/* * Copyright (c) Meta Platforms, Inc. and affiliates. * All rights reserved. * * This source code is licensed under both the BSD-style license (found in the * LICENSE file in the root directory of this source tree) and the GPLv2 (found * in the COPYING file in the root directory of this source tree). * You may select, at your option, one of the above-listed licenses. */ #include "zstd_compress_internal.h" /* ZSTD_hashPtr, ZSTD_count, ZSTD_storeSeq */ #include "zstd_fast.h" static void ZSTD_fillHashTableForCDict(ZSTD_matchState_t* ms, const void* const end, ZSTD_dictTableLoadMethod_e dtlm) { const ZSTD_compressionParameters* const cParams = &ms->cParams; U32* const hashTable = ms->hashTable; U32 const hBits = cParams->hashLog + ZSTD_SHORT_CACHE_TAG_BITS; U32 const mls = cParams->minMatch; const BYTE* const base = ms->window.base; const BYTE* ip = base + ms->nextToUpdate; const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE; const U32 fastHashFillStep = 3; /* Currently, we always use ZSTD_dtlm_full for filling CDict tables. * Feel free to remove this assert if there's a good reason! */ assert(dtlm == ZSTD_dtlm_full); /* Always insert every fastHashFillStep position into the hash table. * Insert the other positions if their hash entry is empty. */ for ( ; ip + fastHashFillStep < iend + 2; ip += fastHashFillStep) { U32 const curr = (U32)(ip - base); { size_t const hashAndTag = ZSTD_hashPtr(ip, hBits, mls); ZSTD_writeTaggedIndex(hashTable, hashAndTag, curr); } if (dtlm == ZSTD_dtlm_fast) continue; /* Only load extra positions for ZSTD_dtlm_full */ { U32 p; for (p = 1; p < fastHashFillStep; ++p) { size_t const hashAndTag = ZSTD_hashPtr(ip + p, hBits, mls); if (hashTable[hashAndTag >> ZSTD_SHORT_CACHE_TAG_BITS] == 0) { /* not yet filled */ ZSTD_writeTaggedIndex(hashTable, hashAndTag, curr + p); } } } } } static void ZSTD_fillHashTableForCCtx(ZSTD_matchState_t* ms, const void* const end, ZSTD_dictTableLoadMethod_e dtlm) { const ZSTD_compressionParameters* const cParams = &ms->cParams; U32* const hashTable = ms->hashTable; U32 const hBits = cParams->hashLog; U32 const mls = cParams->minMatch; const BYTE* const base = ms->window.base; const BYTE* ip = base + ms->nextToUpdate; const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE; const U32 fastHashFillStep = 3; /* Currently, we always use ZSTD_dtlm_fast for filling CCtx tables. * Feel free to remove this assert if there's a good reason! */ assert(dtlm == ZSTD_dtlm_fast); /* Always insert every fastHashFillStep position into the hash table. * Insert the other positions if their hash entry is empty. */ for ( ; ip + fastHashFillStep < iend + 2; ip += fastHashFillStep) { U32 const curr = (U32)(ip - base); size_t const hash0 = ZSTD_hashPtr(ip, hBits, mls); hashTable[hash0] = curr; if (dtlm == ZSTD_dtlm_fast) continue; /* Only load extra positions for ZSTD_dtlm_full */ { U32 p; for (p = 1; p < fastHashFillStep; ++p) { size_t const hash = ZSTD_hashPtr(ip + p, hBits, mls); if (hashTable[hash] == 0) { /* not yet filled */ hashTable[hash] = curr + p; } } } } } void ZSTD_fillHashTable(ZSTD_matchState_t* ms, const void* const end, ZSTD_dictTableLoadMethod_e dtlm, ZSTD_tableFillPurpose_e tfp) { if (tfp == ZSTD_tfp_forCDict) { ZSTD_fillHashTableForCDict(ms, end, dtlm); } else { ZSTD_fillHashTableForCCtx(ms, end, dtlm); } } /** * If you squint hard enough (and ignore repcodes), the search operation at any * given position is broken into 4 stages: * * 1. Hash (map position to hash value via input read) * 2. Lookup (map hash val to index via hashtable read) * 3. Load (map index to value at that position via input read) * 4. Compare * * Each of these steps involves a memory read at an address which is computed * from the