be committed if their computation has finished successfully and the result
can be merged back without conflict into the current memory state. Seman-
tically, a Move execution can therefore be interpreted as a labelled transition
system (i.e. interleaved execution steps). Any state evolving system which is
adequately modeled by this semantics, not just blockchains, can be programmed
in Move (for example, transactions on a concurrent data base, or training steps
in an iterative ML algorithm).

The Move language allows to define memory in terms of so-called resources.
Resources are data structures which are stored in memory indexed by account
addresses. For example, the Move expression exists<Balance>(account) de-
termines whether the resource Balance exists at address account. As resource
types can be generic (for example, Balance<Currency>), an index for a resource
is a tuple of types and the account address: semantically, for each resource
type R there is a partial memory function MR ∈ T × A → R⊥, with T a se-
quence of types use to instantiate R〈T 〉, and A the domain of addresses. Notice
that account addresses are not just arbitrary values but have a specific role in
Move’s programming methodology related to access control via the builtin type
of signers, as will be discussed later.

A Move application consists of a set of transaction scripts. Each of those
script defines a Move function with input parameters but no output parameters.
This function updates the memory M. The execution of this function can fail
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via a well-defined abort mechanism, in which case M stays unmodified. An
environment emits a sequence of calls to such scripts, thereby evolving M. To
understand this execution as an LTS, consider the set of states to be M, the
labels the names of transaction scripts combined with a set of concrete parame-
ters, and the transition relation defined by the transaction scripts. Abortion of
the transaction function creates a label with the script name, the parameters,
and information about the abort reason, which cycles on the current state.

A transaction script is written in Move as an imperative function which can
read and write the global memory M. Move uses a specific style of imperative
programming based on borrow semantics [3], as popularized in the programming
language Rust [5, 13]. For the verification problem borrow semantics is very im-
portant. While allowing references into structured data, those are guaranteed
to be safe by the borrow checker [2], which is run during bytecode loading time,
and which verification can assume. Furthermore, the notorious hard verifica-
tion problem of aliasing of references in the presence of mutation is eliminated.
Mutation always starts from a root location either in global memory or on the
execution stack, and while a tree starting from this root is mutated, no other
access can happen anywhere in the tree. Intuitively, borrow semantics allows
to move a mutation ’cursor’ down the tree, which follows linear typing disci-
pline. Because of this property, mutable reference parameters to functions can
be converted to input/output parameters, and verification of Move can avoid
the traditionally hard problems caused by aliasing of mutable references.

2.1 Programming in Move

In Move, one defines transactions via so-called script functions which take a
set of parameters. Those functions can call other functions. Script and regular
functions are encapsulated in modules. Move modules are also the place where
resource types and other structured data is defined.

We illustrate the language by example (for a more complete description of
Move, see the online documentation [10]). The example is a simple account
which holds a balance of coins and is given in Fig. 1. The transaction is to
transfer coins from one to another account 1.

• The struct Account::Coin represents units of currency. The has store
ability of the Coin struct indicates that it can be stored as a field in another
struct. Notice that by default, in Move, structs have linear semantics: a
Coin cannot be copied and dropped without explict destruction (as on
line 19). This is useful to prevent accidental duplication or lost of coins.
To indicate that the struct can be copied and dropped, one would need to
add the abilities has copy, drop.

• Coin is aggregated in the struct Account for representing a balance; the
ability has key indicates that this struct can be stored as a resource in
global memory.

1Indeed, for a complete system, transactions like creating an account and funding it would
be needed, but we leave this aspect out here.

4



Figure 1: Account Example Program

1 module Account {
2 struct Coin has store {
3 value: u64
4 }
5 struct Account has key {
6 balance: Coin ,
7 }
8

9 public fun withdraw(account: address, amount: u64): Coin
10 acquires Account {
11 let balance = &mut borrow global mut<Account >( account ). balance;
12 assert(balance.value >= amount , Errors :: limit_exceeded ());
13 balance.value = balance.value - amount;
14 Coin{value: amount}
15 }
16

17 public fun deposit(account: address, check: Coin)
18 acquires Account {
19 let Coin{value: amount} = check; // Consume coin
20 let balance = &mut borrow global mut<Account >( account ). balance;
21 assert(balance.value <= Limits :: max_u64 () - amount ,
22 Errors :: limit_exceeded ());
23 balance.value = balance.value + amount;
24 }
25

26 public( script) fun transfer(from: &signer , to: address, amount: u64) {
27 let coin = Account :: withdraw(Signer :: address_of(from), amount );
28 Account :: deposit(to, move(coin))
29 }
30 }

• The Account::withdraw function subtracts a value from the balance, re-
turning a new Coin for the withdrawn amount. It uses the builtin function
borrow global mut<T>(address) which returns a mutable reference to
the Account resource. Similarily, Account::deposit takes a coin which is
destructed and its amount added to the account.

• The acquire Account modifier on a function declaration indicates that
the function will borrow the Account global memory as a whole – i.e. for
every account address. The Move borrow checker will reject a call to such
functions if any account resources are already borrowed, implementing
memory safety for Move [2].

• The assert statement causes a Move transaction to abort execution if
the condition is not met, with the specified error code. No effects on the
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memory occur on abort. Abortion can also happen implicitly; for example,
the expression borrow global mut<T>(addr) will abort if no resource T
exists at addr.

• The script Account::transfer is a top-level entry point into this Move
program, calling Account::withdraw and Account::deposit. The call to
the builtin function move at line 28 illustrates how the linear coin value
travels from one call to another.

• Scripts get passed in so called signers which are tokens which represent an
authorized account address. The caller of the script – an external program
– has ensured that the owner of the signer account address has agreed to
execute this transaction.

