#ifndef HANDLER_INCLUDED #define HANDLER_INCLUDED /* Copyright (c) 2000, 2024, Oracle and/or its affiliates. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License, version 2.0, as published by the Free Software Foundation. This program is designed to work with certain software (including but not limited to OpenSSL) that is licensed under separate terms, as designated in a particular file or component or in included license documentation. The authors of MySQL hereby grant you an additional permission to link the program and your derivative works with the separately licensed software that they have either included with the program or referenced in the documentation. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License, version 2.0, for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ /* Definitions for parameters to do with handler-routines */ #include #include #include #include #include #include #include #include #include #include #include #include // std::mt19937 #include #include #include #include #include #include "ft_global.h" // ft_hints #include "lex_string.h" #include "map_helpers.h" #include "my_alloc.h" #include "my_base.h" #include "my_bitmap.h" #include "my_checksum.h" // ha_checksum #include "my_compiler.h" #include "my_dbug.h" #include "my_double2ulonglong.h" #include "my_inttypes.h" #include "my_io.h" #include "my_sys.h" #include "my_table_map.h" #include "my_thread_local.h" // my_errno #include "mysql/components/services/bits/psi_table_bits.h" #include "mysql/strings/m_ctype.h" #include "sql/dd/object_id.h" // dd::Object_id #include "sql/dd/string_type.h" #include "sql/dd/types/object_table.h" // dd::Object_table #include "sql/discrete_interval.h" // Discrete_interval #include "sql/key.h" #include "sql/sql_const.h" // SHOW_COMP_OPTION #include "sql/sql_list.h" // SQL_I_List #include "sql/sql_plugin_ref.h" // plugin_ref #include "string_with_len.h" // STRING_WITH_LEN #include "thr_lock.h" // thr_lock_type #include "typelib.h" class Alter_info; class Create_field; class Field; class Item; class JOIN; class Json_dom; class Partition_handler; class Plugin_table; class Plugin_tablespace; class Record_buffer; class SE_cost_constants; // see opt_costconstants.h class String; class THD; class handler; class partition_info; struct System_status_var; namespace dd { class Properties; } // namespace dd struct AccessPath; struct JoinHypergraph; struct KEY_CACHE; struct LEX; struct MY_BITMAP; struct SAVEPOINT; struct TABLE; class Table_ref; struct TABLE_SHARE; struct Tablespace_options; struct handlerton; typedef struct xid_t XID; typedef struct st_xarecover_txn XA_recover_txn; struct MDL_key; namespace dd { enum class enum_column_types; class Table; class Tablespace; } // namespace dd constexpr const ha_rows EXTRA_RECORDS{10}; /** Id for identifying Table SDIs */ constexpr const uint32 SDI_TYPE_TABLE = 1; /** Id for identifying Tablespace SDIs */ constexpr const uint32 SDI_TYPE_TABLESPACE = 2; /** Key to identify a dictionary object */ struct sdi_key_t { /** Type of Object, For ex: column, index, etc */ uint32 type; /** Object id which should be unique in tablespsace */ uint64 id; }; using sdi_container = std::vector; struct sdi_vector_t { sdi_container m_vec; }; typedef bool (*qc_engine_callback)(THD *thd, const char *table_key, uint key_length, ulonglong *engine_data); typedef bool(stat_print_fn)(THD *thd, const char *type, size_t type_len, const char *file, size_t file_len, const char *status, size_t status_len); class ha_statistics; class ha_tablespace_statistics; class Unique_on_insert; extern ulong savepoint_alloc_size; /// Maps from slot to plugin. May return NULL if plugin has been unloaded. st_plugin_int *hton2plugin(uint slot); /// Returns the size of the array holding pointers to plugins. size_t num_hton2plugins(); /** For unit testing. Insert plugin into arbitrary slot in array. Remove plugin from arbitrary slot in array. */ st_plugin_int *insert_hton2plugin(uint slot, st_plugin_int *plugin); st_plugin_int *remove_hton2plugin(uint slot); extern const char *ha_row_type[]; extern const char *tx_isolation_names[]; extern const char *binlog_format_names[]; extern TYPELIB tx_isolation_typelib; extern ulong total_ha_2pc; // the following is for checking tables #define HA_ADMIN_ALREADY_DONE 1 #define HA_ADMIN_OK 0 #define HA_ADMIN_NOT_IMPLEMENTED -1 #define HA_ADMIN_FAILED -2 #define HA_ADMIN_CORRUPT -3 #define HA_ADMIN_INTERNAL_ERROR -4 #define HA_ADMIN_INVALID -5 #define HA_ADMIN_REJECT -6 #define HA_ADMIN_TRY_ALTER -7 #define HA_ADMIN_WRONG_CHECKSUM -8 #define HA_ADMIN_NOT_BASE_TABLE -9 #define HA_ADMIN_NEEDS_UPGRADE -10 #define HA_ADMIN_NEEDS_ALTER -11 #define HA_ADMIN_NEEDS_CHECK -12 #define HA_ADMIN_STATS_UPD_ERR -13 /** User needs to dump and re-create table to fix pre 5.0 decimal types */ #define HA_ADMIN_NEEDS_DUMP_UPGRADE -14 /** Return values for check_if_supported_inplace_alter(). @see check_if_supported_inplace_alter() for description of the individual values. */ enum enum_alter_inplace_result { HA_ALTER_ERROR, HA_ALTER_INPLACE_NOT_SUPPORTED, HA_ALTER_INPLACE_EXCLUSIVE_LOCK, HA_ALTER_INPLACE_SHARED_LOCK_AFTER_PREPARE, HA_ALTER_INPLACE_SHARED_LOCK, HA_ALTER_INPLACE_NO_LOCK_AFTER_PREPARE, HA_ALTER_INPLACE_NO_LOCK, HA_ALTER_INPLACE_INSTANT }; /** * Used to identify which engine executed a SELECT query. */ enum class SelectExecutedIn : bool { kPrimaryEngine, kSecondaryEngine }; /* Bits in table_flags() to show what database can do */ #define HA_NO_TRANSACTIONS (1 << 0) /* Doesn't support transactions */ #define HA_PARTIAL_COLUMN_READ (1 << 1) /* read may not return all columns */ /* Used to avoid scanning full tables on an index. If this flag is set then the handler always has a primary key (hidden if not defined) and this index is used for scanning rather than a full table scan in all situations. No separate data/index file. */ #define HA_TABLE_SCAN_ON_INDEX (1 << 2) /// Not in use. #define HA_UNUSED3 (1 << 3) /* Can the storage engine handle spatial data. Used to check that no spatial attributes are declared unless the storage engine is capable of handling it. */ #define HA_CAN_GEOMETRY (1 << 4) /* Reading keys in random order is as fast as reading keys in sort order (Used by filesort to decide if we should sort key + data or key + pointer-to-row.) */ #define HA_FAST_KEY_READ (1 << 5) /* Set the following flag if we on delete should force all key to be read and on update read all keys that changes */ #define HA_REQUIRES_KEY_COLUMNS_FOR_DELETE (1 << 6) /* Is NULL values allowed in indexes. If this is not allowed then it is not possible to use an index on a NULLable field. */ #define HA_NULL_IN_KEY (1 << 7) /* Tells that we can the position for the conflicting duplicate key record is stored in table->file->dupp_ref. (insert uses rnd_pos() on this to find the duplicated row) */ #define HA_DUPLICATE_POS (1 << 8) #define HA_NO_BLOBS (1 << 9) /* Doesn't support blobs */ /* Is the storage engine capable of defining an index of a prefix on a BLOB attribute. */ #define HA_CAN_INDEX_BLOBS (1 << 10) /* Auto increment fields can be part of a multi-part key. For second part auto-increment keys, the auto_incrementing is done in handler.cc */ #define HA_AUTO_PART_KEY (1 << 11) /* Can't define a table without primary key (and cannot handle a table with hidden primary key) */ #define HA_REQUIRE_PRIMARY_KEY (1 << 12) /* Does the counter of records after the info call specify an exact value or not. If it does this flag is set. */ #define HA_STATS_RECORDS_IS_EXACT (1 << 13) /// Not in use. #define HA_UNUSED14 (1 << 14) /* This parameter is set when the handler will also return the primary key when doing read-only-key on another index, i.e., if we get the primary key columns for free when we do an index read (usually, it also implies that HA_PRIMARY_KEY_REQUIRED_FOR_POSITION flag is set). */ #define HA_PRIMARY_KEY_IN_READ_INDEX (1 << 15) /* If HA_PRIMARY_KEY_REQUIRED_FOR_POSITION is set, it means that to position() uses a primary key given by the record argument. Without primary key, we can't call position(). If not set, the position is returned as the current rows position regardless of what argument is given. */ #define HA_PRIMARY_KEY_REQUIRED_FOR_POSITION (1 << 16) #define HA_CAN_RTREEKEYS (1 << 17) /// Not in use. #define HA_UNUSED18 /* The following is we need to a primary key to delete (and update) a row. If there is no primary key, all columns needs to be read on update and delete */ #define HA_PRIMARY_KEY_REQUIRED_FOR_DELETE (1 << 19) /* Indexes on prefixes of character fields are not allowed. */ #define HA_NO_PREFIX_CHAR_KEYS (1 << 20) /* Does the storage engine support fulltext indexes. */ #define HA_CAN_FULLTEXT (1 << 21) /* Can the HANDLER interface in the MySQL API be used towards this storage engine. */ #define HA_CAN_SQL_HANDLER (1 << 22) /* Set if the storage engine does not support auto increment fields. */ #define HA_NO_AUTO_INCREMENT (1 << 23) /* Supports CHECKSUM option in CREATE TABLE (MyISAM feature). */ #define HA_HAS_CHECKSUM (1 << 24) /* Table data are stored in separate files (for lower_case_table_names). Should file names always be in lower case (used by engines that map table names to file names. */ #define HA_FILE_BASED (1 << 26) #define HA_NO_VARCHAR (1 << 27) /* Is the storage engine capable of handling bit fields. */ #define HA_CAN_BIT_FIELD (1 << 28) #define HA_ANY_INDEX_MAY_BE_UNIQUE (1 << 30) #define HA_NO_COPY_ON_ALTER (1LL << 31) #define HA_COUNT_ROWS_INSTANT (1LL << 32) /* records() gives exact count*/ /* Has it's own method of binlog logging */ #define HA_HAS_OWN_BINLOGGING (1LL << 33) /* Engine is capable of row-format and statement-format logging, respectively */ #define HA_BINLOG_ROW_CAPABLE (1LL << 34) #define HA_BINLOG_STMT_CAPABLE (1LL << 35) /* When a multiple key conflict happens in a REPLACE command mysql expects the conflicts to be reported in the ascending order of key names. For e.g. CREATE TABLE t1 (a INT, UNIQUE (a), b INT NOT NULL, UNIQUE (b), c INT NOT NULL, INDEX(c)); REPLACE INTO t1 VALUES (1,1,1),(2,2,2),(2,1,3); MySQL expects the conflict with 'a' to be reported before the conflict with 'b'. If the underlying storage engine does not report the conflicting keys in ascending order, it causes unexpected errors when the REPLACE command is executed. This flag helps the underlying SE to inform the server that the keys are not ordered. */ #define HA_DUPLICATE_KEY_NOT_IN_ORDER (1LL << 36) /* Engine supports REPAIR TABLE. Used by CHECK TABLE FOR UPGRADE if an incompatible table is detected. If this flag is set, CHECK TABLE FOR UPGRADE will report ER_TABLE_NEEDS_UPGRADE, otherwise ER_TABLE_NEED_REBUILD. */ #define HA_CAN_REPAIR (1LL << 37) /* Set of all binlog flags. Currently only contain the capabilities flags. */ #define HA_BINLOG_FLAGS (HA_BINLOG_ROW_CAPABLE | HA_BINLOG_STMT_CAPABLE) /** The handler supports read before write removal optimization Read before write removal may be used for storage engines which support write without previous read of the row to be updated. Handler returning this flag must implement start_read_removal() and end_read_removal(). The handler may return "fake" rows constructed from the key of the row asked for. This is used to optimize UPDATE and DELETE by reducing the number of round-trips between handler and storage engine. Example: UPDATE a=1 WHERE pk IN (@) @verbatim mysql_update() { if () start_read_removal() -> handler returns true if read removal supported for this table/query while(read_record("pk=")) -> handler returns fake row with column "pk" set to ha_update_row() -> handler sends write "a=1" for row with "pk=" end_read_removal() -> handler returns the number of rows actually written } @endverbatim @note This optimization in combination with batching may be used to remove even more round-trips. */ #define HA_READ_BEFORE_WRITE_REMOVAL (1LL << 38) /* Engine supports extended fulltext API */ #define HA_CAN_FULLTEXT_EXT (1LL << 39) /* Storage engine doesn't synchronize result set with expected table contents. Used by replication slave to check if it is possible to retrieve rows from the table when deciding whether to do a full table scan, index scan or hash scan while applying a row event. */ #define HA_READ_OUT_OF_SYNC (1LL << 40) /* Storage engine supports table export using the FLUSH TABLE FOR EXPORT statement. */ #define HA_CAN_EXPORT (1LL << 41) /* The handler don't want accesses to this table to be const-table optimized */ #define HA_BLOCK_CONST_TABLE (1LL << 42) /* Handler supports FULLTEXT hints */ #define HA_CAN_FULLTEXT_HINTS (1LL << 43) /** Storage engine doesn't support LOCK TABLE ... READ LOCAL locks but doesn't want to use handler::store_lock() API for upgrading them to LOCK TABLE ... READ locks, for example, because it doesn't use THR_LOCK locks at all. */ #define HA_NO_READ_LOCAL_LOCK (1LL << 44) /** A storage engine is compatible with the attachable transaction requirements means that - either SE detects the fact that THD::ha_data was reset and starts a new attachable transaction, closes attachable transaction on close_connection and resumes regular (outer) transaction when THD::ha_data is restored; - or SE completely ignores THD::ha_data and close_connection like MyISAM does. */ #define HA_ATTACHABLE_TRX_COMPATIBLE (1LL << 45) /** Handler supports Generated Columns */ #define HA_GENERATED_COLUMNS (1LL << 46) /** Supports index on virtual generated column */ #define HA_CAN_INDEX_VIRTUAL_GENERATED_COLUMN (1LL << 47) /** Supports descending indexes */ #define HA_DESCENDING_INDEX (1LL << 48) /** Supports partial update of BLOB columns. */ #define HA_BLOB_PARTIAL_UPDATE (1LL << 49) /** If this isn't defined, only columns/indexes with Cartesian coordinate systems (projected SRS or SRID 0) is supported. Columns/indexes without SRID restriction is also supported if this isn't defined. */ #define HA_SUPPORTS_GEOGRAPHIC_GEOMETRY_COLUMN (1LL << 50) /** Handler supports expressions as DEFAULT for a column. */ #define HA_SUPPORTS_DEFAULT_EXPRESSION (1LL << 51) /** Handlers with this flag set do not support UPDATE operations. */ #define HA_UPDATE_NOT_SUPPORTED (1LL << 52) /** Handlers with this flag set do not support DELETE operations. */ #define HA_DELETE_NOT_SUPPORTED (1LL << 53) /** The storage engine does not support using indexes for access. Indexes can only be used for estimating cost. */ #define HA_NO_INDEX_ACCESS (1LL << 54) /** Supports multi-valued index */ #define HA_MULTI_VALUED_KEY_SUPPORT (1LL << 55) /* Bits in index_flags(index_number) for what you can do with index. If you do not implement indexes, just return zero here. */ /* Does the index support read next, this is assumed in the server code and never checked so all indexes must support this. Note that the handler can be used even if it