previous step. This means these steps must be sequenced and their * latencies are cumulative. * * Rather than do 1->2->3->4 sequentially for a single position before moving * onto the next, this implementation interleaves these operations across the * next few positions: * * R = Repcode Read & Compare * H = Hash * T = Table Lookup * M = Match Read & Compare * * Pos | Time --> * ----+------------------- * N | ... M * N+1 | ... TM * N+2 | R H T M * N+3 | H TM * N+4 | R H T M * N+5 | H ... * N+6 | R ... * * This is very much analogous to the pipelining of execution in a CPU. And just * like a CPU, we have to dump the pipeline when we find a match (i.e., take a * branch). * * When this happens, we throw away our current state, and do the following prep * to re-enter the loop: * * Pos | Time --> * ----+------------------- * N | H T * N+1 | H * * This is also the work we do at the beginning to enter the loop initially. */ FORCE_INLINE_TEMPLATE size_t ZSTD_compressBlock_fast_noDict_generic( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], void const* src, size_t srcSize, U32 const mls, U32 const hasStep) { const ZSTD_compressionParameters* const cParams = &ms->cParams; U32* const hashTable = ms->hashTable; U32 const hlog = cParams->hashLog; /* support stepSize of 0 */ size_t const stepSize = hasStep ? (cParams->targetLength + !(cParams->targetLength) + 1) : 2; const BYTE* const base = ms->window.base; const BYTE* const istart = (const BYTE*)src; const U32 endIndex = (U32)((size_t)(istart - base) + srcSize); const U32 prefixStartIndex = ZSTD_getLowestPrefixIndex(ms, endIndex, cParams->windowLog); const BYTE* const prefixStart = base + prefixStartIndex; const BYTE* const iend = istart + srcSize; const BYTE* const ilimit = iend - HASH_READ_SIZE; const BYTE* anchor = istart; const BYTE* ip0 = istart; const BYTE* ip1; const BYTE* ip2; const BYTE* ip3; U32 current0; U32 rep_offset1 = rep[0]; U32 rep_offset2 = rep[1]; U32 offsetSaved1 = 0, offsetSaved2 = 0; size_t hash0; /* hash for ip0 */ size_t hash1; /* hash for ip1 */ U32 idx; /* match idx for ip0 */ U32 mval; /* src value at match idx */ U32 offcode; const BYTE* match0; size_t mLength; /* ip0 and ip1 are always adjacent. The targetLength skipping and * uncompressibility acceleration is applied to every other position, * matching the behavior of #1562. step therefore represents the gap * between pairs of positions, from ip0 to ip2 or ip1 to ip3. */ size_t step; const BYTE* nextStep; const size_t kStepIncr = (1 << (kSearchStrength - 1)); DEBUGLOG(5, "ZSTD_compressBlock_fast_generic"); ip0 += (ip0 == prefixStart); { U32 const curr = (U32)(ip0 - base); U32 const windowLow = ZSTD_getLowestPrefixIndex(ms, curr, cParams->windowLog); U32 const maxRep = curr - windowLow; if (rep_offset2 > maxRep) offsetSaved2 = rep_offset2, rep_offset2 = 0; if (rep_offset1 > maxRep) offsetSaved1 = rep_offset1, rep_offset1 = 0; } /* start each op */ _start: /* Requires: ip0 */ step = stepSize; nextStep = ip0 + kStepIncr; /* calculate positions, ip0 - anchor == 0, so we skip step calc */ ip1 = ip0 + 1; ip2 = ip0 + step; ip3 = ip2 + 1; if (ip3 >= ilimit) { goto _cleanup; } hash0 = ZSTD_hashPtr(ip0, hlog, mls); hash1 = ZSTD_hashPtr(ip1, hlog, mls); idx = hashTable[hash0]; do { /* load repcode match for ip[2]*/ const U32 rval = MEM_read32(ip2 - rep_offset1); /* write back hash table entry */ current0 = (U32)(ip0 - base); hashTable[hash0] = current0; /* check repcode at ip[2] */ if ((MEM_read32(ip2) == rval) & (rep_offset1 > 0)) { ip0 = ip2; match0 = ip0 - rep_offset1; mLength = ip0[-1] == match0[-1]; ip0 -= mLength; match0 -= mLength; offcode = REPCODE1_TO_OFFBASE; mLength += 4; /* First write next hash table entry; we've already calculated