// Copyright (c) 2017, 2024, Oracle and/or its affiliates. // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License, version 2.0, // as published by the Free Software Foundation. // // This program is designed to work with certain software (including // but not limited to OpenSSL) that is licensed under separate terms, // as designated in a particular file or component or in included license // documentation. The authors of MySQL hereby grant you an additional // permission to link the program and your derivative works with the // separately licensed software that they have either included with // the program or referenced in the documentation. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License, version 2.0, for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. /// @file /// /// This file implements the crosses functor and function. #include // std::unique_ptr #include #include "sql/dd/types/spatial_reference_system.h" // dd::Spatial_reference_system #include "sql/gis/crosses_functor.h" #include "sql/gis/difference_functor.h" #include "sql/gis/disjoint_functor.h" #include "sql/gis/gc_utils.h" #include "sql/gis/geometries.h" #include "sql/gis/geometries_traits.h" #include "sql/gis/relops.h" #include "sql/gis/within_functor.h" #include "sql/sql_exception_handler.h" // handle_gis_exception namespace bg = boost::geometry; namespace gis { /// Apply a Crosses functor to two geometries, which both may be geometry /// collections, and return the booelan result of the functor applied on each /// combination of elements in the collections. /// /// @tparam GC Coordinate specific gometry collection type. /// /// @param f Functor to apply. /// @param g1 First geometry. /// @param g2 Second geometry. /// /// @retval true g1 crosses g2. /// @retval false g1 doesn't cross g2. template static bool geometry_collection_apply_crosses(const Crosses &f, const Geometry *g1, const Geometry *g2) { if (g1->type() == Geometry_type::kGeometrycollection) { std::unique_ptr g1_mpt; std::unique_ptr g1_mls; std::unique_ptr g1_mpy; split_gc(down_cast(g1), &g1_mpt, &g1_mls, &g1_mpy); if (!g1_mpy->empty()) throw null_value_exception(); gc_union(f.semi_major(), f.semi_minor(), &g1_mpt, &g1_mls, &g1_mpy); if (g2->type() == Geometry_type::kGeometrycollection) { std::unique_ptr g2_mpt; std::unique_ptr g2_mls; std::unique_ptr g2_mpy; split_gc(down_cast(g2), &g2_mpt, &g2_mls, &g2_mpy); if (!g2_mpt->empty() && g2_mls->empty() && g2_mpy->empty()) throw null_value_exception(); gc_union(f.semi_major(), f.semi_minor(), &g2_mpt, &g2_mls, &g2_mpy); // g1 and g2 must have at least one interior point in common. bool shared_interior = false; assert(g1_mpy->empty()); // Should have returned already. if (g1->coordinate_system() == Coordinate_system::kCartesian) { if (g1_mpy->empty() && !g1_mls->empty() && g2_mpy->empty() && !g2_mls->empty()) { // Both g1 and g2 are of dimenision 1, so the common interior has to // be of dimension 0 for g1 and g2 to cross. boost::geometry::de9im::mask mask("0********"); shared_interior = bg::relate( *down_cast(g1_mpt.get()), *down_cast(g2_mpt.get()), mask); for (std::size_t i = 0; i < down_cast(g1_mpt.get())->size(); i++) { auto &pt = (*down_cast(g1_mpt.get()))[i]; shared_interior |= bg::relate( pt, *down_cast(g2_mls.get()), mask); } for (std::size_t i = 0; i < down_cast(g2_mpt.get())->size(); i++) { auto &pt = (*down_cast(g2_mpt.get()))[i]; shared_interior |= bg::relate( pt, *down_cast(g1_mls.get()), mask); } if (bg::relate(*down_cast(g1_mls.get()), *down_cast(g2_mls.get()), mask)) { shared_interior = true; } else { boost::geometry::de9im::mask