2.2 Specifying in Move

The specification language supports Design By Contract [4]. Developers can
provide pre and post conditions for functions, which include conditions over
(mutable) parameters and global memory. Developers can also provide invari-
ants over data structures, as well as the (state-dependent) content of the global
memory. Universal and existential quantification both over bounded domains
(like the indices of a vector) as well of unbounded domains (like all memory
addresses, all integers, etc.) are supported. The latter makes the specification
language very expressive, but also renders the verification problem in theory
undecidable (and in practice dependent on heuristic decision procedures).

Fig. 2 illustrates the specification language by extending the account example
in Fig. 1 (for the definition of the specification language see [11]).

• The function specification blocks spec withdraw and spec deposit spec-
ify when those functions abort, the expected effect on the global memory,
and its return value (the return value is represented by the well-known
name result).

• As common in this style of specifications, in the ensures statement, by
default the post-state of the function is referred to, whereas the form
old(..) can be used to access the pre-state.

• We are using the helper function bal(address) defined on line 15 to access
the value of the account balance. Helper functions can access state and
can be transparently used within old(..); the function is then evaluated
in the pre-state.

• The modifies statement on line 6 specifies that this function only changes
the indicated memory but no other memory.

• The specification contains two invariants over global memory. The first
invariant on line 19 states that a balance can never drop underneath a
certain minimum. The second invariant on line 22 refers to an update of
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Figure 2: Account Example Specification

1 module Account {
2 spec withdraw {
3 aborts if bal(account) < amount;
4 ensures bal(account) == old(bal(account )) - amount;
5 ensures result == Coin{value: amount };
6 modifies global <Account >(acc);
7 }
8

9 spec deposit {
10 aborts if bal(account) + check.value > Limits :: max_u64 ();
11 ensures bal(account) == old(bal(account )) + check.value;
12 modifies global <Account >(acc);
13 }
14

15 spec fun bal(acc: address): num {
16 global <Account >(acc). balance.value
17 }
18

19 invariant fora l l acc: address where exists <Account >(acc):
20 bal(acc) >= AccountLimits :: MIN_BALANCE;
21

22 invariant update fora l l acc: address where exists <Account >(acc):
23 old(bal(acc)) - bal(acc) <= AccountLimits :: MAX_DECREASE;
24 }

global memory with pre and post state: the balance on an account can
never decrease in one step more than a certain amount.

• Note that while the Move programming language has only unsigned in-
tegers, the specification language uses arbitrary precision signed integers,
making it convenient to specify something like x - y <= limit, without
need to worry about underflow or overflow.

A discerning reader may have noted that the program in Fig. 1 does not
actually satisfy the specification in Fig. 2. This will be discussed in the next
section.

The constructs we have seen so far are only a subset of the available features
of the Move specification language. Notably, the language supports the following
additional features:

• Function preconditions via the requires-clause.

• Data invariants for struct types, as a predicate over the field values.

• Means to abstract commonly used specification fragments in so-called spec-
ification schemas which can then be included in other specification blocks.
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2.3 Running the Prover

The Move prover is a tool which supports verification of specifications as shown
above. The prover operates fully automated, quite similar as a type checker or
linter, and is expected to conclude in reasonable execution time, so it can be
integrated in the regular development workflow.

Running the prover on the program and specification of module Account
produces multiple errors, as mentioned. The first is this one:
TODO(wrwg): make line number symbolic so they align with figures

error: abort not covered by any of the ‘aborts_if ‘ clauses

--- account.move :15:3 ---
|

15 | public fun withdraw(account: address , amount: u64): Coin
.

18 | &mut borrow_global_mut <Account >( account ). balance;
. ----------------- abort happened here
|
= at account.move :15:3: withdraw
= account = 0x19 , amount = 15724
= at account.move :18:14: withdraw (ABORTED)

The prover has detected that an implicit aborts condition is missing in the spec-
ification of the withdraw function. It prints the context of the error, as well as
an execution trace which lead to the error. Values of variable assignments from
the counterexample found by the prover are printed together with the execu-
tion trace. Logically, the counter example presents an instance of assignments
to variables such that program and specification disagree. In general, the Move
prover attempts to produce diagnostics readable for Move developers without
the need of understanding any internals of the prover.

The next errors produced are about the memory invariants in Fig. 2. Both
of them do not hold:

error: global memory invariant does not hold

--- account.move :43:5 ---
|

43 | invariant forall acc: address where exists <Account >(acc):
44 | bal(acc) >= AccountLimits :: MIN_BALANCE;

|
.
= at account.move :21:35: withdraw

error: global memory invariant does not hold

--- account.move :45:5 ---
|

45 | invariant update
46 | forall acc: address where exists <Account >(acc):
47 | old(bal(acc)) - bal(acc) <= AccountLimits :: MAX_DECREASE;

.
= at account.move :21:35: withdraw

This happens because in the program in Fig. 1, we did not made any attempt to
respect the limits in MIN_BALANCE and MAX_DECREASE. We leave it open here how
to fix this problem, which would require to add some more assert statements
to the code and abort if the limits are not met.
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Figure 3: Move Prover Architecture

3 Move Prover Implementation

In this section, an overview of the Move Prover implementation will be provided.
The formal content of the discussion is kept lightweight; a formalization of some
aspects is given in appendices.

3.1 Basic Architecture

The architecture of the Move Prover is illustrated in Fig. 3. Move code (con-
sisting of Move programs and specifications) is given as input to the Move tool
chain, which produces two artifacts: the abstract syntax tree (AST) of the spec-
ifications in the code, as well as the translated Move bytecode for the program
part. It is essential that the Prover interprets the Move program on bytecode
level, not on the intermediate AST: this way we verify the “source of truth”
which is also executed in the Move VM. Only the specification parts are passed
on as AST. The Move Model is a component which merges both bytecode and
specifications, as well as other metdata from the original code, into a unique
object model which is input to the remaining tool chain.