doesn't have any index. */ #define HA_READ_NEXT 1 /* TODO really use this flag */ /* Can the index be used to scan backwards (supports ::index_prev). */ #define HA_READ_PREV 2 /* Can the index deliver its record in index order. Typically true for all ordered indexes and not true for hash indexes. Used to set keymap part_of_sortkey. This keymap is only used to find indexes usable for resolving an ORDER BY in the query. Thus in most cases index_read will work just fine without order in result production. When this flag is set it is however safe to order all output started by index_read since most engines do this. With read_multi_range calls there is a specific flag setting order or not order so in those cases ordering of index output can be avoided. */ #define HA_READ_ORDER 4 /* Specify whether index can handle ranges, typically true for all ordered indexes and not true for hash indexes. Used by optimiser to check if ranges (as key >= 5) can be optimised by index. */ #define HA_READ_RANGE 8 /* Can't use part key searches. This is typically true for hash indexes and typically not true for ordered indexes. */ #define HA_ONLY_WHOLE_INDEX 16 /* Index does not store NULL values, even if the column is nullable. (KEY::flags may still contain HA_NULL_PART_KEY) If the key has a NULL-value, the handler need to do a full table scan instead of using this key. This is typically true for NDB hash indexes. */ #define HA_TABLE_SCAN_ON_NULL 32 /* Does the storage engine support index-only scans on this index. Enables use of HA_EXTRA_KEYREAD and HA_EXTRA_NO_KEYREAD Used to set Key_map keys_for_keyread and to check in optimiser for index-only scans. When doing a read under HA_EXTRA_KEYREAD the handler only have to fill in the columns the key covers. If HA_PRIMARY_KEY_IN_READ_INDEX is set then also the PRIMARY KEY columns must be updated in the row. */ #define HA_KEYREAD_ONLY 64 /* Index scan will not return records in rowid order. Not guaranteed to be set for unordered (e.g. HASH) indexes. */ #define HA_KEY_SCAN_NOT_ROR 128 #define HA_DO_INDEX_COND_PUSHDOWN 256 /* Supports Index Condition Pushdown */ /* operations for disable/enable indexes */ #define HA_KEY_SWITCH_NONUNIQ 0 #define HA_KEY_SWITCH_ALL 1 #define HA_KEY_SWITCH_NONUNIQ_SAVE 2 #define HA_KEY_SWITCH_ALL_SAVE 3 /* Use this instead of 0 as the initial value for the slot number of handlerton, so that we can distinguish uninitialized slot number from slot 0. */ #define HA_SLOT_UNDEF ((uint)-1) /* Parameters for open() (in register form->filestat) HA_GET_INFO does an implicit HA_ABORT_IF_LOCKED */ #define HA_OPEN_KEYFILE 1 #define HA_OPEN_RNDFILE 2 #define HA_GET_INDEX 4 #define HA_GET_INFO 8 /* do a handler::info() after open */ #define HA_READ_ONLY 16 /* File opened as readonly */ /* Try readonly if can't open with read and write */ #define HA_TRY_READ_ONLY 32 #define HA_WAIT_IF_LOCKED 64 /* Wait if locked on open */ #define HA_ABORT_IF_LOCKED 128 /* skip if locked on open.*/ #define HA_BLOCK_LOCK 256 /* unlock when reading some records */ #define HA_OPEN_TEMPORARY 512 /* Some key definitions */ #define HA_KEY_NULL_LENGTH 1 #define HA_KEY_BLOB_LENGTH 2 #define HA_LEX_CREATE_TMP_TABLE 1 #define HA_LEX_CREATE_IF_NOT_EXISTS 2 #define HA_LEX_CREATE_TABLE_LIKE 4 #define HA_LEX_CREATE_INTERNAL_TMP_TABLE 8 #define HA_MAX_REC_LENGTH 65535U /** Options for the START TRANSACTION statement. Note that READ ONLY and READ WRITE are logically mutually exclusive. This is enforced by the parser and depended upon by trans_begin(). We need two flags instead of one in order to differentiate between situation when no READ WRITE/ONLY clause were given and thus transaction is implicitly READ WRITE and the case when READ WRITE clause was used explicitly. */ // WITH CONSISTENT SNAPSHOT option static const uint MYSQL_START_TRANS_OPT_WITH_CONS_SNAPSHOT = 1; // READ ONLY option static const uint MYSQL_START_TRANS_OPT_READ_ONLY = 2; // READ WRITE option static const uint MYSQL_START_TRANS_OPT_READ_WRITE = 4; // HIGH PRIORITY option static const uint MYSQL_START_TRANS_OPT_HIGH_PRIORITY = 8; enum legacy_db_type { DB_TYPE_UNKNOWN = 0, DB_TYPE_DIAB_ISAM = 1, DB_TYPE_HASH, DB_TYPE_MISAM, DB_TYPE_PISAM, DB_TYPE_RMS_ISAM, DB_TYPE_HEAP, DB_TYPE_ISAM, DB_TYPE_MRG_ISAM, DB_TYPE_MYISAM, DB_TYPE_MRG_MYISAM, DB_TYPE_BERKELEY_DB, DB_TYPE_INNODB, DB_TYPE_GEMINI, DB_TYPE_NDBCLUSTER, DB_TYPE_EXAMPLE_DB, DB_TYPE_ARCHIVE_DB, DB_TYPE_CSV_DB, DB_TYPE_FEDERATED_DB, DB_TYPE_BLACKHOLE_DB, DB_TYPE_PARTITION_DB, // No longer used. DB_TYPE_BINLOG, DB_TYPE_SOLID, DB_TYPE_PBXT, DB_TYPE_TABLE_FUNCTION, DB_TYPE_MEMCACHE [[deprecated]], DB_TYPE_FALCON, DB_TYPE_MARIA, /** Performance schema engine. */ DB_TYPE_PERFORMANCE_SCHEMA, DB_TYPE_TEMPTABLE, DB_TYPE_FIRST_DYNAMIC = 42, DB_TYPE_DEFAULT = 127 // Must be last }; enum row_type : int { ROW_TYPE_NOT_USED = -1, ROW_TYPE_DEFAULT, ROW_TYPE_FIXED, ROW_TYPE_DYNAMIC, ROW_TYPE_COMPRESSED, ROW_TYPE_REDUNDANT, ROW_TYPE_COMPACT, /** Unused. Reserved for future versions. */ ROW_TYPE_PAGED }; enum enum_binlog_func { BFN_RESET_LOGS = 1, BFN_RESET_SLAVE = 2, BFN_BINLOG_WAIT = 3, BFN_BINLOG_END = 4, BFN_BINLOG_PURGE_FILE = 5 }; enum enum_binlog_command { LOGCOM_CREATE_TABLE, LOGCOM_ALTER_TABLE, LOGCOM_RENAME_TABLE, LOGCOM_DROP_TABLE, LOGCOM_CREATE_DB, LOGCOM_ALTER_DB, LOGCOM_DROP_DB, }; enum class enum_sampling_method { SYSTEM, NONE }; /* Bits in used_fields */ #define HA_CREATE_USED_AUTO (1L << 0) #define HA_CREATE_USED_RAID (1L << 1) // RAID is no longer available #define HA_CREATE_USED_UNION (1L << 2) #define HA_CREATE_USED_INSERT_METHOD (1L << 3) #define HA_CREATE_USED_MIN_ROWS (1L << 4) #define HA_CREATE_USED_MAX_ROWS (1L << 5) #define HA_CREATE_USED_AVG_ROW_LENGTH (1L << 6) #define HA_CREATE_USED_PACK_KEYS (1L << 7) #define HA_CREATE_USED_CHARSET (1L << 8) #define HA_CREATE_USED_DEFAULT_CHARSET (1L << 9) #define HA_CREATE_USED_DATADIR (1L << 10) #define HA_CREATE_USED_INDEXDIR (1L << 11) #define HA_CREATE_USED_ENGINE (1L << 12) #define HA_CREATE_USED_CHECKSUM (1L << 13) #define HA_CREATE_USED_DELAY_KEY_WRITE (1L << 14) #define HA_CREATE_USED_ROW_FORMAT (1L << 15) #define HA_CREATE_USED_COMMENT (1L << 16) #define HA_CREATE_USED_PASSWORD (1L << 17) #define HA_CREATE_USED_CONNECTION (1L << 18) #define HA_CREATE_USED_KEY_BLOCK_SIZE (1L << 19) /** Unused. Reserved for future versions. */ #define HA_CREATE_USED_TRANSACTIONAL (1L << 20) /** Unused. Reserved for future versions. */ #define HA_CREATE_USED_PAGE_CHECKSUM (1L << 21) /** This is set whenever STATS_PERSISTENT=0|1|default has been specified in CREATE/ALTER TABLE. See also HA_OPTION_STATS_PERSISTENT in include/my_base.h. It is possible to distinguish whether STATS_PERSISTENT=default has been specified or no STATS_PERSISTENT= is given at all. */ #define HA_CREATE_USED_STATS_PERSISTENT (1L << 22) /** This is set whenever STATS_AUTO_RECALC=0|1|default has been specified in CREATE/ALTER TABLE. See enum_stats_auto_recalc. It is possible to distinguish whether STATS_AUTO_RECALC=default has been specified or no STATS_AUTO_RECALC= is given at all. */ #define HA_CREATE_USED_STATS_AUTO_RECALC (1L << 23) /** This is set whenever STATS_SAMPLE_PAGES=N|default has been specified in CREATE/ALTER TABLE. It is possible to distinguish whether STATS_SAMPLE_PAGES=default has been specified or no STATS_SAMPLE_PAGES= is given at all. */ #define HA_CREATE_USED_STATS_SAMPLE_PAGES (1L << 24) /** This is set whenever a 'TABLESPACE=...' phrase is used on CREATE TABLE */ #define HA_CREATE_USED_TABLESPACE (1L << 25) /** COMPRESSION="zlib|lz4|none" used during table create. */ #define HA_CREATE_USED_COMPRESS (1L << 26) /** ENCRYPTION="Y" used during table create. */ #define HA_CREATE_USED_ENCRYPT (1L << 27) /** CREATE|ALTER SCHEMA|DATABASE|TABLE has an explicit COLLATE clause. Implies HA_CREATE_USED_DEFAULT_CHARSET. */ #define HA_CREATE_USED_DEFAULT_COLLATE (1L << 28) /** SECONDARY_ENGINE used during table create. */ #define HA_CREATE_USED_SECONDARY_ENGINE (1L << 29) /** CREATE|ALTER SCHEMA|DATABASE has an explicit ENCRYPTION clause. Implies HA_CREATE_USED_DEFAULT_ENCRYPTION. */ #define HA_CREATE_USED_DEFAULT_ENCRYPTION (1L << 30) /** This option is used to convey that the create table should not commit the operation and keep the transaction started. */ constexpr const uint64_t HA_CREATE_USED_START_TRANSACTION{1ULL << 31}; constexpr const uint64_t HA_CREATE_USED_ENGINE_ATTRIBUTE{1ULL << 32}; constexpr const uint64_t HA_CREATE_USED_SECONDARY_ENGINE_ATTRIBUTE{1ULL << 33}; /** ALTER SCHEMA|DATABASE has an explicit READ_ONLY clause. Implies HA_CREATE_USED_READ_ONLY. */ constexpr const uint64_t HA_CREATE_USED_READ_ONLY{1ULL << 34}; /** These flags convey that the options AUTOEXTEND_SIZE has been specified in the CREATE TABLE statement */ constexpr const uint64_t HA_CREATE_USED_AUTOEXTEND_SIZE{1ULL << 35}; /* End of bits used in used_fields */ /* Structure to hold list of database_name.table_name. This is used at both mysqld and storage engine layer. */ struct st_handler_tablename { const char *db; const char *tablename; }; #define MAXGTRIDSIZE 64 #define MAXBQUALSIZE 64 #define COMPATIBLE_DATA_YES 0 #define COMPATIBLE_DATA_NO 1 /* These structures are used to pass information from a set of SQL commands on add/drop/change tablespace definitions to the proper hton. */ #define UNDEF_NODEGROUP 65535 // FUTURE: Combine these two enums into one enum class enum ts_command_type { TS_CMD_NOT_DEFINED = -1, CREATE_TABLESPACE = 0, ALTER_TABLESPACE = 1, CREATE_LOGFILE_GROUP = 2, ALTER_LOGFILE_GROUP = 3, DROP_TABLESPACE = 4, DROP_LOGFILE_GROUP = 5, CHANGE_FILE_TABLESPACE = 6, ALTER_ACCESS_MODE_TABLESPACE = 7, CREATE_UNDO_TABLESPACE = 8, ALTER_UNDO_TABLESPACE = 9, DROP_UNDO_TABLESPACE = 10 }; enum ts_alter_tablespace_type { TS_ALTER_TABLESPACE_TYPE_NOT_DEFINED = -1, ALTER_TABLESPACE_ADD_FILE = 1, ALTER_TABLESPACE_DROP_FILE = 2, ALTER_TABLESPACE_RENAME = 3, ALTER_TABLESPACE_OPTIONS = 4, ALTER_UNDO_TABLESPACE_SET_ACTIVE = 5, ALTER_UNDO_TABLESPACE_SET_INACTIVE = 6 }; /** Legacy struct for passing tablespace information to SEs. FUTURE: Pass all info through dd objects */ class st_alter_tablespace { public: const char *tablespace_name = nullptr; const char *logfile_group_name = nullptr; ts_command_type ts_cmd_type = TS_CMD_NOT_DEFINED; enum ts_alter_tablespace_type ts_alter_tablespace_type = TS_ALTER_TABLESPACE_TYPE_NOT_DEFINED; const char *data_file_name = nullptr; const char *undo_file_name = nullptr; ulonglong extent_size = 1024 * 1024; // Default 1 MByte ulonglong undo_buffer_size = 8 * 1024 * 1024; // Default 8 MByte ulonglong redo_buffer_size = 8 * 1024 * 1024; // Default 8 MByte ulonglong initial_size = 128 * 1024 * 1024; // Default 128 MByte std::optional autoextend_size; // No autoextension as default ulonglong max_size = 0; // Max size == initial size => no extension ulonglong file_block_size = 0; // 0=default or must be a valid Page Size uint nodegroup_id = UNDEF_NODEGROUP; bool wait_until_completed = true; const char *ts_comment = nullptr; const char *encryption = nullptr; bool is_tablespace_command() { return ts_cmd_type == CREATE_TABLESPACE || ts_cmd_type == ALTER_TABLESPACE || ts_cmd_type == DROP_TABLESPACE || ts_cmd_type == CHANGE_FILE_TABLESPACE || ts_cmd_type == ALTER_ACCESS_MODE_TABLESPACE; } /** Proper constructor even for all-public class simplifies initialization and allows members to be const. FUTURE: With constructor all members can be made const, and do not need default initializers. @param tablespace name of tabelspace (nullptr for logfile group statements) @param logfile_group name of logfile group or nullptr @param cmd main statement type @param alter_tablespace_cmd subcommand type for ALTER TABLESPACE @param datafile tablespace file for CREATE and ALTER ... ADD ... @param undofile only applies to logfile group statements. nullptr otherwise. @param opts options provided by parser */ st_alter_tablespace(const char *tablespace, const char *logfile_group, ts_command_type cmd, enum ts_alter_tablespace_type alter_tablespace_cmd, const char *datafile, const char *undofile, const Tablespace_options &opts); }; /* Make sure that the order of schema_tables and enum_schema_tables are the same. */ enum enum_schema_tables : int { SCH_FIRST = 0, SCH_COLUMN_PRIVILEGES = SCH_FIRST, SCH_ENGINES, SCH_OPEN_TABLES, SCH_OPTIMIZER_TRACE, SCH_PLUGINS, SCH_PROCESSLIST, SCH_PROFILES, SCH_SCHEMA_PRIVILEGES, SCH_TABLE_PRIVILEGES, SCH_USER_PRIVILEGES, SCH_TMP_TABLE_COLUMNS, SCH_TMP_TABLE_KEYS, SCH_LAST = SCH_TMP_TABLE_KEYS }; enum ha_stat_type { HA_ENGINE_STATUS, HA_ENGINE_LOGS, HA_ENGINE_MUTEX }; enum ha_notification_type : int { HA_NOTIFY_PRE_EVENT, HA_NOTIFY_POST_EVENT }; enum ha_ddl_type : int { HA_INVALID_DDL, HA_ALTER_DDL, HA_TRUNCATE_DDL, HA_RENAME_DDL }; /** Clone start operation mode */ enum Ha_clone_mode { /** Start a new clone operation */ HA_CLONE_MODE_START, /** Re-start a clone operation after failure */ HA_CLONE_MODE_RESTART, /** Add a new task to a running clone operation */ HA_CLONE_MODE_ADD_TASK, /** Get version for transfer data format */ HA_CLONE_MODE_VERSION, /** Max value for clone mode */ HA_CLONE_MODE_MAX }; /** Clone operation types. */ enum Ha_clone_type : size_t { /** Caller must block all write operation to the SE. */ HA_CLONE_BLOCKING, /** For transactional SE, archive redo to support concurrent dml */ HA_CLONE_REDO, /** For transactional SE, track page changes to support concurrent dml */ HA_CLONE_PAGE, /** For transactional SE, use both page tracking and redo to optimize clone with concurrent dml. Currently supported by Innodb. */ HA_CLONE_HYBRID, /** SE supports multiple threads for clone */ HA_CLONE_MULTI_TASK, /** SE supports restarting clone after network failure */ HA_CLONE_RESTART, /** Maximum value of clone type */ HA_CLONE_TYPE_MAX }; using Ha_clone_flagset = std::bitset; void set_externally_disabled_storage_engine_names(const char *); bool ha_is_externally_disabled(const handlerton &); /** File reference for clone */ struct Ha_clone_file { /** File reference type */ enum { /** File handle */ FILE_HANDLE, /** File descriptor */ FILE_DESC } type; /** File reference */ union { /** File descriptor */ int file_desc; /** File handle for windows */ void *file_handle; }; }; /* Abstract callback interface to stream data back to the caller. */ class Ha_clone_cbk { protected: /** Constructor to initialize members. */ Ha_clone_cbk() : m_hton(), m_loc_idx(), m_client_buff_size(), m_data_desc(), m_desc_len(), m_src_name(), m_dest_name(), m_state_estimate(), m_flag() {} public: /** Callback providing data from current position of a file descriptor of specific length. @param[in] from_file source file to read from @param[in] len data length @return error code */ virtual int file_cbk(Ha_clone_file from_file, uint len) = 0; /** Callback providing data in buffer of specific