line_mask("1********"); if (bg::relate( *down_cast(g1_mls.get()), *down_cast(g2_mls.get()), line_mask)) { shared_interior = false; // Shared interior is a line. } } } else { // Either g1 or g2 are not of dimension 1. Therefore, it's enough to // have some common interior, there's no requirement on the // dimensionality. boost::geometry::de9im::mask mask("T********"); shared_interior = bg::relate( *down_cast(g1_mpt.get()), *down_cast(g2_mpt.get()), mask); for (std::size_t i = 0; i < down_cast(g1_mpt.get())->size(); i++) { auto &pt = (*down_cast(g1_mpt.get()))[i]; shared_interior |= bg::relate( pt, *down_cast(g2_mls.get()), mask) || bg::relate(pt, *down_cast(g2_mpy.get()), mask); } for (std::size_t i = 0; i < down_cast(g2_mpt.get())->size(); i++) { auto &pt = (*down_cast(g2_mpt.get()))[i]; shared_interior |= bg::relate( pt, *down_cast(g1_mls.get()), mask); } shared_interior |= bg::relate(*down_cast(g1_mls.get()), *down_cast(g2_mls.get()), mask) || bg::relate(*down_cast(g1_mls.get()), *down_cast(g2_mpy.get()), mask); } } else { assert(g1->coordinate_system() == Coordinate_system::kGeographic); if (g1_mpy->empty() && !g1_mls->empty() && g2_mpy->empty() && !g2_mls->empty()) { // Both g1 and g2 are of dimenision 1, so the common interior has to // be of dimension 0 for g1 and g2 to cross. boost::geometry::de9im::mask mask("0********"); shared_interior = bg::relate( *down_cast(g1_mpt.get()), *down_cast(g2_mpt.get()), mask); for (std::size_t i = 0; i < down_cast(g1_mpt.get())->size(); i++) { auto &pt = (*down_cast(g1_mpt.get()))[i]; shared_interior |= bg::relate( pt, *down_cast(g2_mls.get()), mask); } for (std::size_t i = 0; i < down_cast(g2_mpt.get())->size(); i++) { auto &pt = (*down_cast(g2_mpt.get()))[i]; shared_interior |= bg::relate( pt, *down_cast(g1_mls.get()), mask); } if (bg::relate(*down_cast(g1_mls.get()), *down_cast(g2_mls.get()), mask)) { shared_interior = true; } else { boost::geometry::de9im::mask line_mask("1********"); if (bg::relate( *down_cast(g1_mls.get()), *down_cast(g2_mls.get()), line_mask)) { shared_interior = false; // Shared interior is a line. } } } else { // Either g1 or g2 are not of dimension 1. Therefore, it's enough to // have some common interior, there's no requirement on the // dimensionality. boost::geometry::de9im::mask mask("T********"); boost::geometry::strategy::within::geographic_winding< Geographic_point> geographic_pl_pa_strategy( bg::srs::spheroid(f.semi_major(), f.semi_minor())); boost::geometry::strategy::intersection::geographic_segments<> geographic_ll_la_aa_strategy( bg::srs::spheroid(f.semi_major(), f.semi_minor())); shared_interior = bg::relate( *down_cast(g1_mpt.get()), *down_cast(g2_mpt.get()), mask); for (std::size_t i = 0; i < down_cast(g1_mpt.get())->size(); i++) { auto &pt = (*down_cast(g1_mpt.get()))[i]; shared_interior |= bg::relate( pt, *down_cast(g2_mls.get()), mask, geographic_pl_pa_strategy) || bg::relate(pt, *down_cast(g2_mpy.get()), mask, geographic_pl_pa_strategy); } for (std::size_t i = 0; i < down_cast(g2_mpt.get())->size(); i++) { auto &pt = (*down_cast(g2_mpt.get()))[i]; shared_interior |= bg::relate( pt, *down_cast(g1_mls.get()), mask, geographic_pl_pa_strategy); } shared_interior |= bg::relate(*down_cast(g1_mls.get()), *down_cast(g2_mls.get()), mask, geographic_ll_la_aa_strategy) || bg::relate(*down_cast(g1_mls.get()), *down_cast(g2_mpy.get()), mask, geographic_ll_la_aa_strategy); } } if (!shared_interior) return false; // At least one point of g1 must be in g2's exterior. std::unique_ptr pt_diff; Difference d(f.semi_major(), f.semi_minor()); pt_diff = d(g1_mpt.get(), g2_mpt.get()); pt_diff = d(pt_diff.get(), g2_mls.get()); pt_diff = d(pt_diff.get(), g2_mpy.get()); if (!pt_diff->is_empty()) return true; std::unique_ptr ls_diff; ls_diff = d(g1_mls.get(), g2_mls.get()); ls_diff = d(ls_diff.get(), g2_mpy.get()); return (!ls_diff->is_empty()); } else { if (g1->coordinate_system() == Coordinate_system::kCartesian) { Cartesian_geometrycollection gc; gc.push_back(*g2); return geometry_collection_apply_crosses( f, g1, &gc); } else { assert(g1->coordinate_system() == Coordinate_system::kGeographic); Geographic_geometrycollection gc; gc.push_back(*g2); return geometry_collection_apply_crosses( f, g1, &gc); } } } else { if (g2->type() == Geometry_type::kGeometrycollection) { if (g1->coordinate_system() == Coordinate_system::kCartesian) { Cartesian_geometrycollection gc; gc.push_back(*g1); return geometry_collection_apply_crosses( f, &gc, g2); } else { assert(g1->coordinate_system() == Coordinate_system::kGeographic); Geographic_geometrycollection gc; gc.push_back(*g1); return geometry_collection_apply_crosses( f, &gc, g2); } } else { return f(g1, g2); } } } Crosses::Crosses(double semi_major, double semi_minor) : m_semi_major(semi_major), m_semi_minor(semi_minor), m_geographic_pl_pa_strategy( bg::srs::spheroid(semi_major, semi_minor)), m_geographic_ll_la_aa_strategy( bg::srs::spheroid(semi_major, semi_minor)) {} bool Crosses::operator()(const Geometry *g1, const Geometry *g2) const { return apply(*this, g1, g2); } bool Crosses::eval(const Geometry *g1, const Geometry *g2) const { // All parameter type combinations have been implemented. assert(false); throw not_implemented_exception::for_non_projected(*g1, *g2); } ////////////////////////////////////////////////////////////////////////////// // crosses(Cartesian_point, *) bool Crosses::eval(const Cartesian_point *, const Cartesian_point *) const { // If g2 is a 0d geometry, return NULL (SQL/MM 2015, Sect. 5.1.51). throw null_value_exception(); } bool Crosses::eval(const Cartesian_point *, const Cartesian_linestring *) const { // A point may never cross another geometry. return false; } bool Crosses::eval(const Cartesian_point *, const Cartesian_polygon *) const { // A point may never cross another geometry. return false; } bool Crosses::eval(const Cartesian_point *g1, const Cartesian_geometrycollection *g2) const { // Must be evaluated in case g2 contains a single point. return geometry_collection_apply_crosses( *this, g1, g2); } bool Crosses::eval(const Cartesian_point *, const Cartesian_multipoint *) const { // If g2 is a 0d geometry, return NULL (SQL/MM 2015, Sect. 5.1.51). throw null_value_exception(); } bool Crosses::eval(const Cartesian_point *, const Cartesian_multilinestring *) const { // A point may never cross another geometry. return false; } bool Crosses::eval(const Cartesian_point *, const Cartesian_multipolygon *) const { // A point may never cross another geometry. return false; } ////////////////////////////////////////////////////////////////////////////// // crosses(Cartesian_linestring, *) bool Crosses::eval(const Cartesian_linestring *, const Cartesian_point *) const { // If g2 is a 0d geometry, return NULL (SQL/MM 2015, Sect. 5.1.51). throw null_value_exception(); } bool Crosses::eval(const Cartesian_linestring *g1, const Cartesian_linestring *g2) const { return bg::crosses(*g1, *g2); } bool Crosses::eval(const Cartesian_linestring *g1, const Cartesian_polygon *g2) const { return bg::crosses(*g1, *g2); } bool Crosses::eval(const Cartesian_linestring *g1, const Cartesian_geometrycollection *g2) const { return geometry_collection_apply_crosses( *this, g1, g2); } bool Crosses::eval(const