The next phase is the actual Prover Compiler, which is implemented as a
pipeline of bytecode transformations. Only an excerpt of the most important
transformations is shown (Reference Elimination, Specification Injection, and
Monomorphization). These transformations will be conceptually described in
more detail in subsequent sections. While they happen in reality on an ex-
tended version of the Move bytecode, we will illustrate them on a higher level
of abstraction, as Move source level transformations.

The transformed bytecode is next compiled into the Boogie intermediate
verification language [6]. Boogie supports an imperative programming model
which is well suited for the encoding of the transformed Move code. Boogie in
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turn can translate to multiple SMT solver backends, namely Z3 [12] and CVC5
[7]; the default choice for the Move prover is currently Z3.

When the SMT solver produces a sat or unknown result (of the negation of
the verification condition Boogie generates), it produces a model witness. The
Move Prover attempts to translate this model back into a diagnostic which a user
can associate with the original Move code (as has been illustrated in Sec. 2.3.)
For example, execution traces leading to the verification failure are shown, with
assignments to variables used in this trace, extracted from the model. Also the
Move Model will be consulted to retrieve the original source information and
display it with the diagnosis.

Subsequently, we will focus on the major bytecode transformations as well
as the encoding and translation to Boogie.

3.2 Reference Elimination

The Move language supports references to data stored in global memory and
on the stack. Those references can point to interior parts of the data. The
reference system is based on borrow semantics [3] as it is also found in the Rust
programming language. One can create (immutable) references &x and mutable
references &mut x, and derive new references by field selection (&mut x.f and
&x.f). The borrow semantics of Move provides the following guarantees (ensured
by the borrow checker [2]):

• For any given location in global memory or on the stack, there can be
either exactly one mutable reference, or n immutable references. Hereby,
it does not matter to what interior part of the data is referred to.

• Dangling references to locations on the stack cannot exist; that is, the
lifetime of references to data on the stack is restricted to the lifetime of
the stack location.

These properties enable us to effectively eliminate references from the Move
program, reducing the verification complexity significantly, as we do not need
to reason about sharing. It comes as no surprise that the same discipline of
borrowing which makes Move (and Rust) programs safer by design also makes
verification simpler.

3.2.1 Immutable References

Since during the existance of an immutable reference no mutation on the refer-
enced data can occur, we can simply replace references by the referred value.

An example of the applied transformation is shown below. We remove the
reference type constructor and all reference-taking operations from the code:

fun select_f(s: &S): &T { &s.f }  fun select_f(s: S): T { s.f }

Notice that at Move execution time, immutable references serve performance
objectives (avoid copies); however, the symbolic reasoning engines we use have

10



a different representation of values, in which structure sharing is common and
copying is cheap.

3.2.2 Mutable References

Each mutation of a location l starts with an initial borrow for the whole
data stored in this location (in Move, borrow global mut<T>(addr) for global
memory, and &mut x for a local on the stack). Let’s call the reference resulting
from such a borrow r. As long as this reference is alive, Move code can either
update its value (*r = v), or replace it with a sub-reference (r’ = &mut r.f).
The mutation ends when r (or the derived r’) go out of scope. Because of the
guarantees of the borrow semantics, during the mutation of the data in l no
other reference can exist into data in l.

The fact that &mut has exclusive access to the whole value in a location al-
lows to reduce mutable references to a read-update-write cycle. One can create a
copy of the data in l and single-thread it to a sequence of mutation steps which
are represented as purely functional data updates. Once the last reference for
the data in l goes out of scope, the updated value is written back to l. This
effectively turns an imperative program with references into an imperative pro-
gram which only has state updates on global memory or variables on the stack,
a class of programs which is known to have a significantly simpler semantics.
We illustrate the basics of this approach by an example:

fun increment(x: &mut u64) { *x = *x + 1 }
fun increment_field(s: &mut S) { increment (&mut s.f) }
fun caller (): S { let s = S{f:0}; update(&mut s); s }
 
fun increment(x: u64): u64 { x + 1 }
fun increment_field(s: S): S { s[f = increment(s.f)] }
fun caller (): S { let s = S{f:0}; s = update(s); s }

While the setup in this example covers a majority of the use cases in every
day Move code, there are more complex ones to consider, namely that the value
of a reference depends on runtime decisions:

let r = i f (p) &mut s1 else &mut s2;
increment_field(r);

Additional runtime information is required to deal with such cases. At the exe-
cution point a reference goes out of scope, we need to know from which location
it was derived, so we can write back the updated value correctly. Fig. 3.2.2
illustrates the approach for doing this. A new Move prover internal type Mut<T>
is introduced which carries the location from which T was derived together with
the value. It supports the following operations:

• Mvp::mklocal(value, LOCAL_ID) creates a new mutation value for a local
with the given local id. Local ids are transformation generated constants
kept opaque here.
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• Similarily, Mvp::mkglobal(value, TYPE_ID, addr) creates a new muta-
tion for a global with given type and address. Notice that in the current
Move type system, we would not need to represent the address, since there
can be only one mutable reference into the entire type (via the acquires
mechanism). However, we keep this more general here, as the Move type
system might change.

• With r’ = Mvp::field(r, FIELD_ID) a mutation value for a subreference
is created for the identified field.

• The value of a mutation is replaced with r’ = Mvp::set(r, v) and re-
trieved with v = Mvp::get(r).