length. @param[in] from_buffer source buffer to read from @param[in] len data length @return error code */ virtual int buffer_cbk(uchar *from_buffer, uint len) = 0; /** Callback providing a file descriptor to write data starting from current position. @param[in] to_file destination file to write data @return error code */ virtual int apply_file_cbk(Ha_clone_file to_file) = 0; /** Callback to get data in buffer. @param[out] to_buffer data buffer @param[out] len data length @return error code */ virtual int apply_buffer_cbk(uchar *&to_buffer, uint &len) = 0; /** virtual destructor. */ virtual ~Ha_clone_cbk() = default; /** Set current storage engine handlerton. @param[in] hton SE handlerton */ void set_hton(handlerton *hton) { m_hton = hton; } /** Get current storage engine handlerton. @return SE handlerton */ handlerton *get_hton() { return (m_hton); } /** Set caller's transfer buffer size. SE can adjust the data chunk size based on this parameter. @param[in] size buffer size in bytes */ void set_client_buffer_size(uint size) { m_client_buff_size = size; } /** Get caller's transfer buffer size. @return buffer size in bytes */ uint get_client_buffer_size() { return (m_client_buff_size); } /** Set current SE index. @param[in] idx SE index in locator array */ void set_loc_index(uint idx) { m_loc_idx = idx; } /** Get current SE index. @return SE index in locator array */ uint get_loc_index() { return (m_loc_idx); } /** Set data descriptor. SE specific descriptor for the data transferred by the callbacks. @param[in] desc serialized data descriptor @param[in] len length of the descriptor byte stream */ void set_data_desc(const uchar *desc, uint len) { m_data_desc = desc; m_desc_len = len; } /** Get data descriptor. SE specific descriptor for the data transferred by the callbacks. @param[out] lenp length of the descriptor byte stream @return pointer to the serialized data descriptor */ const uchar *get_data_desc(uint *lenp) { if (lenp != nullptr) { *lenp = m_desc_len; } return (m_data_desc); } /** Get SE source file name. Used for debug printing and error message. @return null terminated string for source file name */ const char *get_source_name() { return (m_src_name); } /** Set SE source file name. @param[in] name null terminated string for source file name */ void set_source_name(const char *name) { m_src_name = name; } /** Get SE destination file name. Used for debug printing and error message. @return null terminated string for destination file name */ const char *get_dest_name() { return (m_dest_name); } /** Set SE destination file name. @param[in] name null terminated string for destination file name */ void set_dest_name(const char *name) { m_dest_name = name; } /** Clear all flags set by SE */ void clear_flags() { m_flag = 0; } /** Mark that ACK is needed for the data transfer before returning from callback. Set by SE. */ void set_ack() { m_flag |= HA_CLONE_ACK; } /** Check if ACK is needed for the data transfer @return true if ACK is needed */ bool is_ack_needed() const { return (m_flag & HA_CLONE_ACK); } /** Mark that the file descriptor is opened for read/write with OS buffer cache. For O_DIRECT, the flag is not set. */ void set_os_buffer_cache() { m_flag |= HA_CLONE_FILE_CACHE; } /** Check if the file descriptor is opened for read/write with OS buffer cache. Currently clone avoids using zero copy (sendfile on linux), if SE is using O_DIRECT. This improves data copy performance. @return true if O_DIRECT is not used */ bool is_os_buffer_cache() const { return (m_flag & HA_CLONE_FILE_CACHE); } /** Mark that the file can be transferred with zero copy. */ void set_zero_copy() { m_flag |= HA_CLONE_ZERO_COPY; } /** Check if zero copy optimization is suggested. */ bool is_zero_copy() const { return (m_flag & HA_CLONE_ZERO_COPY); } /** Mark that data needs secure transfer. */ void set_secure() { m_flag |= HA_CLONE_SECURE; } /** Check if data needs secure transfer. */ bool is_secure() const { return (m_flag & HA_CLONE_SECURE); } /** Set state information and notify state change. @param[in] estimate estimated bytes for current state. */ void mark_state_change(uint64_t estimate) { m_flag |= HA_CLONE_STATE_CHANGE; m_state_estimate = estimate; } /** Check if SE notified state change. */ bool is_state_change(uint64_t &estimate) { estimate = m_state_estimate; return (m_flag & HA_CLONE_STATE_CHANGE); } private: /** Handlerton for the SE */ handlerton *m_hton; /** SE index in caller's locator array */ uint m_loc_idx; /** Caller's transfer buffer size. */ uint m_client_buff_size; /** SE's Serialized data descriptor */ const uchar *m_data_desc; /** SE's Serialized descriptor length. */ uint m_desc_len; /** Current source file name */ const char *m_src_name; /** Current destination file name */ const char *m_dest_name; /** Estimated bytes to be transferred. */ uint64_t m_state_estimate; /** Flag storing data related options */ int m_flag; /** Acknowledgement is needed for the data transfer. */ const int HA_CLONE_ACK = 0x01; /** Data file is opened for read/write with OS buffer cache. */ const int HA_CLONE_FILE_CACHE = 0x02; /** Data file can be transferred with zero copy. */ const int HA_CLONE_ZERO_COPY = 0x04; /** Data needs to be transferred securely over SSL connection. */ const int HA_CLONE_SECURE = 0x08; /** State change notification by SE. */ const int HA_CLONE_STATE_CHANGE = 0x10; }; /** Column type description for foreign key columns compatibility check. Contains subset of information from dd::Column class. It is inconvenient to use dd::Column class directly for such checks because it requires valid dd::Table object and in some cases we want to produce Ha_fk_column_type right from column description in Create_field format. */ struct Ha_fk_column_type { dd::enum_column_types type; /* Note that both dd::Column::char_length() and length here are really in bytes. */ size_t char_length; const CHARSET_INFO *field_charset; size_t elements_count; uint numeric_scale; bool is_unsigned; }; typedef ulonglong my_xid; // this line is the same as in log_event.h /** Enumeration of possible states for externally coordinated transactions (XA). */ enum class enum_ha_recover_xa_state : int { NOT_FOUND = -1, // Trnasaction not found PREPARED_IN_SE = 0, // Transaction is prepared in SEs PREPARED_IN_TC = 1, // Transaction is prepared in SEs and TC COMMITTED_WITH_ONEPHASE = 2, // Transaction was one-phase committed COMMITTED = 3, // Transaction was committed ROLLEDBACK = 4 // Transaction was rolled back }; /** Single occurrence set of XIDs of internally coordinated transactions found as been committed in the transaction coordinator state. */ using Xid_commit_list = std::unordered_set, std::equal_to, Mem_root_allocator>; /** Class to maintain list of externally coordinated transactions and their current state at recovery. */ class Xa_state_list { public: using pair = std::pair; using allocator = Mem_root_allocator; using list = std::map, Xa_state_list::allocator>; using iterator = std::map, Xa_state_list::allocator>::iterator; using instantiation_tuple = std::tuple< std::unique_ptr, std::unique_ptr, std::unique_ptr, std::unique_ptr>; /** Class constructor. @param populated_by_tc The underlying list of XIDs and transaction states, after being populated by the transaction coodinator. */ Xa_state_list(Xa_state_list::list &populated_by_tc); virtual ~Xa_state_list() = default; /** Searches the underlying map to find an key that corresponds to the parameter. @param to_find The XID to find within the underlying map. @return Ha_recover_states::NOT_FOUND if the transaction wasn't found, the state of the transaction, otherwise. */ enum_ha_recover_xa_state find(XID const &to_find); /** Adds a transaction and state to the underlying map. If the given XID already exists in the underlying map, the associated state changes according to the following rules: - If the parameter state is `PREPARED_IN_SE` it means that the transaction didn't reach PREPARED_IN_TC, COMMIT or ROLLBACK for sure. In that case: . If other participants state is `COMMITTED`/`ROLLEDBACK`, it would mean that it's a state inherited from a previous execution with the same XID and we should set the state to `PREPARED_IN_SE`. . If other participants state is `PREPARED_IN_TC`/ `COMMITTED_WITH_ONEPHASE` it means that the current participant didn't reach it but some other did so, keep the state as `PREPARED_IN_TC`/`COMMITTED_WITH_ONEPHASE`. - If the parameter state is `PREPARED_IN_TC`, it means that other participants must have persisted either the PREPARE, the COMMIT or the ROLLBACK. In that case, keep whatever state is already there and ensure that is not `PREPARED_IN_SE`. - If the parameter state is `COMMITTED_WITH_ONEPHASE`, `COMMITTED` or `ROLLEDBACK`, do nothing, only the active transaction coordinator has the ability, for now, to set the transaction state to those values. @param xid The XID to be added (the key). @param state The state to be added (the value). @return The current value of the transaction state if the XID has already been added, Ha_recover_states::NOT_FOUND otherwise. */ enum_ha_recover_xa_state add(XID const &xid, enum_ha_recover_xa_state state); /** Factory like method to instantiate all the infra-structure needed to create an `Xa_state_list`. Since such infra-structuer is dependent on `MEM_ROOT` and `Mem_root_allocator`, the method returns a tuple containing unique pointers to all 4 objects needed: MEM_ROOT; Mem_root_allocator; Xa_state_list::list; Xa_state_list. @return An std::tuple containing unique pointers to all 4 objects needed: MEM_ROOT; Mem_root_allocator; Xa_state_list::list; Xa_state_list. */ static Xa_state_list::instantiation_tuple new_instance(); private: /** The underlying map holding the trx and states*/ Xa_state_list::list &m_underlying; }; /* handlerton methods */ /** close_connection is only called if thd->ha_data[xxx_hton.slot] is non-zero, so even if you don't need this storage area - set it to something, so that MySQL would know this storage engine was accessed in this connection */ typedef int (*close_connection_t)(handlerton *hton, THD *thd); /** Terminate connection/statement notification. */ typedef void (*kill_connection_t)(handlerton *hton, THD *thd); /** Shut down all storage engine background tasks that might access the data dictionary, before the main shutdown. */ typedef void (*pre_dd_shutdown_t)(handlerton *hton); /** Some plugin session variables may require some special handling upon clean up. Reset appropriately these variables before ending the THD connection */ typedef void (*reset_plugin_vars_t)(THD *thd); /** sv points to a storage area, that was earlier passed to the savepoint_set call */ typedef int (*savepoint_rollback_t)(handlerton *hton, THD *thd, void *sv); /** sv points to an uninitialized storage area of requested size (see savepoint_offset description) */ typedef int (*savepoint_set_t)(handlerton *hton, THD *thd, void *sv); /** Check if storage engine allows to release metadata locks which were acquired after the savepoint if rollback to savepoint is done. @return true - If it is safe to release MDL locks. false - If it is not. */ typedef bool (*savepoint_rollback_can_release_mdl_t)(handlerton *hton, THD *thd); typedef int (*savepoint_release_t)(handlerton *hton, THD *thd, void *sv); /** 'all' is true if it's a real commit, that makes persistent changes 'all' is false if it's not in fact a commit but an end of the statement that is part of the transaction. NOTE 'all' is also false in auto-commit mode where 'end of statement' and 'real commit' mean the same event. */ typedef int (*commit_t)(handlerton *hton, THD *thd, bool all); typedef int (*rollback_t)(handlerton *hton, THD *thd, bool all); typedef int (*prepare_t)(handlerton *hton, THD *thd, bool all); typedef int (*recover_t)(handlerton *hton, XA_recover_txn *xid_list, uint len, MEM_ROOT *mem_root); /** Retrieves information about externally coordinated transactions for which the two-phase prepare was finished and transactions were prepared in the server TC. */ using recover_prepared_in_tc_t = int (*)(handlerton *hton, Xa_state_list &xa_list); /** Instructs the storage engine to mark the externally coordinated transactions held by the THD parameters as prepared in the server TC. */ using set_prepared_in_tc_t = int (*)(handlerton *hton, THD *thd); /** X/Open XA distributed transaction status codes */ enum xa_status_code { /** normal execution */ XA_OK = 0, /** asynchronous operation already outstanding */ XAER_ASYNC = -2, /** a resource manager error occurred in the transaction branch */ XAER_RMERR = -3, /** the XID is not valid */ XAER_NOTA = -4, /** invalid arguments were given */ XAER_INVAL = -5, /** routine invoked in an improper context */ XAER_PROTO = -6, /** resource manager unavailable */ XAER_RMFAIL = -7, /** the XID already exists */ XAER_DUPID = -8, /** resource manager doing work outside transaction */ XAER_OUTSIDE = -9 }; typedef xa_status_code (*commit_by_xid_t)(handlerton *hton, XID *xid); typedef xa_status_code (*rollback_by_xid_t)(handlerton *hton, XID *xid); /** Instructs the storage engine to mark the externally coordinated transactions identified by the XID parameters as prepared in the server TC. */ using set_prepared_in_tc_by_xid_t = xa_status_code (*)(handlerton *hton, XID *xid); /** Create handler object for the table in the storage engine. @param hton Handlerton object for the storage engine. @param table TABLE_SHARE for the table, can be NULL if caller didn't perform full-blown open of table definition. @param partitioned Indicates whether table is partitioned. @param mem_root Memory root to be used for allocating handler object. */ typedef handler *(*create_t)(handlerton *hton, TABLE_SHARE *table, bool partitioned, MEM_ROOT *mem_root); typedef void (*drop_database_t)(handlerton *hton, char *path); typedef int (*panic_t)(handlerton *hton, enum ha_panic_function flag); typedef int (*start_consistent_snapshot_t)(handlerton *hton, THD *thd); /** Flush the log(s) of storage engine(s). @param hton Handlerton of storage engine. @param binlog_group_flush true if we got invoked by binlog group commit during flush stage, false in other cases. @retval false Succeed @retval true Error */ typedef bool (*flush_logs_t)(handlerton *hton, bool binlog_group_flush); typedef bool (*show_status_t)(handlerton *hton, THD *thd, stat_print_fn *print, enum ha_stat_type stat); /** The flag values are defined in sql_partition.h. If this function is set, then it implies that the handler supports partitioned tables. If this function exists, then handler::get_partition_handler must also be implemented. */ typedef uint (*partition_flags_t)(); /** SE specific validation of the tablespace name. This function will ask the relevant SE whether the submitted tablespace name is valid. @param