Cartesian_linestring *, const Cartesian_multipoint *) const { // If g2 is a 0d geometry, return NULL (SQL/MM 2015, Sect. 5.1.51). throw null_value_exception(); } bool Crosses::eval(const Cartesian_linestring *g1, const Cartesian_multilinestring *g2) const { return bg::crosses(*g1, *g2); } bool Crosses::eval(const Cartesian_linestring *g1, const Cartesian_multipolygon *g2) const { return bg::crosses(*g1, *g2); } ////////////////////////////////////////////////////////////////////////////// // crosses(Cartesian_polygon, *) bool Crosses::eval(const Cartesian_polygon *, const Geometry *) const { // If g1 is a 2d geometry, return NULL (SQL/MM 2015, Sect. 5.1.51). throw null_value_exception(); } ////////////////////////////////////////////////////////////////////////////// // crosses(Cartesian_geometrycollection, *) bool Crosses::eval(const Cartesian_geometrycollection *g1, const Geometry *g2) const { return geometry_collection_apply_crosses( *this, g1, g2); } ////////////////////////////////////////////////////////////////////////////// // crosses(Cartesian_multipoint, *) bool Crosses::eval(const Cartesian_multipoint *, const Cartesian_point *) const { // If g2 is a 0d geometry, return NULL (SQL/MM 2015, Sect. 5.1.51). throw null_value_exception(); } bool Crosses::eval(const Cartesian_multipoint *g1, const Cartesian_linestring *g2) const { Within within(m_semi_major, m_semi_minor); Disjoint disjoint(m_semi_major, m_semi_minor); bool found_within = false; bool found_disjoint = false; // At least one point in g1 has to be within g2, and at least one point in // g1 // has to be disjoint from g2. for (auto &pt : *g1) { bool pt_disjoint = false; if (!found_disjoint) { pt_disjoint = disjoint(&pt, g2); found_disjoint = pt_disjoint; } if (!pt_disjoint && !found_within) { found_within = within(&pt, g2); } if (found_disjoint && found_within) break; } return found_disjoint && found_within; } bool Crosses::eval(const Cartesian_multipoint *g1, const Cartesian_polygon *g2) const { Within within(m_semi_major, m_semi_minor); Disjoint disjoint(m_semi_major, m_semi_minor); bool found_within = false; bool found_disjoint = false; // At least one point in g1 has to be within g2, and at least one point in // g1 // has to be disjoint from g2. for (auto &pt : *g1) { bool pt_disjoint = false; if (!found_disjoint) { pt_disjoint = disjoint(&pt, g2); found_disjoint = pt_disjoint; } if (!pt_disjoint && !found_within) { found_within = within(&pt, g2); } if (found_disjoint && found_within) break; } return found_disjoint && found_within; } bool Crosses::eval(const Cartesian_multipoint *g1, const Cartesian_geometrycollection *g2) const { return geometry_collection_apply_crosses( *this, g1, g2); } bool Crosses::eval(const Cartesian_multipoint *, const Cartesian_multipoint *) const { // If g2 is a 0d geometry, return NULL (SQL/MM 2015, Sect. 5.1.51). throw null_value_exception(); } bool Crosses::eval(const Cartesian_multipoint *g1, const Cartesian_multilinestring *g2) const { Within within(m_semi_major, m_semi_minor); Disjoint disjoint(m_semi_major, m_semi_minor); bool found_within = false; bool found_disjoint = false; // At least one point in g1 has to be within g2, and at least one point in // g1 // has to be disjoint from g2. for (auto &pt : *g1) { bool pt_disjoint = false; if (!found_disjoint) { pt_disjoint = disjoint(&pt, g2); found_disjoint = pt_disjoint; } if (!pt_disjoint && !found_within) { found_within = within(&pt, g2); } if (found_disjoint && found_within) break; } return found_disjoint && found_within; } bool Crosses::eval(const Cartesian_multipoint *g1, const Cartesian_multipolygon *g2) const { Within within(m_semi_major, m_semi_minor); Disjoint disjoint(m_semi_major, m_semi_minor); bool found_within = false; bool found_disjoint = false; // At least one point in g1 has to be within g2, and at least one point in // g1 // has to be disjoint from g2. for (auto &pt : *g1) { bool pt_disjoint = false; if (!found_disjoint) { pt_disjoint = disjoint(&pt, g2); found_disjoint = pt_disjoint; } if (!pt_disjoint && !found_within) { found_within = within(&pt, g2); } if (found_disjoint && found_within) break; } return found_disjoint && found_within; } ////////////////////////////////////////////////////////////////////////////// // crosses(Cartesian_multilinestring, *) bool Crosses::eval(const Cartesian_multilinestring *, const Cartesian_point *) const { // If g2 is a 0d geometry, return NULL (SQL/MM 2015, Sect. 5.1.51). throw null_value_exception(); } bool Crosses::eval(const Cartesian_multilinestring *g1, const Cartesian_linestring *g2) const { return bg::crosses(*g1, *g2); } bool Crosses::eval(const Cartesian_multilinestring *g1, const Cartesian_polygon *g2) const { return bg::crosses(*g1, *g2); } bool Crosses::eval(const Cartesian_multilinestring *g1, const Cartesian_geometrycollection *g2) const { return geometry_collection_apply_crosses( *this, g1, g2); } bool Crosses::eval(const Cartesian_multilinestring *, const Cartesian_multipoint *) const { // If g2 is a 0d geometry, return NULL (SQL/MM 2015, Sect. 5.1.51). throw null_value_exception(); } bool Crosses::eval(const Cartesian_multilinestring *g1, const Cartesian_multilinestring *g2) const { return bg::crosses(*g1, *g2); } bool Crosses::eval(const Cartesian_multilinestring *g1, const Cartesian_multipolygon *g2) const { return bg::crosses(*g1, *g2); } ////////////////////////////////////////////////////////////////////////////// // crosses(Cartesian_multipolygon, *) bool Crosses::eval(const Cartesian_multipolygon *, const Geometry *) const { // If g1 is a 2d geometry, return NULL (SQL/MM 2015, Sect. 5.1.51). throw null_value_exception(); } ////////////////////////////////////////////////////////////////////////////// // crosses(Geographic_point, *) bool Crosses::eval(const Geographic_point *, const Geographic_point *) const { // If g2 is a 0d geometry, return NULL (SQL/MM 2015, Sect. 5.1.51). throw null_value_exception(); } bool Crosses::eval(const Geographic_point *, const Geographic_linestring *) const { // A point may never cross another geometry. return false; } bool Crosses::eval(const Geographic_point *, const Geographic_polygon *) const { // A point may never cross another geometry. return false; } bool Crosses::eval(const Geographic_point *g1, const Geographic_geometrycollection *g2) const { // Must be evaluated in case g2 contains a single point. return geometry_collection_apply_crosses( *this, g1, g2); } bool Crosses::eval(const Geographic_point *, const Geographic_multipoint *) const { // If g2 is a 0d geometry, return NULL (SQL/MM 2015, Sect. 5.1.51). throw null_value_exception(); } bool Crosses::eval(const Geographic_point *, const Geographic_multilinestring *) const { // A point may never cross another geometry. return false; } bool Crosses::eval(const Geographic_point *, const Geographic_multipolygon *) const { // A point may never cross another geometry. return false; } ////////////////////////////////////////////////////////////////////////////// // crosses(Geographic_linestring, *) bool Crosses::eval(const Geographic_linestring *, const Geographic_point *) const { // If g2 is a 0d geometry, return NULL (SQL/MM 2015, Sect. 5.1.51). throw null_value_exception(); } bool