• With the predicate Mvp::is_local(r, LOCAL_ID) one can
test whether r was derived from the given local, and with
Mvp::is_global(r, TYPE_ID, addr) whether it was derived from
the specified global. The predicate Mvp::is_field(r, FIELD_ID) tests
whether it is derived from the given field.

Implementation The Move Prover has a partial implementation of the il-
lustrated transformation. The completeness of this implementation has not yet
been formally investigated, but we believe that it covers all of Move, with the
language’s simplification that we do not need to distinguish addresses in global
memory locations.2 (See discussion of Mvp::mkglobal above.) The transfor-
mation also relies on that in Move there are no recursive data types, so field
selection paths are statically known. While those things can be potentially
generalized, we have not yet investigated this direction.

The transformation constructs a borrow graph from the program via a data
flow analysis. The borrow graph tracks both when references are released as well
as how they relate to each other: e.g. r’ = &mut r.f creates a edge from r to
r’ labelled with f, and r’ = &mut r.g creates another also starting from r. For
the matter of this problem, a reference is not released until a direct or indirect
borrow on it goes out of scope; notice that its lifetimes in terms of borrowing
is larger than the scope of its usage. The borrow analysis is inter-procedural
requiring computed summaries for the borrow graph of called functions.

The resulting borrow graph is then used to guide the transformation, insert-
ing the operations of the Mut<T> type as illustrated in Fig 3.2.2. Specifically,
when the borrow on a reference ends, the associated mutation value must be
written back to its parent mutation or the original location (e.g. line 29 in
Fig. 3.2.2). The presence of multiple possible origins leads to case distinctions
via Mvp::is_X predicates; however, these cases are rare in actual Move programs.

Performance TODO(wrwg): We may want to identify some historical benchmarks before

memory model.

2TODO(wrwg): Need to investigate loops!
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Figure 4: Elimination of Mutable References

1 fun increment(x: &mut u64) { *x = *x + 1 }
2 fun increment_field(s: &mut S) {
3 let r = i f (s.f > 0) &mut s.f else &mut s.g;
4 increment(r)
5 }
6 fun caller(p: bool): (S, S) {
7 let s1 = S{f:0, g:0}; let s2 = S{f:1, g:1};
8 let r = i f (p) &mut s1 else &mut s2;
9 increment_field(r);

10 (s1, s2)
11 }
12  
13 fun increment(x: Mut <u64 >): Mut <u64 > { Mvp::set(x, Mvp::get(x) + 1) }
14 fun increment_field(s: Mut <S>): Mut <S> {
15 let r = i f (s.f > 0) Mvp::field(s.f, S_F) else Mvp::field(s.g, S_G);
16 r = increment(r);
17 i f (Mvp:: is_field(r, S_F))
18 s = Mvp::set(s, Mvp::get(s)[f = Mvp::get(r)]);
19 i f (Mvp:: is_field(r, S_G))
20 s = Mvp::set(s, Mvp::get(s)[g = Mvp::get(r)]);
21 s
22 }
23 fun caller(p: bool): S {
24 let s1 = S{f:0, g:0}; let s2 = S{f:1, g:1};
25 let r = i f (p) Mvp:: mklocal(s1, CALLER_s1)
26 else Mvp:: mklocal(s2, CALLER_s2 );
27 r = increment_field(r);
28 i f (Mvp:: is_local(r, CALLER_s1 ))
29 s1 = Mvp::get(r);
30 i f (Mvp:: is_local(r, CALLER_s2 ))
31 s2 = Mvp::get(r);
32 (s1, s2)
33 }

3.3 Function Condition Injection

During specification injection, move specifications are reduced to basic as-
sume/assert statements added to the Move code. Those statements represent
instructions to the solver backend about what propositions can be assumed and
which need to be asserted (verified) at a given program point. In this section,
we cover how function specification conditions are injected.
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3.3.1 Modular Verification

Modular verification applies to all types of injections, and its principles are
therefore described first. When the Move prover is run, it takes as input a
set of Move modules which is closed under the transitive dependency relation
(module imports). However, only a subset of those modules are verification
target (typically just one module). It is assumed that the tool environment
ensures that modules in the dependency relation which are not a target of
verification have already successfully verified. This is possible since Move has
an acyclic import relation.

From the set of target modules, the set of target functions is derived. This
set might be enriched by additional functions which need verification because
of global invariants, as discussed in Sec. 3.4. The resulting set of target func-
tions will then be verified one-by-one, assuming that any called functions have
successfully verified. If a called function is among the target functions, it might
in fact not verify; however, in this case a verification error will be reported at
the called function, and the verification result at the caller side can be ignored.

3.3.2 Pre- and Post conditions

The injection of basic function specifications is illustrated in Fig. 5. An
extension of the Move source language is used to specify abort behavior.
With fun f() { .. } onabort { conditions } a Move function is defined
where conditions are assume or assert statements that are evaluated at every
program point the function aborts (either implicitly or with an abort state-
ment). This construct simplifies the presentation and corresponds to a per-
function abort block on bytecode level which is target of branching.

An aborts condition is translated into two different asserts: one where the
function aborts and the condition must hold (line 21), and one where it returns
and the condition must not hold (line 17). If there are multiple aborts if,
they are or-ed. If there is no abort condition, no asserts are generated. This
means that once a user specifies aborts conditions, they must completely cover
the abort behavior of the code. (The prover also provides an option to relax
this behavior, where aborts conditions can be partial and are only enforced on
function return.)

For a function call site we distinguish two variants: the call is inlined (line 25)
or it is opaque (line 27). In both cases, it is assumed that the called function
is verified (see Modular Verification, Sec. 3.3.1). For inlined calls, the function
definition, with all injected assumptions and assertions turned into assump-
tions (as those are considered proven) is substituted. For opaque functions the
specification conditions are inserted as assumptions. Methodologically, opaque
functions need precise specifications relative to a particular objective, where as
in the case of inlined functions the code is still the source of truth and specifi-
cations can be partial or omitted. However, inlining does not scale arbitrarily,
and can be only used for small function systems.