ts_cmd Purpose of usage - is this tablespace DDL? @param tablespace_name Name of the tablespace. @return Tablespace name validity. @retval Whether the tablespace name is valid. */ typedef bool (*is_valid_tablespace_name_t)(ts_command_type ts_cmd, const char *tablespace_name); /** Get the tablespace name from the SE for the given schema and table. @param thd Thread context. @param db_name Name of the relevant schema. @param table_name Name of the relevant table. @param [out] tablespace_name Name of the tablespace containing the table. @return Operation status. @retval == 0 Success. @retval != 0 Error (handler error code returned). */ typedef int (*get_tablespace_t)(THD *thd, LEX_CSTRING db_name, LEX_CSTRING table_name, LEX_CSTRING *tablespace_name); /** Create/drop or alter tablespace in the storage engine. @param hton Hadlerton of the SE. @param thd Thread context. @param ts_info Description of tablespace and specific operation on it. @param old_ts_def dd::Tablespace object describing old version of tablespace. @param [in,out] new_ts_def dd::Tablespace object describing new version of tablespace. Engines which support atomic DDL can adjust this object. The updated information will be saved to the data-dictionary. @return Operation status. @retval == 0 Success. @retval != 0 Error (handler error code returned). */ typedef int (*alter_tablespace_t)(handlerton *hton, THD *thd, st_alter_tablespace *ts_info, const dd::Tablespace *old_ts_def, dd::Tablespace *new_ts_def); /** SE interface for getting tablespace extension. @return Extension of tablespace datafile name. */ typedef const char *(*get_tablespace_filename_ext_t)(); /** Get the tablespace data from SE and insert it into Data dictionary @param thd Thread context @return Operation status. @retval == 0 Success. @retval != 0 Error (handler error code returned) */ typedef int (*upgrade_tablespace_t)(THD *thd); /** Get the tablespace data from SE and insert it into Data dictionary @param[in] tablespace tablespace object @return Operation status. @retval == 0 Success. @retval != 0 Error (handler error code returned) */ typedef bool (*upgrade_space_version_t)(dd::Tablespace *tablespace); /** Finish upgrade process inside storage engines. This includes resetting flags to indicate upgrade process and cleanup after upgrade. @param thd Thread context @param failed_upgrade True if the upgrade failed. @return Operation status. @retval == 0 Success. @retval != 0 Error (handler error code returned) */ typedef int (*finish_upgrade_t)(THD *thd, bool failed_upgrade); /** Upgrade logs after the checkpoint from where upgrade process can only roll forward. @param thd Thread context @return Operation status. @retval == 0 Success. @retval != 0 Error (handler error code returned) */ typedef int (*upgrade_logs_t)(THD *thd); enum class Tablespace_type { SPACE_TYPE_DICTIONARY, SPACE_TYPE_SYSTEM, SPACE_TYPE_UNDO, SPACE_TYPE_TEMPORARY, SPACE_TYPE_SHARED, SPACE_TYPE_IMPLICIT }; /** Get the tablespace type from the SE. @param[in] space tablespace object @param[out] space_type type of space @return Operation status. @retval false on success and true for failure. */ typedef bool (*get_tablespace_type_t)(const dd::Tablespace &space, Tablespace_type *space_type); /** Get the tablespace type given the name, from the SE. @param[in] tablespace_name tablespace name @param[out] space_type type of space @return Operation status. @retval false on success and true for failure. */ typedef bool (*get_tablespace_type_by_name_t)(const char *tablespace_name, Tablespace_type *space_type); typedef int (*fill_is_table_t)(handlerton *hton, THD *thd, Table_ref *tables, class Item *cond, enum enum_schema_tables); typedef int (*binlog_func_t)(handlerton *hton, THD *thd, enum_binlog_func fn, void *arg); typedef void (*binlog_log_query_t)(handlerton *hton, THD *thd, enum_binlog_command binlog_command, const char *query, uint query_length, const char *db, const char *table_name); typedef void (*acl_notify_t)(THD *thd, const class Acl_change_notification *notice); typedef int (*discover_t)(handlerton *hton, THD *thd, const char *db, const char *name, uchar **frmblob, size_t *frmlen); typedef int (*find_files_t)(handlerton *hton, THD *thd, const char *db, const char *path, const char *wild, bool dir, List *files); typedef int (*table_exists_in_engine_t)(handlerton *hton, THD *thd, const char *db, const char *name); /** Let storage engine inspect the query Accesspath and pick whatever it like for being pushed down to the engine. (Join, conditions, ..) The handler implementation should itself keep track of what it 'pushed', such that later calls to the handlers access methods should activate the pushed parts of the execution plan on the storage engines. @param thd Thread context @param query The AccessPath for the entire query. @param join The JOIN to be pushed @returns 0 on success error otherwise */ using push_to_engine_t = int (*)(THD *thd, AccessPath *query, JOIN *join); /** Check if the given db.tablename is a system table for this SE. @param db Database name to check. @param table_name table name to check. @param is_sql_layer_system_table if the supplied db.table_name is a SQL layer system table. @see example_is_supported_system_table in ha_example.cc is_sql_layer_system_table is supplied to make more efficient checks possible for SEs that support all SQL layer tables. This interface is optional, so every SE need not implement it. */ typedef bool (*is_supported_system_table_t)(const char *db, const char *table_name, bool is_sql_layer_system_table); /** Create SDI in a tablespace. This API should be used when upgrading a tablespace with no SDI or after invoking sdi_drop(). @param[in] tablespace tablespace object @retval false success @retval true failure */ typedef bool (*sdi_create_t)(dd::Tablespace *tablespace); /** Drop SDI in a tablespace. This API should be used only when SDI is corrupted. @param[in] tablespace tablespace object @retval false success @retval true failure */ typedef bool (*sdi_drop_t)(dd::Tablespace *tablespace); /** Get the SDI keys in a tablespace into vector. @param[in] tablespace tablespace object @param[in,out] vector vector of SDI Keys @retval false success @retval true failure */ typedef bool (*sdi_get_keys_t)(const dd::Tablespace &tablespace, sdi_vector_t &vector); /** Retrieve SDI for a given SDI key. Since the caller of this api will not know the SDI length, SDI retrieval should be done in the following way. i. Allocate initial memory of some size (Lets say 64KB) ii. Pass the allocated memory to the below api. iii. If passed buffer is sufficient, sdi_get_by_id() copies the sdi to the buffer passed and returns success, else sdi_len is modified with the actual length of the SDI (and returns false on failure). For genuine errors, sdi_len is returned as UINT64_MAX iv. If sdi_len != UINT64_MAX, retry the call after allocating the memory of sdi_len v. Free the memory after using SDI (responsibility of caller) @param[in] tablespace tablespace object @param[in] sdi_key SDI key to uniquely identify SDI obj @param[in,out] sdi SDI retrieved from tablespace A non-null pointer must be passed in @param[in,out] sdi_len in: length of the memory allocated out: actual length of SDI @retval false success @retval true failure */ typedef bool (*sdi_get_t)(const dd::Tablespace &tablespace, const sdi_key_t *sdi_key, void *sdi, uint64 *sdi_len); /** Insert/Update SDI for a given SDI key. @param[in] hton handlerton object @param[in] tablespace tablespace object @param[in] table table object @param[in] sdi_key SDI key to uniquely identify SDI obj @param[in] sdi SDI to write into the tablespace @param[in] sdi_len length of SDI BLOB returned @retval false success @retval true failure, my_error() should be called by SE */ typedef bool (*sdi_set_t)(handlerton *hton, const dd::Tablespace &tablespace, const dd::Table *table, const sdi_key_t *sdi_key, const void *sdi, uint64 sdi_len); /** Delete SDI for a given SDI key. @param[in] tablespace tablespace object @param[in] table table object @param[in] sdi_key SDI key to uniquely identify SDI obj @retval false success @retval true failure, my_error() should be called by SE */ typedef bool (*sdi_delete_t)(const dd::Tablespace &tablespace, const dd::Table *table, const sdi_key_t *sdi_key); /** Check if the DDSE is started in a way that leaves thd DD being read only. @retval true The data dictionary can only be read. @retval false The data dictionary can be read and written. */ typedef bool (*is_dict_readonly_t)(); /** Drop all temporary tables which have been left from previous server run belonging to this SE. Used on server start-up. @param[in] hton Handlerton for storage engine. @param[in] thd Thread context. @param[in,out] files List of files in directories for temporary files which match tmp_file_prefix and thus can belong to temporary tables (but not necessarily in this SE). It is recommended to remove file from the list if SE recognizes it as belonging to temporary table in this SE and deletes it. */ typedef bool (*rm_tmp_tables_t)(handlerton *hton, THD *thd, List *files); /** Retrieve cost constants to be used for this storage engine. A storage engine that wants to provide its own cost constants to be used in the optimizer cost model, should implement this function. The server will call this function to get a cost constant object that will be used for tables stored in this storage engine instead of using the default cost constants. Life cycle for the cost constant object: The storage engine must allocate the cost constant object on the heap. After the function returns, the server takes over the ownership of this object. The server will eventually delete the object by calling delete. @note In the initial version the storage_category parameter will not be used. The only valid value this will have is DEFAULT_STORAGE_CLASS (see declaration in opt_costconstants.h). @param storage_category the storage type that the cost constants will be used for @return a pointer to the cost constant object, if NULL is returned the default cost constants will be used */ typedef SE_cost_constants *(*get_cost_constants_t)(uint storage_category); /** @param[in,out] thd pointer to THD @param[in] new_trx_arg pointer to replacement transaction @param[out] ptr_trx_arg double pointer to being replaced transaction Associated with THD engine's native transaction is replaced with @c new_trx_arg. The old value is returned through a buffer if non-null pointer is provided with @c ptr_trx_arg. The method is adapted by XA start and XA prepare handlers to handle XA transaction that is logged as two parts by slave applier. This interface concerns engines that are aware of XA transaction. */ typedef void (*replace_native_transaction_in_thd_t)(THD *thd, void *new_trx_arg, void **ptr_trx_arg); /** Mode for initializing the data dictionary. */ enum dict_init_mode_t { DICT_INIT_CREATE_FILES, ///< Create all required SE files DICT_INIT_CHECK_FILES ///< Verify existence of expected files }; /** Initialize the SE for being used to store the DD tables. Create the required files according to the dict_init_mode. Create strings representing the required DDSE tables, i.e., tables that the DDSE expects to exist in the DD, and add them to the appropriate out parameter. @note There are two variants of this function type, one is to be used by the DDSE, and has a different type of output parameters because the SQL layer needs more information about the DDSE tables in order to support upgrade. @param dict_init_mode How to initialize files @param version Target DD version if a new server is being installed. 0 if restarting an existing server. @param [out] DDSE_tables List of SQL DDL statements for creating DD tables that are needed by the DDSE. @param [out] DDSE_tablespaces List of meta data for predefined tablespaces created by the DDSE. @retval true An error occurred. @retval false Success - no errors. */ typedef bool (*dict_init_t)(dict_init_mode_t dict_init_mode, uint version, List *DDSE_tables, List *DDSE_tablespaces); typedef bool (*ddse_dict_init_t)( dict_init_mode_t dict_init_mode, uint version, List *DDSE_tables, List *DDSE_tablespaces); /** Initialize the set of hard coded DD table ids. */ typedef void (*dict_register_dd_table_id_t)(dd::Object_id hard_coded_tables); /** Invalidate an entry in the local dictionary cache. Needed during bootstrap to make sure the contents in the DDSE dictionary cache is in sync with the global DD. @param schema_name Schema name. @param table_name Table name. */ typedef void (*dict_cache_reset_t)(const char *schema_name, const char *table_name); /** Invalidate all table and tablespace entries in the local dictionary cache. Needed for recovery during server restart. */ typedef void (*dict_cache_reset_tables_and_tablespaces_t)(); /** Mode for data dictionary recovery. */ enum dict_recovery_mode_t { DICT_RECOVERY_INITIALIZE_SERVER, ///< First start of a new server DICT_RECOVERY_INITIALIZE_TABLESPACES, ///< First start, create tablespaces DICT_RECOVERY_RESTART_SERVER ///< Restart of an existing server }; /** Do recovery in the DDSE as part of initializing the data dictionary. The dict_recovery_mode indicates what kind of recovery should be done. @param dict_recovery_mode How to do recovery @param version Target DD version if a new server is being installed. Actual DD version if restarting an existing server. @retval true An error occurred. @retval false Success - no errors. */ typedef bool (*dict_recover_t)(dict_recovery_mode_t dict_recovery_mode, uint version); /** Get the server version id stored in the header of the dictionary tablespace. @param [out] version Version number from the DD tablespace header. @retval Operation outcome, false if no error, otherwise true. */ typedef bool (*dict_get_server_version_t)(uint *version); /** Store the current server version number into the header of the dictionary tablespace. @retval Operation outcome, false if no error, otherwise true. */ typedef bool (*dict_set_server_version_t)(); /** Notify/get permission from storage engine before acquisition or after release of exclusive metadata lock on object represented by key. @param thd Thread context. @param mdl_key MDL key identifying object on which exclusive lock is to be acquired/was released. @param notification_type Indicates whether this is pre-acquire or post-release notification. @param victimized 'true' if locking failed as we were selected as a victim in order to avoid possible deadlocks. @note Notification is done only for objects from TABLESPACE, SCHEMA, TABLE, FUNCTION, PROCEDURE, TRIGGER and EVENT namespaces. @note Problems during notification are to be reported as warnings, MDL subsystem will report generic error if pre-acquire notification fails/SE refuses lock acquisition. @note Return