// Copyright (c) 2018, 2024, Oracle and/or its affiliates. // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License, version 2.0, // as published by the Free Software Foundation. // // This program is designed to work with certain software (including // but not limited to OpenSSL) that is licensed under separate terms, // as designated in a particular file or component or in included license // documentation. The authors of MySQL hereby grant you an additional // permission to link the program and your derivative works with the // separately licensed software that they have either included with // the program or referenced in the documentation. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License, version 2.0, for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. /// @file /// /// This file implements the simplify functor and function. #include "sql/gis/simplify.h" #include "sql/gis/simplify_functor.h" #include #include // std::unique_ptr #include // assert #include "my_inttypes.h" // MYF #include "my_sys.h" // my_error #include "mysqld_error.h" // Error codes #include "sql/dd/types/spatial_reference_system.h" // dd::Spatial_reference_system #include "sql/gis/geometries.h" #include "sql/gis/geometries_traits.h" #include "sql/sql_exception_handler.h" // handle_gis_exception namespace bg = boost::geometry; namespace gis { std::unique_ptr Simplify::operator()(const Geometry &g) const { return apply(*this, g); } std::unique_ptr Simplify::eval(const Geometry &g) const { // All parameter type combinations have been implemented. assert(false); throw not_implemented_exception::for_non_projected(g); } std::unique_ptr Simplify::eval(const Cartesian_point &g) const { Cartesian_point *pt_result = new Cartesian_point(); std::unique_ptr result(pt_result); bg::simplify(g, *pt_result, m_max_distance); return result; } std::unique_ptr Simplify::eval(const Cartesian_linestring &g) const { Cartesian_linestring *ls_result = new Cartesian_linestring(); std::unique_ptr result(ls_result); bg::simplify(g, *ls_result, m_max_distance); if (ls_result->size() < 2) ls_result->clear(); return result; } std::unique_ptr Simplify::eval(const Cartesian_polygon &g) const { Cartesian_polygon *py_result = new Cartesian_polygon(); std::unique_ptr result(py_result); bg::simplify(g, *py_result, m_max_distance); if (py_result->exterior_ring().size() < 4) result.reset(new Cartesian_polygon()); return result; } std::unique_ptr Simplify::eval( const Cartesian_geometrycollection &g) const { Cartesian_geometrycollection *gc_result = new Cartesian_geometrycollection(); std::unique_ptr result(gc_result); for (Geometry *geom : g) { std::unique_ptr simplified_geom = (*this)(*geom); if (!simplified_geom->is_empty()) gc_result->push_back(*simplified_geom); } return result; } std::unique_ptr Simplify::eval(const Cartesian_multipoint &g) const { Cartesian_multipoint *mpt_result = new Cartesian_multipoint(); std::unique_ptr result(mpt_result); bg::simplify(g, *mpt_result, m_max_distance); return result; } std::unique_ptr Simplify::eval( const Cartesian_multilinestring &g) const { std::unique_ptr unfiltered_result( new Cartesian_multilinestring()); bg::simplify(g, *unfiltered_result, m_max_distance); // bg::simplify may create geometries with too few points. Filter out those. Cartesian_multilinestring *mls_result = new Cartesian_multilinestring(); std::unique_ptr result(mls_result); for (Cartesian_linestring &ls : *unfiltered_result) { if (ls.size() >= 2) mls_result->push_back(ls); } return result; } std::unique_ptr Simplify::eval( const Cartesian_multipolygon &g) const { std::unique_ptr unfiltered_result( new Cartesian_multipolygon()); bg::simplify(g, *unfiltered_result, m_max_distance); // bg::simplify may create geometries with too few points. Filter out those. Cartesian_multipolygon *mpy_result = new Cartesian_multipolygon(); std::unique_ptr result(mpy_result); for (Cartesian_polygon &py : *unfiltered_result) { if (py.exterior_ring().size() >= 4) mpy_result->push_back(py); } return result; } bool simplify(const dd::Spatial_reference_system *srs, const Geometry &g, double max_distance, const char *func_name, std::unique_ptr *result) noexcept { try { assert(srs == nullptr || ((srs->is_cartesian() && g.coordinate_system() == Coordinate_system::kCartesian) || (srs->is_geographic() && g.coordinate_system() == Coordinate_system::kGeographic))); if (srs != nullptr && !srs->is_cartesian()) { assert(srs->is_geographic()); std::stringstream types; types << type_to_name(g.type()) << ", ..."; my_error(ER_NOT_IMPLEMENTED_FOR_GEOGRAPHIC_SRS, MYF(0), func_name, types.str().c_str()); return true; } Simplify simplify_func(max_distance); *result = simplify_func(g); if ((*result)->is_empty()) result->reset(); } catch (...) { handle_gis_exception(func_name); return true; } return false; } } // namespace gis