Crosses::eval(const Geographic_linestring *g1, const Geographic_linestring *g2) const { return bg::crosses(*g1, *g2, m_geographic_ll_la_aa_strategy); } bool Crosses::eval(const Geographic_linestring *g1, const Geographic_polygon *g2) const { return bg::crosses(*g1, *g2, m_geographic_ll_la_aa_strategy); } bool Crosses::eval(const Geographic_linestring *g1, const Geographic_geometrycollection *g2) const { return geometry_collection_apply_crosses( *this, g1, g2); } bool Crosses::eval(const Geographic_linestring *, const Geographic_multipoint *) const { // If g2 is a 0d geometry, return NULL (SQL/MM 2015, Sect. 5.1.51). throw null_value_exception(); } bool Crosses::eval(const Geographic_linestring *g1, const Geographic_multilinestring *g2) const { return bg::crosses(*g1, *g2, m_geographic_ll_la_aa_strategy); } bool Crosses::eval(const Geographic_linestring *g1, const Geographic_multipolygon *g2) const { return bg::crosses(*g1, *g2, m_geographic_ll_la_aa_strategy); } ////////////////////////////////////////////////////////////////////////////// // crosses(Geographic_polygon, *) bool Crosses::eval(const Geographic_polygon *, const Geometry *) const { // If g1 is a 2d geometry, return NULL (SQL/MM 2015, Sect. 5.1.51). throw null_value_exception(); } ////////////////////////////////////////////////////////////////////////////// // crosses(Geographic_geometrycollection, *) bool Crosses::eval(const Geographic_geometrycollection *g1, const Geometry *g2) const { return geometry_collection_apply_crosses( *this, g1, g2); } ////////////////////////////////////////////////////////////////////////////// // crosses(Geographic_multipoint, *) bool Crosses::eval(const Geographic_multipoint *, const Geographic_point *) const { // If g2 is a 0d geometry, return NULL (SQL/MM 2015, Sect. 5.1.51). throw null_value_exception(); } bool Crosses::eval(const Geographic_multipoint *g1, const Geographic_linestring *g2) const { Within within(m_semi_major, m_semi_minor); Disjoint disjoint(m_semi_major, m_semi_minor); bool found_within = false; bool found_disjoint = false; // At least one point in g1 has to be within g2, and at least one point in // g1 // has to be disjoint from g2. for (auto &pt : *g1) { bool pt_disjoint = false; if (!found_disjoint) { pt_disjoint = disjoint(&pt, g2); found_disjoint = pt_disjoint; } if (!pt_disjoint && !found_within) { found_within = within(&pt, g2); } if (found_disjoint && found_within) break; } return found_disjoint && found_within; } bool Crosses::eval(const Geographic_multipoint *g1, const Geographic_polygon *g2) const { Within within(m_semi_major, m_semi_minor); Disjoint disjoint(m_semi_major, m_semi_minor); bool found_within = false; bool found_disjoint = false; // At least one point in g1 has to be within g2, and at least one point in // g1 // has to be disjoint from g2. for (auto &pt : *g1) { bool pt_disjoint = false; if (!found_disjoint) { pt_disjoint = disjoint(&pt, g2); found_disjoint = pt_disjoint; } if (!pt_disjoint && !found_within) { found_within = within(&pt, g2); } if (found_disjoint && found_within) break; } return found_disjoint && found_within; } bool Crosses::eval(const Geographic_multipoint *g1, const Geographic_geometrycollection *g2) const { return geometry_collection_apply_crosses( *this, g1, g2); } bool Crosses::eval(const Geographic_multipoint *, const Geographic_multipoint *) const { // If g2 is a 0d geometry, return NULL (SQL/MM 2015, Sect. 5.1.51). throw null_value_exception(); } bool Crosses::eval(const Geographic_multipoint *g1, const Geographic_multilinestring *g2) const { Within within(m_semi_major, m_semi_minor); Disjoint