value is ignored/error is not reported in case of post-release notification. @note In some cases post-release notification might happen even if there were no prior pre-acquire notification. For example, when SE was loaded after exclusive lock acquisition, or when we need notify SEs which permitted lock acquisition that it didn't happen because one of SEs didn't allow it (in such case we will do post-release notification for all SEs for simplicity). @return False - if notification was successful/lock can be acquired, True - if it has failed/lock should not be acquired. */ typedef bool (*notify_exclusive_mdl_t)(THD *thd, const MDL_key *mdl_key, ha_notification_type notification_type, bool *victimized); /** Notify/get permission from storage engine before or after execution of ALTER TABLE operation on the table identified by the MDL key. @param thd Thread context. @param mdl_key MDL key identifying table which is going to be or was ALTERed. @param notification_type Indicates whether this is pre-ALTER TABLE or post-ALTER TABLE notification. @note This hook is necessary because for ALTER TABLE upgrade to X metadata lock happens fairly late during the execution process, so it can be expensive to abort ALTER TABLE operation at this stage by returning failure from notify_exclusive_mdl() hook. @note This hook follows the same error reporting convention as @see notify_exclusive_mdl(). @note Similarly to notify_exclusive_mdl() in some cases post-ALTER notification might happen even if there were no prior pre-ALTER notification. @note Post-ALTER notification can happen before post-release notification for exclusive metadata lock acquired by this ALTER TABLE. @return False - if notification was successful/ALTER TABLE can proceed. True - if it has failed/ALTER TABLE should be aborted. */ typedef bool (*notify_alter_table_t)(THD *thd, const MDL_key *mdl_key, ha_notification_type notification_type); /** Notify/get permission from storage engine before or after execution of RENAME TABLE operation on the table identified by the MDL key. @param thd Thread context. @param mdl_key MDL key identifying table which is going to be or was RENAMEd. @param notification_type Indicates whether this is pre-RENAME TABLE or post-RENAME TABLE notification. @param old_db_name old db name @param old_table_name old table name @param new_db_name new db name @param new_table_name new table name */ typedef bool (*notify_rename_table_t)(THD *thd, const MDL_key *mdl_key, ha_notification_type notification_type, const char *old_db_name, const char *old_table_name, const char *new_db_name, const char *new_table_name); /** Notify/get permission from storage engine before or after execution of TRUNCATE TABLE operation on the table identified by the MDL key. @param thd Thread context. @param mdl_key MDL key identifying table which is going to be or was TRUNCATEd. @param notification_type Indicates whether this is pre-TRUNCATE TABLE or post-TRUNCATE TABLE notification. */ typedef bool (*notify_truncate_table_t)(THD *thd, const MDL_key *mdl_key, ha_notification_type notification_type); /** @brief Initiate master key rotation @returns false on success, true on failure */ typedef bool (*rotate_encryption_master_key_t)(void); /** @brief Enable or Disable SE write ahead logging. @param[in] thd server thread handle @param[in] enable enable/disable redo logging @return true iff failed. */ typedef bool (*redo_log_set_state_t)(THD *thd, bool enable); /** @brief Retrieve ha_statistics from SE. @param db_name Name of schema @param table_name Name of table @param se_private_id SE private id of the table. @param ts_se_private_data Tablespace SE private data. @param tbl_se_private_data Table SE private data. @param flags Type of statistics to retrieve. @param[out] stats Contains statistics read from SE. @note Handlers that implement this callback/API should adhere to servers expectation that, the implementation would invoke my_error() before returning 'true'/failure from this function. @returns false on success, true on failure */ typedef bool (*get_table_statistics_t)( const char *db_name, const char *table_name, dd::Object_id se_private_id, const dd::Properties &ts_se_private_data, const dd::Properties &tbl_se_private_data, uint flags, ha_statistics *stats); /** @brief Retrieve index column cardinality from SE. @param db_name Name of schema @param table_name Name of table @param index_name Name of index @param index_ordinal_position Position of index. @param column_ordinal_position Position of column in index. @param se_private_id SE private id of the table. @param[out] cardinality cardinality being returned by SE. @note Handlers that implement this callback/API should adhere to servers expectation that, the implementation would invoke my_error() before returning 'true'/failure from this function. @returns false on success, true on failure */ typedef bool (*get_index_column_cardinality_t)( const char *db_name, const char *table_name, const char *index_name, uint index_ordinal_position, uint column_ordinal_position, dd::Object_id se_private_id, ulonglong *cardinality); /** Retrieve ha_tablespace_statistics from SE. @param tablespace_name Tablespace_name @param file_name Tablespace file name. @param ts_se_private_data Tablespace SE private data. @param[out] stats Contains tablespace statistics read from SE. @note Handlers that implement this callback/API should adhere to servers expectation that, the implementation would invoke my_error() before returning 'true'/failure from this function. @returns false on success, true on failure */ typedef bool (*get_tablespace_statistics_t)( const char *tablespace_name, const char *file_name, const dd::Properties &ts_se_private_data, ha_tablespace_statistics *stats); /* Database physical clone interfaces */ /** Get capability flags for clone operation @param[out] flags capability flag */ using Clone_capability_t = void (*)(Ha_clone_flagset &flags); /** Begin copy from source database @param[in] hton handlerton for SE @param[in] thd server thread handle @param[in,out] loc locator @param[in,out] loc_len locator length @param[out] task_id task identifier @param[in] type clone type @param[in] mode mode for starting clone @return error code */ using Clone_begin_t = int (*)(handlerton *hton, THD *thd, const uchar *&loc, uint &loc_len, uint &task_id, Ha_clone_type type, Ha_clone_mode mode); /** Copy data from source database in chunks via callback @param[in] hton handlerton for SE @param[in] thd server thread handle @param[in] loc locator @param[in] loc_len locator length in bytes @param[in] task_id task identifier @param[in] cbk callback interface for sending data @return error code */ using Clone_copy_t = int (*)(handlerton *hton, THD *thd, const uchar *loc, uint loc_len, uint task_id, Ha_clone_cbk *cbk); /** Acknowledge data transfer to source database @param[in] hton handlerton for SE @param[in] thd server thread handle @param[in] loc locator @param[in] loc_len locator length in bytes @param[in] task_id task identifier @param[in] in_err inform any error occurred @param[in] cbk callback interface @return error code */ using Clone_ack_t = int (*)(handlerton *hton, THD *thd, const uchar *loc, uint loc_len, uint task_id, int in_err, Ha_clone_cbk *cbk); /** End copy from source database @param[in] hton handlerton for SE @param[in] thd server thread handle @param[in] loc locator @param[in] loc_len locator length in bytes @param[in] task_id task identifier @param[in] in_err error code when ending after error @return error code */ using Clone_end_t = int (*)(handlerton *hton, THD *thd, const uchar *loc, uint loc_len, uint task_id, int in_err); /** Begin apply to destination database @param[in] hton handlerton for SE @param[in] thd server thread handle @param[in,out] loc locator @param[in,out] loc_len locator length @param[in] task_id task identifier @param[in] mode mode for starting clone @param[in] data_dir target data directory @return error code */ using Clone_apply_begin_t = int (*)(handlerton *hton, THD *thd, const uchar *&loc, uint &loc_len, uint &task_id, Ha_clone_mode mode, const char *data_dir); /** Apply data to destination database in chunks via callback @param[in] hton handlerton for SE @param[in] thd server thread handle @param[in] loc locator @param[in] loc_len locator length in bytes @param[in] task_id task identifier @param[in] in_err inform any error occurred @param[in] cbk callback interface for receiving data @return error code */ using Clone_apply_t = int (*)(handlerton *hton, THD *thd, const uchar *loc, uint loc_len, uint task_id, int in_err, Ha_clone_cbk *cbk); /** End apply to destination database @param[in] hton handlerton for SE @param[in] thd server thread handle @param[in] loc locator @param[in] loc_len locator length in bytes @param[in] task_id task identifier @param[in] in_err error code when ending after error @return error code */ using Clone_apply_end_t = int (*)(handlerton *hton, THD *thd, const uchar *loc, uint loc_len, uint task_id, int in_err); struct Clone_interface_t { /* Get clone capabilities of an SE */ Clone_capability_t clone_capability; /* Interfaces to copy data. */ Clone_begin_t clone_begin; Clone_copy_t clone_copy; Clone_ack_t clone_ack; Clone_end_t clone_end; /* Interfaces to apply data. */ Clone_apply_begin_t clone_apply_begin; Clone_apply_t clone_apply; Clone_apply_end_t clone_apply_end; }; /** Perform post-commit/rollback cleanup after DDL statement (e.g. in case of DROP TABLES really remove table files from disk). @note This hook will be invoked after DDL commit or rollback only for storage engines supporting atomic DDL. @note Problems during execution of this method should be reported to error log and as warnings/notes to user. Since this method is called after successful commit of the statement we can't fail statement with error. */ typedef void (*post_ddl_t)(THD *thd); /** Perform SE-specific cleanup after recovery of transactions. @note Particularly SEs supporting atomic DDL can use this call to perform post-DDL actions for DDL statements which were committed or rolled back during recovery stage. */ typedef void (*post_recover_t)(void); /** Lock a handlerton (resource) log to collect log information. */ typedef bool (*lock_hton_log_t)(handlerton *hton); /** Unlock a handlerton (resource) log after collecting log information. */ typedef bool (*unlock_hton_log_t)(handlerton *hton); /** Collect a handlerton (resource) log information. */ typedef bool (*collect_hton_log_info_t)(handlerton *hton, Json_dom *json); /** Check SE considers types of child and parent columns in foreign key to be compatible. @param child_column_type Child column type description. @param parent_column_type Parent column type description. @param check_charsets Indicates whether we need to check that charsets of string columns match. Which is true in most cases. @returns True if types are compatible, False if not. */ typedef bool (*check_fk_column_compat_t)( const Ha_fk_column_type *child_column_type, const Ha_fk_column_type *parent_column_type, bool check_charsets); typedef bool (*is_reserved_db_name_t)(handlerton *hton, const char *name); /** Prepare the secondary engine for executing a statement. This function is called right after the secondary engine TABLE objects have been opened by open_secondary_engine_tables(), before the statement is optimized and executed. Secondary engines will typically create a context object in this function, which they can use to store state that is needed during the optimization and execution phases. @param thd thread context @param lex the statement to execute @return true on error, false on success */ using prepare_secondary_engine_t = bool (*)(THD *thd, LEX *lex); /** Optimize a statement for execution on a secondary storage engine. This function is called when the optimization of a statement has completed, just before the statement is executed. Secondary engines can use this function to apply engine-specific optimizations to the execution plan. They can also reject executing the query by raising an error, in which case the query will be reprepared and executed by the primary storage engine. @param thd thread context @param lex the statement being optimized @return true on error, false on success */ using optimize_secondary_engine_t = bool (*)(THD *thd, LEX *lex); /** Compares the cost of two join plans in the secondary storage engine. The cost of the current candidate is compared with the cost of the best plan seen so far. @param thd thread context @param join the candidate plan to evaluate @param optimizer_cost the cost estimate calculated by the optimizer @param[out] use_best_so_far true if the optimizer should stop searching for a better plan and use the best plan it has seen so far @param[out] cheaper true if the candidate is the best plan seen so far for this JOIN (must be true if it is the first plan seen), false otherwise @param[out] secondary_engine_cost the cost estimated by the secondary engine @return false on success, or true if an error has been raised */ using compare_secondary_engine_cost_t = bool (*)(THD *thd, const JOIN &join, double optimizer_cost, bool *use_best_so_far, bool *cheaper, double *secondary_engine_cost); /** Evaluates the cost of executing the given access path in this secondary storage engine, and potentially modifies the cost estimates that are in the access path. This function is only called from the hypergraph join optimizer. The function is called on every access path that the join optimizer might compare to an alternative access path. This includes both paths that represent complete execution plans and paths that represent partial plans. It is not guaranteed to be called on every child path. For example, if GROUP BY is done by sorting first and then aggregating the sorted results, the function will only be called on the aggregation path, and not on the sort path, because only the aggregation path will be compared to other paths. The secondary engine is allowed to modify the estimates in the access path to better match the costs of the access path in the secondary engine. It can change any of the following AccessPath members: - init_once_cost - init_cost - cost - cost_before_filter - num_output_rows - num_output_rows_before_filter - secondary_engine_data Any other members should be left unchanged. The AccessPath must be in an internally consistent state when the function returns, and satisfy invariants expected by the hypergraph join optimizer, such as: - init_cost <= cost_before_filter <= cost - num_output_rows <= num_output_rows_before_filter The secondary engine can also reject an access path altogether, by returning true, in which case the join optimizer will not use that path in the final plan. Since the secondary engine can reject any partial or