Notice we have not discussed the way how to deal with relat-
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Figure 5: Requires, Ensures, and AbortsIf Injection

1 fun f(x: u64 , y: u64): u64 { x + y }
2 spec f {
3 requires x < y;
4 aborts if x + y > MAX_U64;
5 ensures result == x + y;
6 }
7 fun g(x: u64): u64 { f(x, x + 1) }
8 spec g {
9 ensures result > x;

10 }
11  
12 fun f(x: u64 , y: u64): u64 {
13 spec assume x < y;
14 let result = x + y;
15 spec assert result == x + y; // ensures of of
16 spec assert // negated abort_if of f
17 !(x + y > MAX_U64 );
18 result
19 } onabort {
20 spec assert // abort_if of f
21 x + y > MAX_U64;
22 }
23 fun g(x: u64): u64 {
24 spec assert x < x + 1; // requires of f
25 if inlined
26 let result = inline f(x, x + 1);
27 elif opaque
28 i f (x + x + 1 > MAX_U64) abort; // aborts_if of f
29 spec assume result == x + x + 1; // ensures of f
30 endif
31 spec assert result > x; // ensures of g
32 result
33 }

ing pre and post states yet, which requires taking snapshots of state
(e.g. ensures x == old(x) + 1); the example in Fig. 5 does not need it. Snap-
shots of state will be discussed for global update invariants in Sec. 3.4.

3.3.3 Modifies

The modifies condition specifies that a function only changes specific memory.
It comes in the form modifies global<T>(addr), and its injection is illustrated
in Fig. 6.

A type check is used to ensure that if a function has one or more modifies
conditions all called functions which are opaque have a matching modifies dec-
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Figure 6: Modifies Injection

1 fun f(addr: address) { move to<T>(addr , T{}) }
2 spec f {
3 pragma opaque;
4 ensures exists <T>(addr);
5 modifies global <T>(addr);
6 }
7 fun g() { f(0x1) }
8 spec g {
9 modifies global <T>(0x1); modifies global <T>(0x2);

10 }
11  
12 fun f(addr: address) {
13 let can_modify_T = {addr}; // modifies of f
14 spec assert addr in can_modify; // permission check
15 move to<T>(addr , T{});
16 }
17 fun g() {
18 let can_modify_T = {0x1, 0x2}; // modifies of g
19 spec assert {0x1} <= can_modify_T; // permission check
20 spec havoc global <T>(0x1); // havoc modified memory
21 spec assume exists <T>(0x1); // ensures of f
22 }

laration. This is important so we can relate the callees memory modifications
to that what is allowed at caller side.

At verification time, when an operation is performed which modifies memory,
an assertion is emitted that modification is allowed (e.g. line 14). The permitted
addresses derived from the modifies clause are stored in a set can_modify_T
generated by the transformation. Instructions which modify memory are either
primitives (like move to in the example) or function calls. If the function
call is inlined, modifies injection proceeds (conceptually) with the inlined body.
For opaque function calls, the static analysis has ensured that the target has a
modifies clause. This clause is used to derive the modified memory, which must
be a subset of the modified memory of the caller (line 19).

For opaque calls, we also need to havoc the memory they modify (line 20), by
which is meant assigning an unconstrained value to it. If present, ensures from
the called function, injected as subsequent assumptions, are further constraining
the modified memory.

3.3.4 Data Invariants

A data invariant specifies a constraint over a struct value. The value is guaran-
teed to satisfy this constraint at any time. Thus, when a value is constructed,
the data invariant needs to be verified, and when it is consumed, it can be
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Figure 7: Data Invariant Injection

1 struct S { a: u64 , b: u64 }
2 spec S { invariant a < b }
3 fun f(s: S): S {
4 let r = &mut s;
5 r.a = r.a + 1;
6 r.b = r.b + 1;
7 s
8 }
9  

10 fun f(s: S): S {
11 spec assume s.a < s.b; // assume invariant for s
12 let r = Mvp::local(s, F_s); // begin mutation of s
13 r = Mvp::set(r, Mvp::get(r)[a = Mvp::get(r).a + 1]);
14 r = Mvp::set(r, Mvp::get(r)[b = Mvp::get(r).b + 1]);
15 spec assert // invariant enforced
16 Mvp::get(r).a < Mvp::get(r).b;
17 s = Mvp::get(r); // write back to s
18 s
19 }

assumed to hold.
In Move’s reference semantics, construction of struct values is often done via

a sequence of mutations via mutable references. It is desirable that during such
mutations, assertion of the data invariant is suspended. This allows to state
invariants which reference multiple fields, where the fields are updated step-by-
step. Move’s borrow semantics and concept of mutations provides a natural way
how to defer invariant evaluation: at the point a mutable reference is released,
mutation ends, and the data invariant can be enforced. In other specification
formalisms, we would need a special language construct for invariant suspen-
sion. Fig. 7 gives an example, and shows how data invariants are reduced to
assert/assume statements.

Implementation The implementation hooks into the reference elimination
(Sec. 3.2). As part of this the lifetime of references is computed. Whenever a
reference is released and the mutated value is written back, we also enforce the
data invariant. In addition, the data invariant is enforced when a struct value
is directly constructed.