it. * This write is known to be safe because the ip1 is before the * repcode (ip2). */ hashTable[hash1] = (U32)(ip1 - base); goto _match; } /* load match for ip[0] */ if (idx >= prefixStartIndex) { mval = MEM_read32(base + idx); } else { mval = MEM_read32(ip0) ^ 1; /* guaranteed to not match. */ } /* check match at ip[0] */ if (MEM_read32(ip0) == mval) { /* found a match! */ /* First write next hash table entry; we've already calculated it. * This write is known to be safe because the ip1 == ip0 + 1, so * we know we will resume searching after ip1 */ hashTable[hash1] = (U32)(ip1 - base); goto _offset; } /* lookup ip[1] */ idx = hashTable[hash1]; /* hash ip[2] */ hash0 = hash1; hash1 = ZSTD_hashPtr(ip2, hlog, mls); /* advance to next positions */ ip0 = ip1; ip1 = ip2; ip2 = ip3; /* write back hash table entry */ current0 = (U32)(ip0 - base); hashTable[hash0] = current0; /* load match for ip[0] */ if (idx >= prefixStartIndex) { mval = MEM_read32(base + idx); } else { mval = MEM_read32(ip0) ^ 1; /* guaranteed to not match. */ } /* check match at ip[0] */ if (MEM_read32(ip0) == mval) { /* found a match! */ /* first write next hash table entry; we've already calculated it */ if (step <= 4) { /* We need to avoid writing an index into the hash table >= the * position at which we will pick up our searching after we've * taken this match. * * The minimum possible match has length 4, so the earliest ip0 * can be after we take this match will be the current ip0 + 4. * ip1 is ip0 + step - 1. If ip1 is >= ip0 + 4, we can't safely * write this position. */ hashTable[hash1] = (U32)(ip1 - base); } goto _offset; } /* lookup ip[1] */ idx = hashTable[hash1]; /* hash ip[2] */ hash0 = hash1; hash1 = ZSTD_hashPtr(ip2, hlog, mls); /* advance to next positions */ ip0 = ip1; ip1 = ip2; ip2 = ip0 + step; ip3 = ip1 + step; /* calculate step */ if (ip2 >= nextStep) { step++; PREFETCH_L1(ip1 + 64); PREFETCH_L1(ip1 + 128); nextStep += kStepIncr; } } while (ip3 < ilimit); _cleanup: /* Note that there are probably still a couple positions we could search. * However, it seems to be a meaningful performance hit to try to search * them. So let's not. */ /* When the repcodes are outside of the prefix, we set them to zero before the loop. * When the offsets are still zero, we need to restore them after the block to have a correct * repcode history. If only one offset was invalid, it is easy. The tricky case is when both * offsets were invalid. We need to figure out which offset to refill with. * - If both offsets are zero they are in the same order. * - If both offsets are non-zero, we won't restore the offsets from `offsetSaved[12]`. * - If only one is zero, we need to decide which offset to restore. * - If rep_offset1 is non-zero, then rep_offset2 must be offsetSaved1. * - It is impossible for rep_offset2 to be non-zero. * * So if rep_offset1 started invalid (offsetSaved1 != 0) and became valid (rep_offset1 != 0), then * set rep[0] = rep_offset1 and rep[1] = offsetSaved1. */ offsetSaved2 = ((offsetSaved1 != 0) && (rep_offset1 != 0)) ? offsetSaved1 : offsetSaved2; /* save reps for next block */ rep[0] = rep_offset1 ? rep_offset1 : offsetSaved1; rep[1] = rep_offset2 ? rep_offset2 : offsetSaved2; /* Return the last literals size */ return (size_t)(iend - anchor); _offset: /* Requires: ip0, idx */ /* Compute the offset code. */ match0 = base + idx; rep_offset2 = rep_offset1; rep_offset1 = (U32)(ip0-match0); offcode = OFFSET_TO_OFFBASE(rep_offset1); mLength = 4; /* Count the backwards match length. */ while (((ip0>anchor) & (match0>prefixStart)) && (ip0[-1] == match0[-1])) { ip0--; match0--; mLength++; } _match: /* Requires: ip0, match0, offcode */ /* Count the forward length. */ mLength += ZSTD_count(ip0 + mLength, match0 + mLength, iend); ZSTD_storeSeq(seqStore, (size_t)(ip0 - anchor), anchor, iend, offcode, mLength); ip0 += mLength; anchor = ip0; /* Fill table and check for immediate repcode. */ if (ip0 <= ilimit) { /* Fill Table */ assert(base+current0+2 > istart); /* check base overflow */ hashTable[ZSTD_hashPtr(base+current0+2, hlog, mls)] = current0+2; /* here because current+2 could be > iend-8 */ hashTable[ZSTD_hashPtr(ip0-2, hlog, mls)] = (U32)(ip0-2-base); if (rep_offset2 > 0) { /* rep_offset2==0 means rep_offset2 is invalidated */ while ( (ip0 <= ilimit) && (MEM_read32(ip0) == MEM_read32(ip0 - rep_offset2)) ) { /* store sequence */ size_t const rLength = ZSTD_count(ip0+4, ip0+4-rep_offset2, iend) + 4; { U32 const tmpOff = rep_offset2; rep_offset2 = rep_offset1; rep_offset1 = tmpOff; } /* swap rep_offset2 <=> rep_offset1 */ hashTable[ZSTD_hashPtr(ip0, hlog, mls)] = (U32)(ip0-base); ip0 += rLength; ZSTD_storeSeq(seqStore, 0 /*litLen*/, anchor, iend, REPCODE1_TO_OFFBASE, rLength); anchor = ip0; continue; /* faster when present (confirmed on gcc-8) ... (?) */ } } } goto _start; } #define ZSTD_GEN_FAST_FN(dictMode, mls, step) \ static size_t ZSTD_compressBlock_fast_##dictMode##_##mls##_##step( \ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], \ void const* src, size_t srcSize) \ { \ return ZSTD_compressBlock_fast_##dictMode##_generic(ms, seqStore, rep, src, srcSize, mls, step); \ } ZSTD_GEN_FAST_FN(noDict, 4, 1) ZSTD_GEN_FAST_FN(noDict, 5, 1) ZSTD_GEN_FAST_FN(noDict, 6, 1) ZSTD_GEN_FAST_FN(noDict, 7, 1) ZSTD_GEN_FAST_FN(noDict, 4, 0) ZSTD_GEN_FAST_FN(noDict, 5, 0) ZSTD_GEN_FAST_FN(noDict, 6, 0) ZSTD_GEN_FAST_FN(noDict, 7, 0) size_t ZSTD_compressBlock_fast( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], void const* src, size_t srcSize) { U32 const mls = ms->cParams.minMatch; assert(ms->dictMatchState == NULL); if (ms->cParams.targetLength > 1) { switch(mls) { default: /* includes case 3 */ case 4 : return ZSTD_compressBlock_fast_noDict_4_1(ms, seqStore, rep, src, srcSize); case 5 : return ZSTD_compressBlock_fast_noDict_5_1(ms, seqStore, rep, src, srcSize); case 6 : return ZSTD_compressBlock_fast_noDict_6_1(ms, seqStore, rep, src, srcSize); case 7 : return ZSTD_compressBlock_fast_noDict_7_1(ms, seqStore, rep, src, srcSize); } } else { switch(mls) { default: /* includes case 3 */ case 4 : return ZSTD_compressBlock_fast_noDict_4_0(ms, seqStore, rep, src, srcSize); case 5 : return ZSTD_compressBlock_fast_noDict_5_0(ms, seqStore, rep, src, srcSize); case 6 : return ZSTD_compressBlock_fast_noDict_6_0(ms, seqStore, rep, src, srcSize); case 7 : return ZSTD_compressBlock_fast_noDict_7_0(ms, seqStore, rep, src, srcSize); } } } FORCE_INLINE_TEMPLATE size_t ZSTD_compressBlock_fast_dictMatchState_generic( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], void const* src, size_t srcSize, U32 const mls, U32 const hasStep) { const ZSTD_compressionParameters* const cParams = &ms->cParams; U32* const hashTable = ms->hashTable; U32 const hlog = cParams->hashLog; /* support stepSize of 0 */ U32 const stepSize = cParams->targetLength + !(cParams->targetLength); const BYTE* const base = ms->window.base; const BYTE* const istart = (const BYTE*)src; const BYTE* ip0 = istart; const BYTE* ip1 = ip0 + stepSize; /* we assert below that stepSize >= 1 */ const BYTE* anchor = istart; const U32 prefixStartIndex = ms->window.dictLimit; const BYTE* const prefixStart = base + prefixStartIndex; const BYTE* const iend = istart + srcSize; const BYTE* const ilimit = iend - HASH_READ_SIZE; U32 offset_1=rep[0], offset_2=rep[1]; const ZSTD_matchState_t* const dms = ms->dictMatchState; const ZSTD_compressionParameters* const dictCParams = &dms->cParams ; const U32* const