complete plan, it is possible that the join optimizer does not find any valid plan that is accepted. In this case, the join optimizer will raise an error. If the secondary encounters an error when evaluating the cost of the path, it can signal an error by calling my_error() and return true, in which case the join optimizer will not suggest any plan for the query. @param thd The thread context. @param hypergraph The hypergraph that represents the search space. @param[in,out] access_path The AccessPath to evaluate. @retval false on success. @retval true if the plan is to be rejected, or if an error was raised. */ using secondary_engine_modify_access_path_cost_t = bool (*)( THD *thd, const JoinHypergraph &hypergraph, AccessPath *access_path); /** Checks whether the tables used in an explain query are loaded in the secondary engine. @param thd thread context. @retval true if there is a table not loaded to the secondary engine, false otherwise */ using external_engine_explain_check_t = bool (*)(THD *thd); /** Looks up and returns a specific secondary engine query offload or exec failure reason as a string given a thread context (representing the query) when the offloaded query fails in the secondary storage engine. @param thd thread context. @retval std::string_view as the offload failure reason. The memory pointed to is managed by the handlerton and may be freed when the statement completes. */ using get_secondary_engine_offload_or_exec_fail_reason_t = std::string_view (*)(const THD *thd); /** Finds and returns a specific secondary engine query offload failure reason as a string given a thread context (representing the query) whenever get_secondary_engine_offload_or_exec_fail_reason_t returns an empty reason. @param thd thread context. @retval std::string_view as the offload failure reason. */ using find_secondary_engine_offload_fail_reason_t = std::string_view (*)(THD *thd); /** Sets a specific secondary engine offload failure reason for a query represented by the thread context when the offloaded query fails in the secondary storage engine. @param thd thread context. @param reason offload failure reason. @retval bool to indicate if the setting succeeded or failed */ using set_secondary_engine_offload_fail_reason_t = bool (*)(const THD *thd, std::string_view reason); enum class SecondaryEngineGraphSimplificationRequest { /** Continue optimization phase with current hypergraph. */ kContinue = 0, /** Trigger restart of hypergraph with provided number of subgraph pairs. */ kRestart = 1, }; struct SecondaryEngineGraphSimplificationRequestParameters { /** Optimizer request from the secondary engine. */ SecondaryEngineGraphSimplificationRequest secondary_engine_optimizer_request; /** Subgraph pairs requested by the secondary engine. */ int subgraph_pair_limit; }; /** Hook for secondary engine to evaluate the current hypergraph optimization state, and returns the state that hypergraph should transition to. Usually invoked after secondary_engine_modify_access_path_cost_t is invoked via the optimizer. The state is returned as object of type SecondaryEngineGraphSimplificationRequestParameters, and can lead to simplification of hypergraph search space, or resetting the graph and starting search afresh. @param thd The thread context. @param hypergraph The hypergraph that represents the search space. @param access_path The AccessPath to evaluate. @param current_subgraph_pairs Count of subgraph pairs explored so far. @param current_subgraph_pairs_limit Limit for current hypergraph. @param is_root_access_path Indicating if access_path is root. @param trace Optimizer trace string. @returns instance of SecondaryEngineGraphSimplificationRequestParameters which contains description of the state hypergraph optimizer should transition to. */ using secondary_engine_check_optimizer_request_t = SecondaryEngineGraphSimplificationRequestParameters (*)( THD *thd, const JoinHypergraph &hypergraph, const AccessPath *access_path, int current_subgraph_pairs, int current_subgraph_pairs_limit, bool is_root_access_path, std::string *trace); // Capabilities (bit flags) for secondary engines. using SecondaryEngineFlags = uint64_t; enum class SecondaryEngineFlag : SecondaryEngineFlags { SUPPORTS_HASH_JOIN = 0, SUPPORTS_NESTED_LOOP_JOIN = 1, // If this flag is set, aggregation (GROUP BY and DISTINCT) do not require // ordered inputs and create unordered outputs. This is typically the case // if they are implemented using hash-based techniques. AGGREGATION_IS_UNORDERED = 2, /// This flag can be set to signal that a secondary storage engine will not /// use MySQL's executor (see JOIN::override_executor_func). In this case, it /// doesn't need MySQL's execution data structures, like internal temporary /// tables, filesort objects or iterators. If the flag is set, /// FinalizePlanForQueryBlock() will not make any changes to the plan, and /// CreateIteratorFromAccessPath() will not be called. USE_EXTERNAL_EXECUTOR = 3, }; /// Creates an empty bitmap of access path types. This is the base /// case for the function template with the same name below. inline constexpr SecondaryEngineFlags MakeSecondaryEngineFlags() { return 0; } /// Creates a bitmap representing a set of access path types. template constexpr SecondaryEngineFlags MakeSecondaryEngineFlags( SecondaryEngineFlag flag1, Args... rest) { return (uint64_t{1} << static_cast(flag1)) | MakeSecondaryEngineFlags(rest...); } /// Returns the handlerton of the secondary engine that is used in the session, /// or nullptr if a secondary engine is not used. const handlerton *SecondaryEngineHandlerton(const THD *thd); // FIXME: Temporary workaround to enable storage engine plugins to use the // before_commit hook. Remove after WL#11320 has been completed. using se_before_commit_t = void (*)(void *arg); // FIXME: Temporary workaround to enable storage engine plugins to use the // after_commit hook. Remove after WL#11320 has been completed. using se_after_commit_t = void (*)(void *arg); // FIXME: Temporary workaround to enable storage engine plugins to use the // before_rollback hook. Remove after WL#11320 has been completed. using se_before_rollback_t = void (*)(void *arg); /** Notify plugins when a SELECT query was executed. The plugins will be notified only if the query is not considered secondary engine relevant, i.e.: 1. for a query with missing secondary_engine_statement_ctx, its estimated cost is greater than the currently configured 'secondary_engine_cost_threshold' 2. for queries with secondary_engine_statement_ctx, wherever secondary_engine_statement_ctx::is_primary_engine_optimal() returns False indicating secondary engine relevance. */ using notify_after_select_t = void (*)(THD *thd, SelectExecutedIn executed_in); /** * Notify plugins when a table is created. */ using notify_create_table_t = void (*)(struct HA_CREATE_INFO *create_info, const char *db, const char *table_name); /** Secondary engine hook called after PRIMARY_TENTATIVELY optimization is complete, and decides if secondary engine optimization will be performed, and comparison of primary engine cost and secondary engine cost will determine which engine to use for execution. @param[in] thd current thd. @return : @retval true When secondary_engine's prepare hook is to be further called @retval false When secondary_engine's prepare hook is NOT to be further called */ using secondary_engine_pre_prepare_hook_t = bool (*)(THD *thd); /** * Notify plugins when a table is dropped. */ using notify_drop_table_t = void (*)(Table_ref *tab); /* Page Tracking : interfaces to handlerton functions which starts/stops page tracking, and purges/fetches page tracking information. */ /** Start page tracking. @param[out] start_id SE specific sequence number [LSN for InnoDB] indicating when the tracking was started @return Operation status. @retval 0 Success @retval other ER_* mysql error. Get error details from THD. */ using page_track_start_t = int (*)(uint64_t *start_id); /** Stop page tracking. @param[out] stop_id SE specific sequence number [LSN for InnoDB] indicating when the tracking was stopped @return Operation status. @retval 0 Success @retval other ER_* mysql error. Get error details from THD. */ using page_track_stop_t = int (*)(uint64_t *stop_id); /** Purge page tracking data. @param[in,out] purge_id SE specific sequence number [LSN for InnoDB] initially indicating till where the data needs to be purged and finally updated to until where it was actually purged @return Operation status. @retval 0 Success @retval other ER_* mysql error. Get error details from THD. */ using page_track_purge_t = int (*)(uint64_t *purge_id); /** Fetch tracked pages. @param[in] cbk_func callback function return page IDs @param[in] cbk_ctx caller's context for callback @param[in,out] start_id SE specific sequence number [LSN for InnoDB] from where the pages tracked would be returned. @note The range might get expanded and the actual start_id used for the querying will be updated. @param[in,out] stop_id SE specific sequence number [LSN for InnoDB] until where the pages tracked would be returned. @note The range might get expanded and the actual stop_id used for the querying will be updated. @param[out] buffer allocated buffer to copy page IDs @param[in] buffer_len length of buffer in bytes @return Operation status. @retval 0 Success @retval other ER_* mysql error. Get error details from THD. */ using page_track_get_page_ids_t = int (*)(Page_Track_Callback cbk_func, void *cbk_ctx, uint64_t *start_id, uint64_t *stop_id, unsigned char *buffer, size_t buffer_len); /** Fetch approximate number of tracked pages in the given range. @param[in,out] start_id SE specific sequence number [LSN for InnoDB] from where the pages tracked would be returned. @note the range might get expanded and the actual start_id used for the querying will be updated. @param[in,out] stop_id SE specific sequence number [LSN for InnoDB] until where the pages tracked would be returned. @note the range might get expanded and the actual stop_id used for the querying will be updated. @param[out] num_pages number of pages tracked @return Operation status. @retval 0 Success @retval other ER_* mysql error. Get error details from THD. */ using page_track_get_num_page_ids_t = int (*)(uint64_t *start_id, uint64_t *stop_id, uint64_t *num_pages); /** Fetch the status of the page tracking system. @param[out] status vector of a pair of (ID, bool) where ID is the start/stop point and bool is true if the ID is a start point else false */ using page_track_get_status_t = void (*)(std::vector> &status); /** Page track interface */ struct Page_track_t { page_track_start_t start; page_track_stop_t stop; page_track_purge_t purge; page_track_get_page_ids_t get_page_ids; page_track_get_num_page_ids_t get_num_page_ids; page_track_get_status_t get_status; }; /** handlerton is a singleton structure - one instance per storage engine - to provide access to storage engine functionality that works on the "global" level (unlike handler class that works on a per-table basis). usually handlerton instance is defined statically in ha_xxx.cc as static handlerton { ... } xxx_hton; savepoint_*, prepare, recover, and *_by_xid pointers can be 0. */ struct handlerton { /** Historical marker for if the engine is available or not. */ SHOW_COMP_OPTION state; /** Historical number used for frm file to determine the correct storage engine. This is going away and new engines will just use "name" for this. */ enum legacy_db_type db_type; /** Each storage engine has it's own memory area (actually a pointer) in the thd, for storing per-connection information. It is accessed as thd->ha_data[xxx_hton.slot] slot number is initialized by MySQL after xxx_init() is called. */ uint slot; /** To store per-savepoint data storage engine is provided with an area of a requested size (0 is ok here). savepoint_offset must be initialized statically to the size of the needed memory to store per-savepoint information. After xxx_init it is changed to be an offset to savepoint storage area and need not be used by storage engine. see binlog_hton and binlog_savepoint_set/rollback for an example. */ uint savepoint_offset; /* handlerton methods */ close_connection_t close_connection; kill_connection_t kill_connection; pre_dd_shutdown_t pre_dd_shutdown; reset_plugin_vars_t reset_plugin_vars; savepoint_set_t savepoint_set; savepoint_rollback_t savepoint_rollback; savepoint_rollback_can_release_mdl_t savepoint_rollback_can_release_mdl; savepoint_release_t savepoint_release; commit_t commit; rollback_t rollback; prepare_t prepare; recover_t recover; recover_prepared_in_tc_t recover_prepared_in_tc; commit_by_xid_t commit_by_xid; rollback_by_xid_t rollback_by_xid; set_prepared_in_tc_t set_prepared_in_tc; set_prepared_in_tc_by_xid_t set_prepared_in_tc_by_xid; create_t create; drop_database_t drop_database; panic_t panic; start_consistent_snapshot_t start_consistent_snapshot; flush_logs_t flush_logs; show_status_t show_status; partition_flags_t partition_flags; is_valid_tablespace_name_t is_valid_tablespace_name; get_tablespace_t get_tablespace; alter_tablespace_t alter_tablespace; get_tablespace_filename_ext_t get_tablespace_filename_ext; upgrade_tablespace_t upgrade_tablespace; upgrade_space_version_t upgrade_space_version; get_tablespace_type_t get_tablespace_type; get_tablespace_type_by_name_t get_tablespace_type_by_name; upgrade_logs_t upgrade_logs; finish_upgrade_t finish_upgrade; fill_is_table_t fill_is_table; dict_init_t dict_init; ddse_dict_init_t ddse_dict_init; dict_register_dd_table_id_t dict_register_dd_table_id; dict_cache_reset_t dict_cache_reset; dict_cache_reset_tables_and_tablespaces_t dict_cache_reset_tables_and_tablespaces; dict_recover_t dict_recover; dict_get_server_version_t dict_get_server_version; dict_set_server_version_t dict_set_server_version; is_reserved_db_name_t is_reserved_db_name; /** Global handler flags. */ uint32 flags{0}; /* Those handlerton functions below are properly initialized at handler init. */ binlog_func_t binlog_func; binlog_log_query_t binlog_log_query; acl_notify_t acl_notify; discover_t discover; find_files_t find_files; table_exists_in_engine_t table_exists_in_engine; push_to_engine_t push_to_engine; is_supported_system_table_t is_supported_system_table; /* APIs for retrieving Serialized Dictionary Information by tablespace id */ sdi_create_t sdi_create; sdi_drop_t sdi_drop; sdi_get_keys_t sdi_get_keys; sdi_get_t sdi_get; sdi_set_t sdi_set; sdi_delete_t sdi_delete; /** Null-ended array of file extensions that exist for the storage engine. Used by frm_error() and the default handler::rename_table and delete_table methods in handler.cc. For engines that have two file name extensions (separate meta/index file and data file), the order of elements