3.4 Global Invariant Injection

Global invariants are properties declared in Move modules that must hold on all
global states in which a transaction is not being executed. Inductive invariants
are properties that don’t have the “old” operator, so their truth can be evaluated
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in a single state. update invariants contain the “old” operator, so they must
be evaluated in two consecutive states: the current state (where the two-state
invariant holds) and the immediately previous state (for simplicity, we define a
two-state invariant to hold in the initial state). Regular invariants are proved by
induction over time, while update invariants can be proved without induction.

In some situations (such as blockchains), we would like users to be able to
write transactions “on-the-fly” and submit them to the system, which does not
allow time to run the Prover on individual transactions. The coarsest granular-
ity we can practically achieve is to verify that each public and script function
preserves inductive invariants.

In the simplest case, the prover proves the much stronger condition that
an invariant holds before and after every single instruction during transaction
execution. It is also possible a user to suspend checking of an invariant during
intervals of execution of a transaction. We first discuss the basic model, then
deal with additional issues from generics and invariant suspension.

We wish to support open systems to which untrusted modules can be added
to without invalidating invariants that have already been proved. For each
invariant, there is a defined subset of Move modules (called a cluster). If the
invariant is proved for the modules in the cluster, it is guaranteed to hold in
all other modules – even those that were not yet defined when the invariant
was proved. The cluster must contain every function that can invalidate the
invariant, and, in some cases (explained in more detail below) callers to those
functions.
TODO(dld): We need consistent terminology for “public” functions that does not include pub-

lic(friend) functions.

The soundness of the invariant proof method holds by an inductive argument
over sequences of public and script function calls. The base case is that the
invariant must hold in the empty state that preceeds the genesis transaction,
and the induction is that, if the invariant holds immediately before each public or
script function, it continues to hold immediately after that function. Note that
the induction proof allows the assumption of all invariants at the beginning of
each public or script function to prove that an invariant holds after the function.
In practice, a subset of the available invariants are actually assumed on entry
to a function. Some are not visible to the prover because they are specified
outside of the cluster being verified, and others are excluded heuristically to
reduce computational cost.

The Prover verifies one module at a time. The module being verified is
called the target module, and the global invariants to be verified are called
target invariants. The cluster of modules to be verified is computed from the
target module. it is necessary that every occurrence of an instruction that can
potentially invalidate a target invariant be contained in some function in the
cluster of modules for that invariant. In the basic case in which invariants
are not suspended, the cluster is the target module and all the modules it
directly or indirectly uses, since the invariant can sonly refer to types defined in
these modules, and the semantics of the Move language forbid a function from
containing an instruction that modifies a type not appearing in the same module.
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Importantly, functions outside the cluster can never invalidate an invariant, so
those functions trivially preserve the invariant, so it is only necessary to verify
functions defined in the cluster.

To ensure that invariants continue to hold after a public or script function
returns, it is necessary to inject an assertion of the invariant at some point
between each instruction that could invalidate it and the return points from the
procedure. In the simple case where invariants are not suspended, each target
invariant is asserted after every instruction that could invalidate the invariant.
So, by an obvious inductive argument, if the invariant holds in the initialy empty
state, it holds after every instruction that is executed by every function.

Update invariants are processed differently from inductive invariants. The
value of an update invariant depends on two consecutive states, where “old”
expressions are evaluated in the first state, and expressions not in the context
of an “old” operator are evaluated in the second state. To check an update
invariant, the Prover first finds every instruction that can modify the truth of
the invariant. A temporary value is generated to name the contents of the state
before the instruction, and expressions involving this temporary are substituted
for “old” expressions in the update invariant. Then, the prover injects an in-
struction to save the state in the temporary before the instruction, and injects
an assert of the translated update after the instruction.

We assume that an instruction that doesn’t modify any of the types men-
tioned in an update invariant also does alter the validity of the invariant. Hence,
an update invariant, regarded as a binary relation, must be reflexive. This prop-
erty is not currently enforced by the prover.

3.4.1 Basic Translation

Figure 8: Basic Global Invariant Injection

1 fun f(a: address) {
2 let r = borrow global mut<S>(a);
3 r.value = r.value + 1
4 }
5 invariant [I1] fora l l a: address: global <S>(a).value > 0;
6 invariant [I2] update fora l l a: address:
7 global <S>(a).value > old(global <S>(a).value);
8  
9 fun f(a: address) {

10 spec assume I1;
11 Mvp:: snapshot_state(I2_BEFORE );
12 r = <increment mutation >;
13 spec assert I1;
14 spec assert I2[old = I2_BEFORE ];
15 }
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The injection of assumes and asserts of global invariants into functions re-
quires knowing whether a function reads or modifies types that are mentioned
in the invariant. Without generic type parameters, this is a relatively simple
analysis. First, the prover collects the set of types mentioned in the invariant.
For choosing the invariants to assume on entry to a function, the Prover collects
all the types that are read or modified by the function or indirectly by functions
that it calls, and intersects this set with the set of types in the invariant. For
choosing the invariants to assert, the Prover collects types that are modified by
the function or by an individual instruction or function call and intersects that
set with the set of types in the invariant.

Fig. 8 contains an example for the supported invariant types and their injec-
tion into code. The first invariant, I1, is an inductive invariant. It is assumed
on function entry, and asserted after the state update. The second, I2, is an
update invariant, which relates pre and post states. For this a state snapshot is
stored under some label I2_BEFORE, which is then used in an assertion.
TODO(dld): Note that “modifies” won’t help with reads in opaque functions.

Global invariant injection is optimized by knowledge of the prover, obtained
by static analysis, about (transitively) accessed memory. For opaque functions
(including also builtin functions) this information is obtained via the modifies
clause. For other functions it is determined from the code. Assuming that the
prover has precise knowledge (up to symbolic address representation) of memory
usage, it can determine which invariants to inject. Let f be a target function:

• Inject assume I at entry to f if read*(f) has overlap with read*(I).