dictHashTable = dms->hashTable; const U32 dictStartIndex = dms->window.dictLimit; const BYTE* const dictBase = dms->window.base; const BYTE* const dictStart = dictBase + dictStartIndex; const BYTE* const dictEnd = dms->window.nextSrc; const U32 dictIndexDelta = prefixStartIndex - (U32)(dictEnd - dictBase); const U32 dictAndPrefixLength = (U32)(istart - prefixStart + dictEnd - dictStart); const U32 dictHBits = dictCParams->hashLog + ZSTD_SHORT_CACHE_TAG_BITS; /* if a dictionary is still attached, it necessarily means that * it is within window size. So we just check it. */ const U32 maxDistance = 1U << cParams->windowLog; const U32 endIndex = (U32)((size_t)(istart - base) + srcSize); assert(endIndex - prefixStartIndex <= maxDistance); (void)maxDistance; (void)endIndex; /* these variables are not used when assert() is disabled */ (void)hasStep; /* not currently specialized on whether it's accelerated */ /* ensure there will be no underflow * when translating a dict index into a local index */ assert(prefixStartIndex >= (U32)(dictEnd - dictBase)); if (ms->prefetchCDictTables) { size_t const hashTableBytes = (((size_t)1) << dictCParams->hashLog) * sizeof(U32); PREFETCH_AREA(dictHashTable, hashTableBytes) } /* init */ DEBUGLOG(5, "ZSTD_compressBlock_fast_dictMatchState_generic"); ip0 += (dictAndPrefixLength == 0); /* dictMatchState repCode checks don't currently handle repCode == 0 * disabling. */ assert(offset_1 <= dictAndPrefixLength); assert(offset_2 <= dictAndPrefixLength); /* Outer search loop */ assert(stepSize >= 1); while (ip1 <= ilimit) { /* repcode check at (ip0 + 1) is safe because ip0 < ip1 */ size_t mLength; size_t hash0 = ZSTD_hashPtr(ip0, hlog, mls); size_t const dictHashAndTag0 = ZSTD_hashPtr(ip0, dictHBits, mls); U32 dictMatchIndexAndTag = dictHashTable[dictHashAndTag0 >> ZSTD_SHORT_CACHE_TAG_BITS]; int dictTagsMatch = ZSTD_comparePackedTags(dictMatchIndexAndTag, dictHashAndTag0); U32 matchIndex = hashTable[hash0]; U32 curr = (U32)(ip0 - base); size_t step = stepSize; const size_t kStepIncr = 1 << kSearchStrength; const BYTE* nextStep = ip0 + kStepIncr; /* Inner search loop */ while (1) { const BYTE* match = base + matchIndex; const U32 repIndex = curr + 1 - offset_1; const BYTE* repMatch = (repIndex < prefixStartIndex) ? dictBase + (repIndex - dictIndexDelta) : base + repIndex; const size_t hash1 = ZSTD_hashPtr(ip1, hlog, mls); size_t const dictHashAndTag1 = ZSTD_hashPtr(ip1, dictHBits, mls); hashTable[hash0] = curr; /* update hash table */ if (((U32) ((prefixStartIndex - 1) - repIndex) >= 3) /* intentional underflow : ensure repIndex isn't overlapping dict + prefix */ && (MEM_read32(repMatch) == MEM_read32(ip0 + 1))) { const BYTE* const repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend; mLength = ZSTD_count_2segments(ip0 + 1 + 4, repMatch + 4, iend, repMatchEnd, prefixStart) + 4; ip0++; ZSTD_storeSeq(seqStore, (size_t) (ip0 - anchor), anchor, iend, REPCODE1_TO_OFFBASE, mLength); break; } if (dictTagsMatch) { /* Found a possible dict match */ const U32 dictMatchIndex = dictMatchIndexAndTag >> ZSTD_SHORT_CACHE_TAG_BITS; const BYTE* dictMatch = dictBase + dictMatchIndex; if (dictMatchIndex > dictStartIndex && MEM_read32(dictMatch) == MEM_read32(ip0)) { /* To replicate extDict parse behavior, we only use dict matches when the normal matchIndex is invalid */ if (matchIndex <= prefixStartIndex) { U32 const offset = (U32) (curr - dictMatchIndex - dictIndexDelta); mLength = ZSTD_count_2segments(ip0 + 4, dictMatch + 4, iend, dictEnd, prefixStart) + 4; while (((ip0 > anchor) & (dictMatch > dictStart)) && (ip0[-1] == dictMatch[-1])) { ip0--; dictMatch--; mLength++; } /* catch up */ offset_2 = offset_1; offset_1 = offset; ZSTD_storeSeq(seqStore, (size_t) (ip0 - anchor), anchor, iend, OFFSET_TO_OFFBASE(offset), mLength); break; } } } if (matchIndex > prefixStartIndex && MEM_read32(match) == MEM_read32(ip0)) { /* found a regular match */ U32 const offset = (U32) (ip0 - match); mLength = ZSTD_count(ip0 + 4, match + 4, iend) + 4; while (((ip0 > anchor) & (match > prefixStart)) && (ip0[-1] == match[-1])) { ip0--; match--; mLength++; } /* catch up */ offset_2 = offset_1; offset_1 = offset; ZSTD_storeSeq(seqStore, (size_t) (ip0 - anchor), anchor, iend, OFFSET_TO_OFFBASE(offset), mLength); break; } /* Prepare for next iteration */ dictMatchIndexAndTag = dictHashTable[dictHashAndTag1 >> ZSTD_SHORT_CACHE_TAG_BITS]; dictTagsMatch = ZSTD_comparePackedTags(dictMatchIndexAndTag, dictHashAndTag1); matchIndex = hashTable[hash1]; if (ip1 >= nextStep) { step++; nextStep += kStepIncr; } ip0 = ip1; ip1 = ip1 + step; if (ip1 > ilimit) goto _cleanup; curr = (U32)(ip0 - base); hash0 = hash1; } /* end inner search loop */ /* match found */ assert(mLength); ip0 += mLength; anchor = ip0; if (ip0 <= ilimit) { /* Fill Table */ assert(base+curr+2 > istart); /* check base overflow */ hashTable[ZSTD_hashPtr(base+curr+2, hlog, mls)] = curr+2; /* here because curr+2 could be > iend-8 */ hashTable[ZSTD_hashPtr(ip0-2, hlog, mls)] = (U32)(ip0-2-base); /* check immediate repcode */ while (ip0 <= ilimit) { U32 const current2 = (U32)(ip0-base); U32 const repIndex2 = current2 - offset_2; const BYTE* repMatch2 = repIndex2 < prefixStartIndex ? dictBase - dictIndexDelta + repIndex2 : base + repIndex2; if ( ((U32)((prefixStartIndex-1) - (U32)repIndex2) >= 3 /* intentional overflow */) && (MEM_read32(repMatch2) == MEM_read32(ip0))) { const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend; size_t const repLength2 = ZSTD_count_2segments(ip0+4, repMatch2+4, iend, repEnd2, prefixStart) + 4; U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */ ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, repLength2); hashTable[ZSTD_hashPtr(ip0, hlog, mls)] = current2; ip0 += repLength2; anchor = ip0; continue; } break; } } /* Prepare for next iteration */ assert(ip0 == anchor); ip1 = ip0 + stepSize; } _cleanup: /* save reps for next block */ rep[0] = offset_1; rep[1] = offset_2; /* Return the last literals size */ return (size_t)(iend - anchor); } ZSTD_GEN_FAST_FN(dictMatchState, 4, 0) ZSTD_GEN_FAST_FN(dictMatchState, 5, 0) ZSTD_GEN_FAST_FN(dictMatchState, 6, 0) ZSTD_GEN_FAST_FN(dictMatchState, 7, 0) size_t ZSTD_compressBlock_fast_dictMatchState( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], void const* src, size_t srcSize) { U32 const mls = ms->cParams.minMatch; assert(ms->dictMatchState != NULL); switch(mls) { default: /* includes case 3 */ case 4 : return ZSTD_compressBlock_fast_dictMatchState_4_0(ms, seqStore, rep, src, srcSize); case 5 : return ZSTD_compressBlock_fast_dictMatchState_5_0(ms, seqStore, rep, src, srcSize); case 6 : return ZSTD_compressBlock_fast_dictMatchState_6_0(ms, seqStore, rep, src, srcSize); case 7 : return ZSTD_compressBlock_fast_dictMatchState_7_0(ms, seqStore, rep, src, srcSize); } } static size_t ZSTD_compressBlock_fast_extDict_generic( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], void const* src, size_t srcSize, U32 const mls, U32 const hasStep) { const ZSTD_compressionParameters* const cParams = &ms->cParams; U32* const hashTable = ms->hashTable; U32 const hlog = cParams->hashLog; /* support stepSize of 0 */ size_t const stepSize = cParams->targetLength + !