disjoint(m_semi_major, m_semi_minor); bool found_within = false; bool found_disjoint = false; // At least one point in g1 has to be within g2, and at least one point in // g1 // has to be disjoint from g2. for (auto &pt : *g1) { bool pt_disjoint = false; if (!found_disjoint) { pt_disjoint = disjoint(&pt, g2); found_disjoint = pt_disjoint; } if (!pt_disjoint && !found_within) { found_within = within(&pt, g2); } if (found_disjoint && found_within) break; } return found_disjoint && found_within; } bool Crosses::eval(const Geographic_multipoint *g1, const Geographic_multipolygon *g2) const { Within within(m_semi_major, m_semi_minor); Disjoint disjoint(m_semi_major, m_semi_minor); bool found_within = false; bool found_disjoint = false; // At least one point in g1 has to be within g2, and at least one point in // g1 // has to be disjoint from g2. for (auto &pt : *g1) { bool pt_disjoint = false; if (!found_disjoint) { pt_disjoint = disjoint(&pt, g2); found_disjoint = pt_disjoint; } if (!pt_disjoint && !found_within) { found_within = within(&pt, g2); } if (found_disjoint && found_within) break; } return found_disjoint && found_within; } ////////////////////////////////////////////////////////////////////////////// // crosses(Geographic_multilinestring, *) bool Crosses::eval(const Geographic_multilinestring *, const Geographic_point *) const { // If g2 is a 0d geometry, return NULL (SQL/MM 2015, Sect. 5.1.51). throw null_value_exception(); } bool Crosses::eval(const Geographic_multilinestring *g1, const Geographic_linestring *g2) const { return bg::crosses(*g1, *g2, m_geographic_ll_la_aa_strategy); } bool Crosses::eval(const Geographic_multilinestring *g1, const Geographic_polygon *g2) const { return bg::crosses(*g1, *g2, m_geographic_ll_la_aa_strategy); } bool Crosses::eval(const Geographic_multilinestring *g1, const Geographic_geometrycollection *g2) const { return geometry_collection_apply_crosses( *this, g1, g2); } bool Crosses::eval(const Geographic_multilinestring *, const Geographic_multipoint *) const { // If g2 is a 0d geometry, return NULL (SQL/MM 2015, Sect. 5.1.51). throw null_value_exception(); } bool Crosses::eval(const Geographic_multilinestring *g1, const Geographic_multilinestring *g2) const { return bg::crosses(*g1, *g2, m_geographic_ll_la_aa_strategy); } bool Crosses::eval(const Geographic_multilinestring *g1, const Geographic_multipolygon *g2) const { return bg::crosses(*g1, *g2, m_geographic_ll_la_aa_strategy); } ////////////////////////////////////////////////////////////////////////////// // crosses(Geographic_multipolygon, *) bool Crosses::eval(const Geographic_multipolygon *, const Geometry *) const { // If g1 is a 2d geometry, return NULL (SQL/MM 2015, Sect. 5.1.51). throw null_value_exception(); } ////////////////////////////////////////////////////////////////////////////// bool crosses(const dd::Spatial_reference_system *srs, const Geometry *g1, const Geometry *g2, const char *func_name, bool *crosses, bool *null) noexcept { try { assert(g1->coordinate_system() == g2->coordinate_system()); assert(srs == nullptr || ((srs->is_cartesian() && g1->coordinate_system() == Coordinate_system::kCartesian) || (srs->is_geographic() && g1->coordinate_system() == Coordinate_system::kGeographic))); if ((*null = (g1->is_empty() || g2->is_empty()))) return false; Crosses crosses_func(srs ? srs->semi_major_axis() : 0.0, srs ? srs->semi_minor_axis() : 0.0); *crosses = crosses_func(g1, g2); } catch (const null_value_exception &) { *null = true; return false; } catch (...) { handle_gis_exception(func_name); return true; } return false; } } // namespace gis