• At every point in f where a memory location M is updated inject assert I
after the update if M in read*(I). Also, if I is an update invariant, before
the update inject a memory snapshot save.

Notice that we do not inject any invariants in functions that are not verifi-
cation targets. However, the set of target functions may need to be extended
because of invariants, as described later.

3.4.2 Genericity

Generic type parameters make the problem of determining whether a function
can modify an invariant more difficult. For soundness, a property must hold
for every possible instantiation of type parameters. So, rather than checking
whether some of the types mentioned in the invariant are equal to some of the
types accessed or modified by a function the Prover needs to discover whether
there is any possible instantiation of type parameters that might allow the in-
stantiated function to invalidate an instantiated invariant. In other words, it
needs to know whether the each type in the invariant can be unified with a type
accessed or modified by the function. Consider the example in Fig. 9. Invariant
I1 holds for a specific type instantiation S<u64>, whereas I2 is generic over all
type instantiations for S<T>.
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Figure 9: Genericity

1 invariant [I1] global <S<u64 >>(0). value > 1;
2 invariant <T> [I2] global <S<T>>(0). value > 0;
3 fun f(a: address) { borrow global mut<S<u8 >>(0). value = 2 }
4 fun g<R>(a: address) { borrow global mut<S<R>>(0). value = 3 }
5  
6 fun f(a: address) {
7 spec assume I2[T = u8];
8 <<mutate >>
9 spec assert I2[T = u8];

10 }
11 fun g<R>(a: address) {
12 spec assume I1;
13 spec assume I2[T = R];
14 <<mutate >>
15 spec assert I1;
16 spec assert I2[T = R];
17 }

The non-generic function f which works on the instantiation S<u8> will have
to inject the specialized instance I2[T = u8]. The invariant I1, however, does
not apply for this function, because there is no overlap with S<u64>. In contrast,
in the generic function g we have to inject both invariants. Because this function
works on arbitrary instances, it is also relevant for the specific case of S<u64>.

In the general case, we are looking at a unification problem of the following
kind. Given the accessed memory of a function f<R> and an invariant I<T>,
we compute the pairwise unification of memory types. Those types are param-
eterized over R resp. T, and successful unification will result in a substitution
for both. On successful unification, we include the invariant with T specialized
according to the substitution.

Notice that there are implications related to monomorphization coming from
the injection of global invariants; those are discussed in Sec. 3.5.

3.4.3 Modularity

In Sec. 3.3.1, the general mechanism of modular verification was described, de-
riving the set of verified target functions from the set of target modules, provided
by the user on the command line. Global invariants add additional functions
by possibly requiring re-verification of non-target functions which can influence
the invariant.

Consider the example in Fig. 10. The module Store provides an API for
some storage location which is shared between a set of modules. The module
Actor, one of those modules, establishes an invariant on the content of the
store. When Actor is verified, one must also verify the function Store::write,
because this invariant is verification target. (In this example, verification cannot
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Figure 10: Modular Verification and Invariants

1 module Store {
2 struct T has key { x: u64 }
3 public fun read (): u64 { borrow global<S>(0).x }
4 public fun write(x: u64) { borrow_global_mut_ <S>(0).x = x }
5 }
6 module Actor {
7 use Store;
8 invariant global <S>(0).x > 0;
9 public fun set(x: u64) {

10 i f (x == 0) then abort 1;
11 Store::set(x);
12 }
13 }

succeed, because the function Store::write is not restricting the values for the
parameter x; we see in the next section how to fix this.)

In general, the set of additional functions to verify is computed as follows.
Let I be a target invariant which appears in some target module, and f some
function in the dependency relation. If modify(f) has an overlap with read*(I)
then f needs to be added to the target functions. Notice it is not modify*(f);
only direct modifications make a function to a verification target (with excep-
tions as discussed in the next section).

3.4.4 Suspending Invariants

Figure 11: Suspension of Invariants

1 module Store {
2 friend Actor;
3 ...
4 public( friend) fun write(x: u64) {
5 borrow_global_mut_ <S>(0).x = x
6 }
7 spec write { pragma suspend_invariants; }
8 }
9 module Actor {

10 ...
11 invariant [suspendable] global <S>(0).x > 0;
12 }

The example in Fig. 10 is not quite right from a design viewpoint, since
a global store accessible to everybody is constrained by a specific module.
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Consequently, it cannot be successfully verified. Fig. 11 modifies the exam-
ple to fix this. First, Move’s friend mechanism is used to restrict visibility of
Store::write to the Actor module. Note one could add other modules to the
friends list as needed. Second, the Store::write function is declared to suspend
invariant evaluation to callers. Only private and friend functions can have such
a declaration, ensuring the all call sites are known and the suspended invariants
are actually verified in all call contexts. An invariant needs to be explicitly
marked via [suspendable] do be eligible for suspension.

When an invariant I is suspended for a function f, the injection scheme
changes as follows:

• At the definition side of f, I is neither assumed nor asserted.

• At every call side of f (whether opaque or inlined), the invariant is asserted
right after the call. It will also be assumed at the entry point of the caller.

• Instead of f becoming a target function because it modifies the memory
read in I (see above paragraph about modular verification), all callers will
become target functions.

• If the caller is itself suspended, the process is instead continued with the
parent callers.

A function that is called from a suspended function cannot rely on a sus-
pended invariants holding. It would be unsound to assume those invariants in
the function, and, since the invariants may not hold, asserting them would often
yield failed proofs. Therefore, the prover implicitly suspends all functions that
are called from a suspended function.