(cParams->targetLength) + 1; const BYTE* const base = ms->window.base; const BYTE* const dictBase = ms->window.dictBase; const BYTE* const istart = (const BYTE*)src; const BYTE* anchor = istart; const U32 endIndex = (U32)((size_t)(istart - base) + srcSize); const U32 lowLimit = ZSTD_getLowestMatchIndex(ms, endIndex, cParams->windowLog); const U32 dictStartIndex = lowLimit; const BYTE* const dictStart = dictBase + dictStartIndex; const U32 dictLimit = ms->window.dictLimit; const U32 prefixStartIndex = dictLimit < lowLimit ? lowLimit : dictLimit; const BYTE* const prefixStart = base + prefixStartIndex; const BYTE* const dictEnd = dictBase + prefixStartIndex; const BYTE* const iend = istart + srcSize; const BYTE* const ilimit = iend - 8; U32 offset_1=rep[0], offset_2=rep[1]; U32 offsetSaved1 = 0, offsetSaved2 = 0; const BYTE* ip0 = istart; const BYTE* ip1; const BYTE* ip2; const BYTE* ip3; U32 current0; size_t hash0; /* hash for ip0 */ size_t hash1; /* hash for ip1 */ U32 idx; /* match idx for ip0 */ const BYTE* idxBase; /* base pointer for idx */ U32 offcode; const BYTE* match0; size_t mLength; const BYTE* matchEnd = 0; /* initialize to avoid warning, assert != 0 later */ size_t step; const BYTE* nextStep; const size_t kStepIncr = (1 << (kSearchStrength - 1)); (void)hasStep; /* not currently specialized on whether it's accelerated */ DEBUGLOG(5, "ZSTD_compressBlock_fast_extDict_generic (offset_1=%u)", offset_1); /* switch to "regular" variant if extDict is invalidated due to maxDistance */ if (prefixStartIndex == dictStartIndex) return ZSTD_compressBlock_fast(ms, seqStore, rep, src, srcSize); { U32 const curr = (U32)(ip0 - base); U32 const maxRep = curr - dictStartIndex; if (offset_2 >= maxRep) offsetSaved2 = offset_2, offset_2 = 0; if (offset_1 >= maxRep) offsetSaved1 = offset_1, offset_1 = 0; } /* start each op */ _start: /* Requires: ip0 */ step = stepSize; nextStep = ip0 + kStepIncr; /* calculate positions, ip0 - anchor == 0, so we skip step calc */ ip1 = ip0 + 1; ip2 = ip0 + step; ip3 = ip2 + 1; if (ip3 >= ilimit) { goto _cleanup; } hash0 = ZSTD_hashPtr(ip0, hlog, mls); hash1 = ZSTD_hashPtr(ip1, hlog, mls); idx = hashTable[hash0]; idxBase = idx < prefixStartIndex ? dictBase : base; do { { /* load repcode match for ip[2] */ U32 const current2 = (U32)(ip2 - base); U32 const repIndex = current2 - offset_1; const BYTE* const repBase = repIndex < prefixStartIndex ? dictBase : base; U32 rval; if ( ((U32)(prefixStartIndex - repIndex) >= 4) /* intentional underflow */ & (offset_1 > 0) ) { rval = MEM_read32(repBase + repIndex); } else { rval = MEM_read32(ip2) ^ 1; /* guaranteed to not match. */ } /* write back hash table entry */ current0 = (U32)(ip0 - base); hashTable[hash0] = current0; /* check repcode at ip[2] */ if (MEM_read32(ip2) == rval) { ip0 = ip2; match0 = repBase + repIndex; matchEnd = repIndex < prefixStartIndex ? dictEnd : iend; assert((match0 != prefixStart) & (match0 != dictStart)); mLength = ip0[-1] == match0[-1]; ip0 -= mLength; match0 -= mLength; offcode = REPCODE1_TO_OFFBASE; mLength += 4; goto _match; } } { /* load match for ip[0] */ U32 const mval = idx >= dictStartIndex ? MEM_read32(idxBase + idx) : MEM_read32(ip0) ^ 1; /* guaranteed not to match */ /* check match at ip[0] */ if (MEM_read32(ip0) == mval) { /* found a match! */ goto _offset; } } /* lookup ip[1] */ idx = hashTable[hash1]; idxBase = idx < prefixStartIndex ? dictBase : base; /* hash ip[2] */ hash0 = hash1; hash1 = ZSTD_hashPtr(ip2, hlog, mls); /* advance to next positions */ ip0 = ip1; ip1 = ip2; ip2 = ip3; /* write back hash table entry */ current0 = (U32)(ip0 - base); hashTable[hash0] = current0; { /* load match for ip[0] */ U32 const mval = idx >= dictStartIndex ? MEM_read32(idxBase + idx) : MEM_read32(ip0) ^ 1; /* guaranteed not to match */ /* check match at ip[0] */ if (MEM_read32(ip0) == mval) { /* found a match! */ goto _offset; } } /* lookup ip[1] */ idx = hashTable[hash1]; idxBase = idx < prefixStartIndex ? dictBase : base; /* hash ip[2] */ hash0 = hash1; hash1 = ZSTD_hashPtr(ip2, hlog, mls); /* advance to next positions */ ip0 = ip1; ip1 = ip2; ip2 = ip0 + step; ip3 = ip1 + step; /* calculate step */ if (ip2 >= nextStep) { step++; PREFETCH_L1(ip1 + 64); PREFETCH_L1(ip1 + 128); nextStep += kStepIncr; } } while (ip3 < ilimit); _cleanup: /* Note that there are probably still a couple positions we could search. * However, it seems to be a meaningful performance hit to try to search * them. So let's not. */ /* If offset_1 started invalid (offsetSaved1 != 0) and became valid (offset_1 != 0), * rotate saved offsets. See comment in ZSTD_compressBlock_fast_noDict for more context. */ offsetSaved2 = ((offsetSaved1 != 0) && (offset_1 != 0)) ? offsetSaved1 : offsetSaved2; /* save reps for next block */ rep[0] = offset_1 ? offset_1 : offsetSaved1; rep[1] = offset_2 ? offset_2 : offsetSaved2; /* Return the last literals size */ return (size_t)(iend - anchor); _offset: /* Requires: ip0, idx, idxBase */ /* Compute the offset code. */ { U32 const offset = current0 - idx; const BYTE* const lowMatchPtr = idx < prefixStartIndex ? dictStart : prefixStart; matchEnd = idx < prefixStartIndex ? dictEnd : iend; match0 = idxBase + idx; offset_2 = offset_1; offset_1 = offset; offcode = OFFSET_TO_OFFBASE(offset); mLength = 4; /* Count the backwards match length. */ while (((ip0>anchor) & (match0>lowMatchPtr)) && (ip0[-1] == match0[-1])) { ip0--; match0--; mLength++; } } _match: /* Requires: ip0, match0, offcode, matchEnd */ /* Count the forward length. */ assert(matchEnd != 0); mLength += ZSTD_count_2segments(ip0 + mLength, match0 + mLength, iend, matchEnd, prefixStart); ZSTD_storeSeq(seqStore, (size_t)(ip0 - anchor), anchor, iend, offcode, mLength); ip0 += mLength; anchor = ip0; /* write next hash table entry */ if (ip1 < ip0) { hashTable[hash1] = (U32)(ip1 - base); } /* Fill table and check for immediate repcode. */ if (ip0 <= ilimit) { /* Fill Table */ assert(base+current0+2 > istart); /* check base overflow */ hashTable[ZSTD_hashPtr(base+current0+2, hlog, mls)] = current0+2; /* here because current+2 could be > iend-8 */ hashTable[ZSTD_hashPtr(ip0-2, hlog, mls)] = (U32)(ip0-2-base); while (ip0 <= ilimit) { U32 const repIndex2 = (U32)(ip0-base) - offset_2; const BYTE* const repMatch2 = repIndex2 < prefixStartIndex ? dictBase + repIndex2 : base + repIndex2; if ( (((U32)((prefixStartIndex-1) - repIndex2) >= 3) & (offset_2 > 0)) /* intentional underflow */ && (MEM_read32(repMatch2) == MEM_read32(ip0)) ) { const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend; size_t const repLength2 = ZSTD_count_2segments(ip0+4, repMatch2+4, iend, repEnd2, prefixStart) + 4; { U32 const tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; } /* swap offset_2 <=> offset_1 */ ZSTD_storeSeq(seqStore, 0 /*litlen*/, anchor, iend, REPCODE1_TO_OFFBASE, repLength2); hashTable[ZSTD_hashPtr(ip0, hlog, mls)] = (U32)(ip0-base); ip0 += repLength2; anchor = ip0; continue; } break; } } goto _start; } ZSTD_GEN_FAST_FN(extDict, 4, 0) ZSTD_GEN_FAST_FN(extDict, 5, 0) ZSTD_GEN_FAST_FN(extDict, 6, 0) ZSTD_GEN_FAST_FN(extDict, 7, 0) size_t ZSTD_compressBlock_fast_extDict( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], void const* src, size_t srcSize) { U32 const mls = ms->cParams.minMatch; assert(ms->dictMatchState == NULL); switch(mls) { default: /* includes case 3 */ case 4 : return ZSTD_compressBlock_fast_extDict_4_0(ms, seqStore, rep, src, srcSize); case 5 : return ZSTD_compressBlock_fast_extDict_5_0(ms, seqStore, rep, src, srcSize); case 6 : return ZSTD_compressBlock_fast_extDict_6_0(ms, seqStore, rep, src, srcSize); case 7 : return ZSTD_compressBlock_fast_extDict_7_0(ms, seqStore, rep, src, srcSize); } }