Suspending an update invariant may change its meaning, meaning, depend-
ing on the form of the predicate. Without suspension, an update invariant is
implemented by snapshotting the memory before the update and then asserting
a predicate after the update which refers to the previous state and the cur-
rent one. For suspended update invariants, the snapshot is taken before the
suspended function is called, and the assertion injected after it returns, which
might be earlier resp. later states. An example of an update invariant which
works well for suspension is e.g. a requirement for a monotonically increasing
value, as in invariant [suspendable] old(value()) <= value().

Methodologically, the suspension mechanism should be used with care, be-
cause it may complicate the verification problem by propagating verification er-
rors to more complex application contexts. The Move prover supports a further
pragma to suspend invariant verification which draws a clear boundary to func-
tion systems with suspension. With pragma suspend_invariants_in_body a
function can be marked to suspend invariants only in its body but ensure they
hold at caller side. This is conceptually syntactic sugar for introducing a helper
function:

public fun f(P) { S }
spec f { pragma suspend_invariants_in_body; }
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public fun f(P) { f’(P) }
fun f’(P) { S } spec f’ { pragma suspend_invariants; }

3.4.5 Invariant Consistency

TODO(wrwg): Describe solution to the below problem via induction

Notice that invariant injection can lead to inconsistencies. Consider the
following code fragment:

invariant [I] fora l l a: address: global <S>(a).value > 0;
 
spec assume global <S>(0). value == 0;

// context , e.g. from a requires
spec assume I; // injected

We currently do not check whether an invariant is satisfiable before we assume
it, but rather rely on a generic consistency checker for specifications.

3.5 Monomorphization

Monomorphization is the process of removing all generic types from a Move
program by specializing the program for all relevant type instantiations. Like
with genericity in most modern program languages, this is possible in Move
because the number of instantiations is statically known for a given program
fragment. For verification of Move, monomorphization greatly improves the
performance of the backend solvers (see ??).

3.5.1 Basic Monomorphization

Figure 12: Basic Monomorphization

1 struct S<T> { .. }
2 fun f<T>(x: T) { g<S<T>>(S(x)) }
3 fun g<S:key>(s: S) { move to<S>(.., s) }
4  
5 struct T{}
6 struct S_T{ .. }
7 fun f_T(x: T) { g_S_T(S_T(x)) }
8 fun g_S_T(s: S_T) { move to<S_T >(.., s) }

To verify a generic function, monomorphization skolemizes the type param-
eter into a given type. It then, for all functions which are inlined, inserts their
code specializing it for the given type instantiation, including specialization of
all used types. Fig. 12 sketches this approach.
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The underlying conjecture is that if we verify f_T, we have also verified it
for all possible instantiations. However, this statement is only correct for code
which does not depend on runtime type information.

3.5.2 Type Dependent Code

The type of genericity Move provides does not allow for full type erasure as
often found in programming languages. That is because types are used to index
global memory (e.g. global<S<T>>(addr) where T is a generic type). Consider
the following Move function:

fun f<T>(..) { move to<S<T>>(s, ..); move to<S<u64 >>(s, ..) }

Depending on how T is instantiated, this function behaves differently. Specifi-
cally, if T is instantiated with u64 the function will always abort at the second
move to, since the target location is already occupied.

The important property enabling monomorphization in the presence of type
dependent code is that one can identify the situation by looking at the memory
accessed by code and injected specifications. From this one can derive additional
instantiations of the function which need to be verified. For the example above,
verifying both f_T and an instantiation f_u64 will cover all relevant cases of the
function behavior. Notice that this treatment of type dependent code is specific
to the problem of verification, and cannot directly be applied to execution.

The algorithm for computing the instances which require verification works
as follows. Let f<T1,..,Tn> be a verified target function which has all specifi-
cations injected and inlined function calls expanded.

• Foreach memory M in modify(f), if there is a mem-
ory M’ in modify(f)+read(f) such that M and M’ can unify via
T1,..,Tn, collect an instaniation of the type parameters Ti from the
resulting substitution. This instantiation may not assign values to all type
parameters, and those unassigned parameters stay as is. For instance,
f<T1, T2> might have a partial instantiation f<T1, u8>.

• Once the set of all those partial instantiations is computed, it is extended
by unifying the instantiations against each other. If <t> and <t’> are in
the set, and they unify under the substitution s, then <s(t)> will also be
part of the set. For example, consider f<T1, T2> which modifies M<T1> and
R<T2>, as well as accesses M<u64> and R<u8>. From this the instantiations
<u64, T2> and <T1, u8> are computed, and the additional instantiation
<u64, u8> will be added to the set.

• If after computing and extending instantiations any type parameters re-
main, they are skolemized into a given type as described in the previous
section.

To understand the correctness of this procedure, consider the following ar-
guments:
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• Direct interaction Whenever a modified memory M<t> can influence the
interpretation of M<t’>, a unifier must exist for the types t and t’, and
an instantiation will be verified which covers the overlap of t and t’.

• Indirect interaction If there is an overlap between two types which influ-
ences whether another overlap is semantically relevant, the combination
of both overlaps will be verified via the extension step.

Notice that even though it is not common in regular Move code to work
with both memory S<T> and, say, S<u64> in one function, there is a scenario
where such code is implicitly created by injection of global invariants. Consider
the example in Fig. 9. The invariant I1 which works on S<u64> is injected into
the function g<R> which works on S<R>. When monomorphizing g, we need to
verify an instance g_u64 in order to ensure that I1 holds.

3.6 Translation to Boogie and Z3

3.6.1 Vectors and Extensionality

3.6.2 Encoding

3.6.3 Butterflies

4 Application

TODO(wrwg): . . .

5 Related Work

TODO(wrwg): . . .

6 Conclusion

TODO(wrwg): . . .
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