is relevant. First element of engine file name extensions array should be meta/index file extension. Second element - data file extension. This order is assumed by prepare_for_repair() when REPAIR TABLE ... USE_FRM is issued. For engines that don't have files, file_extensions is NULL. Currently, the following alternatives are used: - file_extensions == NULL; - file_extensions[0] != NULL, file_extensions[1] == NULL; - file_extensions[0] != NULL, file_extensions[1] != NULL, file_extensions[2] == NULL; */ const char **file_extensions; is_dict_readonly_t is_dict_readonly; rm_tmp_tables_t rm_tmp_tables; get_cost_constants_t get_cost_constants; replace_native_transaction_in_thd_t replace_native_transaction_in_thd; notify_exclusive_mdl_t notify_exclusive_mdl; notify_alter_table_t notify_alter_table; notify_rename_table_t notify_rename_table; notify_truncate_table_t notify_truncate_table; rotate_encryption_master_key_t rotate_encryption_master_key; redo_log_set_state_t redo_log_set_state; get_table_statistics_t get_table_statistics; get_index_column_cardinality_t get_index_column_cardinality; get_tablespace_statistics_t get_tablespace_statistics; post_ddl_t post_ddl; post_recover_t post_recover; /** Clone data transfer interfaces */ Clone_interface_t clone_interface; /** Flag for Engine License. */ uint32 license; /** Location for engines to keep personal structures. */ void *data; /* Log_resource functions that must be supported by storage engines with relevant log information to be collected. */ lock_hton_log_t lock_hton_log; unlock_hton_log_t unlock_hton_log; collect_hton_log_info_t collect_hton_log_info; /** Flags describing details of foreign key support by storage engine. */ uint32 foreign_keys_flags; check_fk_column_compat_t check_fk_column_compat; /** Suffix for auto-generated foreign key names for tables using this storage engine. If such suffix is specified by SE then its generated foreign key names follow (table name)(SE-specific FK name suffix)(FK number) pattern. Length of such suffix should not exceed MAX_FK_NAME_SUFFIX_LENGTH bytes. If no suffix is specified then FK_NAME_DEFAULT_SUFFIX is used as default. */ LEX_CSTRING fk_name_suffix; /** Pointer to a function that prepares a secondary engine for executing a statement. @see prepare_secondary_engine_t for function signature. */ prepare_secondary_engine_t prepare_secondary_engine; /** Pointer to a function that optimizes the current statement for execution on the secondary storage engine represented by this handlerton. @see optimize_secondary_engine_t for function signature. */ optimize_secondary_engine_t optimize_secondary_engine; /** Pointer to a function that estimates the cost of executing a join in a secondary storage engine. @see compare_secondary_engine_cost_t for function signature. */ compare_secondary_engine_cost_t compare_secondary_engine_cost; /// Bitmap which contains the supported join types and other flags /// for a secondary storage engine when used with the hypergraph join /// optimizer. If it is empty, it means that the secondary engine /// does not support the hypergraph join optimizer. SecondaryEngineFlags secondary_engine_flags; /// Pointer to a function that checks if the table is loaded in the /// secondary engine in the case of an explain statement. /// /// @see external_engine_explain_check_t for function signature. external_engine_explain_check_t external_engine_explain_check; /// Pointer to a function that evaluates the cost of executing an access path /// in a secondary storage engine. /// /// @see secondary_engine_modify_access_path_cost_t for function signature. secondary_engine_modify_access_path_cost_t secondary_engine_modify_access_path_cost; /// Pointer to a function that returns the query offload or exec failure /// reason as a string given a thread context (representing the query) when /// the offloaded query failed in a secondary storage engine. /// /// @see get_secondary_engine_offload_or_exec_fail_reason_t for function /// signature. get_secondary_engine_offload_or_exec_fail_reason_t get_secondary_engine_offload_or_exec_fail_reason; /// Pointer to a function that finds and returns the query offload failure /// reason as a string given a thread context (representing the query) when /// get_secondary_engine_offload_or_exec_fail_reason returns an empty reason. /// /// @see find_secondary_engine_offload_fail_reason_t for function /// signature. find_secondary_engine_offload_fail_reason_t find_secondary_engine_offload_fail_reason; /// Pointer to a function that sets the offload failure reason as a string /// for a thread context (representing the query) when the offloaded query /// failed in a secondary storage engine. /// /// @see set_secondary_engine_offload_fail_reason_t for function signature. set_secondary_engine_offload_fail_reason_t set_secondary_engine_offload_fail_reason; /// Pointer to function that checks secondary engine request for updating /// hypergraph join optimization. /// /// @see secondary_engine_check_optimizer_request_t for function signature. secondary_engine_check_optimizer_request_t secondary_engine_check_optimizer_request; /* Pointer to a function that is called at the end of the PRIMARY_TENTATIVELY * optimization stage, which also decides that the statement should be * attempted offloaded to a secondary storage engine. */ secondary_engine_pre_prepare_hook_t secondary_engine_pre_prepare_hook; se_before_commit_t se_before_commit; se_after_commit_t se_after_commit; se_before_rollback_t se_before_rollback; notify_after_select_t notify_after_select; notify_create_table_t notify_create_table; notify_drop_table_t notify_drop_table; /** Page tracking interface */ Page_track_t page_track; }; /* Possible flags of a handlerton (there can be 32 of them) */ #define HTON_NO_FLAGS 0 #define HTON_CLOSE_CURSORS_AT_COMMIT (1 << 0) #define HTON_ALTER_NOT_SUPPORTED (1 << 1) // Engine does not support alter #define HTON_CAN_RECREATE (1 << 2) // Delete all is used for truncate #define HTON_HIDDEN (1 << 3) // Engine does not appear in lists /* Bit 4 was occupied by BDB-specific HTON_FLUSH_AFTER_RENAME flag and is no longer used. */ #define HTON_NOT_USER_SELECTABLE (1 << 5) #define HTON_TEMPORARY_NOT_SUPPORTED \ (1 << 6) // Having temporary tables not supported #define HTON_SUPPORT_LOG_TABLES (1 << 7) // Engine supports log tables #define HTON_NO_PARTITION (1 << 8) // You can not partition these tables /* This flag should be set when deciding that the engine does not allow row based binary logging (RBL) optimizations. Currently, setting this flag, means that table's read/write_set will be left untouched when logging changes to tables in this engine. In practice this means that the server will not mess around with table->write_set and/or table->read_set when using RBL and deciding whether to log full or minimal rows. It's valuable for instance for virtual tables, eg: Performance Schema which have no meaning for replication. */ #define HTON_NO_BINLOG_ROW_OPT (1 << 9) /** Engine supports extended keys. The flag allows to use 'extended key' feature if the engine is able to do it (has primary key values in the secondary key). Note that handler flag HA_PRIMARY_KEY_IN_READ_INDEX is actually partial case of HTON_SUPPORTS_EXTENDED_KEYS. */ #define HTON_SUPPORTS_EXTENDED_KEYS (1 << 10) // Engine support foreign key constraint. #define HTON_SUPPORTS_FOREIGN_KEYS (1 << 11) /** Engine supports atomic DDL. That is rollback of transaction for DDL statement will also rollback all changes in SE, commit of transaction of DDL statement will make it durable. */ #define HTON_SUPPORTS_ATOMIC_DDL (1 << 12) /* Engine supports packed keys. */ #define HTON_SUPPORTS_PACKED_KEYS (1 << 13) /** Engine is a secondary storage engine. */ #define HTON_IS_SECONDARY_ENGINE (1 << 14) /** Engine supports secondary storage engines. */ #define HTON_SUPPORTS_SECONDARY_ENGINE (1 << 15) /** Engine supports table or tablespace encryption . */ #define HTON_SUPPORTS_TABLE_ENCRYPTION (1 << 16) constexpr const decltype(handlerton::flags) HTON_SUPPORTS_ENGINE_ATTRIBUTE{ 1 << 17}; /** Engine supports Generated invisible primary key. */ // clang-format off constexpr const decltype( handlerton::flags) HTON_SUPPORTS_GENERATED_INVISIBLE_PK{1 << 18}; // clang-format on /** Whether the secondary engine supports DDLs. No meaning if the engine is not * secondary. */ #define HTON_SECONDARY_ENGINE_SUPPORTS_DDL (1 << 19) /** Whether the engine does not support triggers. */ #define HTON_NO_TRIGGER_SUPPORT (1 << 20) /** Whether the primary engine supports external data sources. This case refers to having tables with data in object store and the engine does not store any of those data, only metadata. Table contents can be accessed only after loading the table in the secondary storage engine. The flag is used for a primary engine only. */ #define HTON_SUPPORTS_EXTERNAL_SOURCE (1 << 21) constexpr const decltype(handlerton::flags) HTON_SUPPORTS_BULK_LOAD{1 << 22}; /** Engine supports index distance scan. */ inline constexpr const decltype(handlerton::flags) HTON_SUPPORTS_DISTANCE_SCAN{ 1 << 23}; /* Whether the engine supports being specified as a default storage engine */ inline constexpr const decltype( handlerton::flags) HTON_NO_DEFAULT_ENGINE_SUPPORT{1 << 24}; inline bool secondary_engine_supports_ddl(const handlerton *hton) { assert(hton->flags & HTON_IS_SECONDARY_ENGINE); return (hton->flags & HTON_SECONDARY_ENGINE_SUPPORTS_DDL) != 0; } inline bool ddl_is_atomic(const handlerton *hton) { return (hton->flags & HTON_SUPPORTS_ATOMIC_DDL) != 0; } /* Bits for handlerton::foreign_keys_flags bitmap. */ /** Engine supports both unique and non-unique parent keys for foreign keys which contain full foreign key as its prefix. Storage engines which support foreign keys but do not have this flag set are assumed to support only parent keys which are primary/unique and contain exactly the same columns as the foreign key, possibly, in different order. */ static const uint32 HTON_FKS_WITH_PREFIX_PARENT_KEYS = (1 << 0); /** Storage engine supports hash keys as supporting keys for foreign keys. Hash key should contain all foreign key columns and only them (although in any order). Storage engines which support foreign keys but do not have this flag set are assumed to not allow hash keys as supporting keys. */ static const uint32 HTON_FKS_WITH_SUPPORTING_HASH_KEYS = (1 << 1); /** Storage engine supports non-hash keys which have common prefix with the foreign key as supporting keys for it. If there are several such keys, one which shares biggest prefix with FK is chosen. Storage engines which support foreign keys but do not have this flag set are assumed to require that supporting key contains full foreign key as its prefix. */ static const uint32 HTON_FKS_WITH_ANY_PREFIX_SUPPORTING_KEYS = (1 << 2); /** Storage engine does not support using the same key for both parent and supporting key, but requires the two to be different. */ static const uint32 HTON_FKS_NEED_DIFFERENT_PARENT_AND_SUPPORTING_KEYS = (1 << 3); /** Engine takes into account hidden part of key (coming from primary key) when determines if it can serve as parent key for a foreign key. Implies HTON_FKS_WITH_PREFIX_PARENT_KEYS and is related to HTON_SUPPORTS_EXTENDED_KEYS. */ static const uint32 HTON_FKS_WITH_EXTENDED_PARENT_KEYS = (1 << 4); /** Maximum possible length of SE-specific suffixes for auto-generated foreign key names. */ static const size_t MAX_FK_NAME_SUFFIX_LENGTH = 16; /** Suffix for auto-generated foreign key names for tables in SE's which don't specify own suffix. I.e. for foreign keys on tables in such SE's generated names follow (table name)FK_NAME_DEFAULT_SUFFIX(FK number) pattern. */ static const LEX_CSTRING FK_NAME_DEFAULT_SUFFIX = {STRING_WITH_LEN("_fk_")}; enum enum_tx_isolation : int { ISO_READ_UNCOMMITTED, ISO_READ_COMMITTED, ISO_REPEATABLE_READ, ISO_SERIALIZABLE }; enum enum_stats_auto_recalc : int { HA_STATS_AUTO_RECALC_DEFAULT = 0, HA_STATS_AUTO_RECALC_ON, HA_STATS_AUTO_RECALC_OFF }; /** Struct to hold information about the table that should be created. */ struct HA_CREATE_INFO { const CHARSET_INFO *table_charset{nullptr}; const CHARSET_INFO *default_table_charset{nullptr}; bool schema_read_only{false}; LEX_STRING connect_string{nullptr, 0}; const char *password{nullptr}; const char *tablespace{nullptr}; LEX_STRING comment{nullptr, 0}; /** Algorithm (and possible options) to be used for InnoDB's transparent page compression. If this attribute is set then it is hint to the storage engine to try and compress the data using the specified algorithm where possible. Note: this value is interpreted by the storage engine only. and ignored by the Server layer. */ LEX_STRING compress{nullptr, 0}; /** This attribute is used for InnoDB's transparent page encryption. If this attribute is set then it is hint to the storage engine to encrypt the data. Note: this value is interpreted by the storage engine only. and ignored by the Server layer. */ LEX_STRING encrypt_type{nullptr, 0}; /** * Secondary engine of the table. * Is nullptr if no secondary engine defined. */ LEX_CSTRING secondary_engine{nullptr, 0}; /** Secondary engine load status */ bool secondary_load{false}; const char *data_file_name{nullptr}; const char *index_file_name{nullptr}; const char *alias{nullptr}; ulonglong max_rows{0}; ulonglong min_rows{0}; ulonglong auto_increment_value{0}; ulong table_options{0}; ulong avg_row_length{0}; uint64_t used_fields{0}; // Can only be 1,2,4,8 or 16, but use uint32_t since that how it is // represented in InnoDB std::uint32_t key_block_size{0}; uint stats_sample_pages{0}; /* number of pages to sample during stats estimation, if used, otherwise 0. */ enum_stats_auto_recalc stats_auto_recalc{HA_STATS_AUTO_RECALC_DEFAULT}; SQL_I_List merge_list; handlerton *db_type{nullptr}; /** Row type of the table definition. Defaults to ROW_TYPE_DEFAULT for all non-ALTER statements. For ALTER TABLE defaults to ROW_TYPE_NOT_USED (means "keep the current"). Can be changed either explicitly by the parser. If nothing specified inherits the value of the original table (if present). */ enum row_type row_type = ROW_TYPE_DEFAULT; uint null_bits{0}; /* NULL bits at start of record */ uint options{0}; /* OR of HA_CREATE_ options */ uint merge_insert_method{0}; ha_storage_media storage_media{HA_SM_DEFAULT}; /* DEFAULT, DISK or MEMORY */ /* A flag to indicate if this table should be marked as a hidden table in the data dictionary. One use case is to mark the temporary tables created by ALTER to be marked as hidden. */ bool m_hidden{false}; /* A flag to indicate if this table should be created but not committed at the end of statement. */ bool m_transactional_ddl{false}; LEX_CSTRING engine_attribute = NULL_CSTR; LEX_CSTRING secondary_engine_attribute = NULL_CSTR; ulonglong m_implicit_tablespace_autoextend_size{0}; bool m_implicit_tablespace_autoextend_size_change{true}; /** Fill HA_CREATE_INFO to be used by ALTER as well as upgrade code. This function separates code from mysql_prepare_alter_table() to be used by upgrade code as well to reduce code duplication. For ALTER code path, this lets new create options override the old ones. @param[in] share TABLE_SHARE object @param[in] used_fields If a given create option is not flagged, old value be copied from the TABLE_SHARE. */ void init_create_options_from_share(const TABLE_SHARE *share, uint64_t used_fields); }; /** Structure describing changes to an index to be caused by ALTER TABLE. */ struct KEY_PAIR { /** Pointer to KEY object describing old version of index in TABLE::key_info array for TABLE instance representing old version of table. */ KEY *old_key; /** Pointer to KEY object describing new version of index in Alter_inplace_info::key_info_buffer array. */ KEY *new_key; }; /** In-place alter handler context. This is a superclass intended to be subclassed by individual handlers in order to store handler unique context between in-place alter API calls. The handler is responsible for creating the object. This can be done as early as during check_if_supported_inplace_alter(). The SQL layer is responsible for destroying the object. @see Alter_inplace_info */ class inplace_alter_handler_ctx { public: inplace_alter_handler_ctx() = default; virtual void set_shared_data(const inplace_alter_handler_ctx *ctx [[maybe_unused]]) {} virtual ~inplace_alter_handler_ctx() = default; }; /** Class describing changes to be done by ALTER TABLE. Instance of this class is passed to storage engine in order to determine if this ALTER TABLE can be done using in-place algorithm. It is also used for executing the ALTER TABLE using in-place algorithm. */ class Alter_inplace_info { public: /** Bits to show in detail what operations the storage engine is to execute. All these operations are supported as in-place operations by the SQL layer. This means that operations that by their nature must be performed by copying the table to a temporary table, will not have their own flags here (e.g. ALTER TABLE FORCE, ALTER TABLE ENGINE). We generally try to specify handler flags only if there are real changes. But in cases when it is cumbersome to determine if some attribute has really changed we might choose to set flag pessimistically, for example, relying on parser output only. */ typedef ulonglong HA_ALTER_FLAGS; // Add non-unique, non-primary index static const HA_ALTER_FLAGS ADD_INDEX = 1ULL << 0; // Drop non-unique, non-primary index static const HA_ALTER_FLAGS DROP_INDEX = 1ULL << 1; // Add unique, non-primary index static const HA_ALTER_FLAGS ADD_UNIQUE_INDEX = 1ULL << 2; // Drop unique, non-primary index static const HA_ALTER_FLAGS DROP_UNIQUE_INDEX = 1ULL << 3; // Add primary index static const HA_ALTER_FLAGS ADD_PK_INDEX = 1ULL << 4; // Drop primary index static const HA_ALTER_FLAGS DROP_PK_INDEX = 1ULL << 5; // Add column // Virtual generated column static const HA_ALTER_FLAGS ADD_VIRTUAL_COLUMN = 1ULL << 6; // Stored base (non-generated) column static const HA_ALTER_FLAGS ADD_STORED_BASE_COLUMN = 1ULL << 7; // Stored generated column static const HA_ALTER_FLAGS ADD_STORED_GENERATED_COLUMN = 1ULL << 8; // Add generic column (convenience constant). static const HA_ALTER_FLAGS ADD_COLUMN = ADD_VIRTUAL_COLUMN | ADD_STORED_BASE_COLUMN | ADD_STORED_GENERATED_COLUMN; // Drop column static const HA_ALTER_FLAGS DROP_VIRTUAL_COLUMN = 1ULL << 9; static const HA_ALTER_FLAGS DROP_STORED_COLUMN = 1ULL << 10; static const HA_ALTER_FLAGS DROP_COLUMN = DROP_VIRTUAL_COLUMN | DROP_STORED_COLUMN; // Rename column static const HA_ALTER_FLAGS ALTER_COLUMN_NAME = 1ULL << 11; // Change column datatype static const HA_ALTER_FLAGS ALTER_VIRTUAL_COLUMN_TYPE = 1ULL << 12; static const HA_ALTER_FLAGS ALTER_STORED_COLUMN_TYPE = 1ULL << 13; /** Change column datatype in such way that new type has compatible packed representation with old type, so it is theoretically possible to perform change by only updating data dictionary without changing table rows. */ static const HA_ALTER_FLAGS ALTER_COLUMN_EQUAL_PACK_LENGTH = 1ULL << 14; /// A virtual column has changed its position static const HA_ALTER_FLAGS ALTER_VIRTUAL_COLUMN_ORDER = 1ULL << 15; /// A stored column has changed its position (disregarding virtual columns) static const HA_ALTER_FLAGS ALTER_STORED_COLUMN_ORDER = 1ULL << 16; // Change column from NOT NULL to NULL static const HA_ALTER_FLAGS ALTER_COLUMN_NULLABLE = 1ULL << 17; // Change column from NULL to NOT NULL static const HA_ALTER_FLAGS ALTER_COLUMN_NOT_NULLABLE = 1ULL << 18; // Set or remove default column value static const HA_ALTER_FLAGS ALTER_COLUMN_DEFAULT = 1ULL << 19; // Change column generation expression static const HA_ALTER_FLAGS ALTER_VIRTUAL_GCOL_EXPR = 1ULL << 20; static const HA_ALTER_FLAGS ALTER_STORED_GCOL_EXPR = 1ULL << 21; // Add foreign key static const HA_ALTER_FLAGS ADD_FOREIGN_KEY = 1ULL << 22; // Drop foreign key static const HA_ALTER_FLAGS DROP_FOREIGN_KEY = 1ULL << 23; // table_options changed, see HA_CREATE_INFO::used_fields for details. static const HA_ALTER_FLAGS CHANGE_CREATE_OPTION = 1ULL << 24; // Table is renamed static const HA_ALTER_FLAGS ALTER_RENAME = 1ULL << 25; // Change the storage type of column static const HA_ALTER_FLAGS ALTER_COLUMN_STORAGE_TYPE = 1ULL << 26; // Change the column format of column static const HA_ALTER_FLAGS ALTER_COLUMN_COLUMN_FORMAT = 1ULL << 27; // Add partition static const HA_ALTER_FLAGS ADD_PARTITION = 1ULL << 28; // Drop partition static const HA_ALTER_FLAGS DROP_PARTITION = 1ULL << 29; // Changing partition options static const HA_ALTER_FLAGS ALTER_PARTITION = 1ULL << 30; // Coalesce partition static const HA_ALTER_FLAGS COALESCE_PARTITION = 1ULL << 31; // Reorganize partition ... into static const HA_ALTER_FLAGS REORGANIZE_PARTITION = 1ULL << 32; // Reorganize partition static const HA_ALTER_FLAGS ALTER_TABLE_REORG = 1ULL << 33; // Remove partitioning static const HA_ALTER_FLAGS ALTER_REMOVE_PARTITIONING = 1ULL << 34; // Partition operation with ALL keyword static const HA_ALTER_FLAGS ALTER_ALL_PARTITION = 1ULL << 35; /** Rename index. Note that we set this flag only if there are no other changes to the index being renamed. Also for simplicity we don't detect renaming of indexes which is done by dropping index and then re-creating index with identical definition under different name. */ static const HA_ALTER_FLAGS RENAME_INDEX = 1ULL << 36; /** Recreate the table for ALTER TABLE FORCE, ALTER TABLE ENGINE and OPTIMIZE TABLE operations. */ static const HA_ALTER_FLAGS RECREATE_TABLE = 1ULL << 37; // Add spatial index static const HA_ALTER_FLAGS ADD_SPATIAL_INDEX = 1ULL << 38; // Alter index comment static const HA_ALTER_FLAGS ALTER_INDEX_COMMENT = 1ULL << 39; // New/changed virtual generated column require validation static const HA_ALTER_FLAGS VALIDATE_VIRTUAL_COLUMN = 1ULL << 40; /** Change index option in a way which is likely not to require index recreation. For example, change COMMENT or KEY::is_algorithm_explicit flag (without change of index algorithm itself). */ static const HA_ALTER_FLAGS CHANGE_INDEX_OPTION = 1LL << 41; // Rebuild partition static const HA_ALTER_FLAGS ALTER_REBUILD_PARTITION = 1ULL << 42; /** Change in index length such that it does not require index rebuild. For example, change in index length due to column expansion like varchar(X) changed to varchar(X + N). */ static const HA_ALTER_FLAGS ALTER_COLUMN_INDEX_LENGTH = 1ULL << 43; /** Change to one of columns on which virtual generated column depends, so its values require re-evaluation. */ static const HA_ALTER_FLAGS VIRTUAL_GCOL_REEVAL = 1ULL << 44; /** Change to one of columns on which stored generated column depends, so its values require re-evaluation. */ static const HA_ALTER_FLAGS STORED_GCOL_REEVAL = 1ULL << 45; // Add check constraint. static const HA_ALTER_FLAGS ADD_CHECK_CONSTRAINT = 1ULL << 46; // Drop check constraint. static const HA_ALTER_FLAGS DROP_CHECK_CONSTRAINT = 1ULL << 47; // Suspend check constraint. static const HA_ALTER_FLAGS SUSPEND_CHECK_CONSTRAINT = 1ULL << 48; // Alter column visibility. static const HA_ALTER_FLAGS ALTER_COLUMN_VISIBILITY = 1ULL << 49; /** Create options (like MAX_ROWS) for the new version of table. @note The referenced instance of HA_CREATE_INFO object was already used to create new .FRM file for table being altered. So it has been processed by mysql_prepare_create_table() already. For example, this means that it has HA_OPTION_PACK_RECORD flag in HA_CREATE_INFO::table_options member correctly set. */ HA_CREATE_INFO *create_info; /** Alter options, fields and keys for the new version of table. @note The referenced instance of Alter_info object was already used to create new .FRM file for table being altered. So it has been processed by mysql_prepare_create_table() already. In particular, this means that in Create_field objects for fields which were present in some form in the old version of table, Create_field::field member points to corresponding Field instance for old version of table. */ Alter_info *alter_info; /** Indicates whether operation should fail if table is non-empty. Storage engines should not suggest/allow execution of such operations using INSTANT algorithm since check whether table is empty done from SQL-layer is not "instant". Also SEs might choose different algorithm for ALTER TABLE execution knowing that it will be allowed to proceed only if table is empty. Unlike for Alter_table_ctx::error_if_not_empty, we use bool for this flag and not bitmap, since SEs are really interested in the fact that ALTER will fail if table is not empty and not in exact reason behind this fact, and because we want to avoid extra dependency between Alter_table_ctx and Alter_inplace_info. */ bool error_if_not_empty; /** Array of KEYs for new version of table - including KEYs to be added. @note Currently this array is produced as result of mysql_prepare_create_table() call. This means that it follows different convention for KEY_PART_INFO::fieldnr values than objects in TABLE::key_info array. @todo This is mainly due to the fact that we need to keep compatibility with removed handler::add_index() call. We plan to switch to TABLE::key_info numbering later. KEYs are sorted - see sort_keys(). */ KEY *key_info_buffer; /** Size of key_info_buffer array. */ uint key_count; /** Size of index_drop_buffer array. */ uint index_drop_count; /** Array of pointers to KEYs to be dropped belonging to the TABLE instance for the old version of the table. */ KEY **index_drop_buffer; /** Size of index_add_buffer array. */ uint index_add_count; /** Array of indexes into key_info_buffer for KEYs to be added, sorted in increasing order. */ uint *index_add_buffer; /** Size of index_rename_buffer array. */ uint index_rename_count; /** Size of index_rename_buffer array. */ uint index_altered_visibility_count; /** Array of KEY_PAIR objects describing indexes being renamed. For each index renamed it contains object with KEY_PAIR::old_key pointing to KEY object belonging to the TABLE instance for old version of table representing old version of index and with KEY_PAIR::new_key pointing to KEY object for new version of index in key_info_buffer member. */ KEY_PAIR *index_rename_buffer; KEY_PAIR *index_altered_visibility_buffer; /** Number of virtual columns to be added. */ uint virtual_column_add_count; /** number of virtual columns to be dropped. */ uint virtual_column_drop_count; /** Context information to allow handlers to keep context between in-place alter API calls. @see inplace_alter_handler_ctx for information about object lifecycle. */ inplace_alter_handler_ctx *handler_ctx; /** If the table uses several handlers, like ha_partition uses one handler per partition, this contains a Null terminated array of ctx pointers that should all be committed together. Or NULL if only handler_ctx should be committed. Set to NULL if the low level handler::commit_inplace_alter_table uses it, to signal to the main handler that everything was committed as atomically. @see inplace_alter_handler_ctx for information about object lifecycle. */ inplace_alter_handler_ctx **group_commit_ctx; /** Flags describing in detail which operations the storage engine is to execute. */ HA_ALTER_FLAGS handler_flags; /** Partition_info taking into account the partition changes to be performed. Contains all partitions which are present in the old version of the table with partitions to be dropped or changed marked as such + all partitions to be added in the new version of table marked as such. */ partition_info *modified_part_info; /** true for online operation (LOCK=NONE) */ bool online; /** Can be set by handler along with handler_ctx. The difference is that this flag can be used to store SE-specific in-place ALTER context in cases when constructing full-blown inplace_alter_handler_ctx descendant is inconvenient. */ uint handler_trivial_ctx; /** Can be set by handler to describe why a given operation cannot be done in-place (HA_ALTER_INPLACE_NOT_SUPPORTED) or why it cannot be done online (HA_ALTER_INPLACE_NO_LOCK or HA_ALTER_INPLACE_NO_LOCK_AFTER_PREPARE) If set, it will be used with ER_ALTER_OPERATION_NOT_SUPPORTED_REASON if results from handler::check_if_supported_inplace_alter() doesn't match requirements set by user. If not set, the more generic ER_ALTER_OPERATION_NOT_SUPPORTED will be used. Please set to a properly localized string, for example using my_get_err_msg(), so that the error message as a whole is localized. */ const char *unsupported_reason; Alter_inplace_info(HA_CREATE_INFO *create_info_arg, Alter_info *alter_info_arg, bool error_if_not_empty_arg, KEY *key_info_arg, uint key_count_arg, partition_info *modified_part_info_arg) : create_info(create_info_arg), alter_info(alter_info_arg), error_if_not_empty(error_if_not_empty_arg), key_info_buffer(key_info_arg), key_count(key_count_arg), index_drop_count(0), index_drop_buffer(nullptr), index_add_count(0), index_add_buffer(nullptr), index_rename_count(0), index_altered_visibility_count(0), index_rename_buffer(nullptr), virtual_column_add_count(0), virtual_column_drop_count(0), handler_ctx(nullptr), group_commit_ctx(nullptr), handler_flags(0), modified_part_info(modified_part_info_arg), online(false), handler_trivial_ctx(0), unsupported_reason(nullptr) {} ~Alter_inplace_info() { if (handler_ctx != nullptr) ::destroy_at(handler_ctx); } /** Used after check_if_supported_inplace_alter() to report error if the result does not match the LOCK/ALGORITHM requirements set by the user. @param not_supported Part of statement that was not supported. @param try_instead Suggestion as to what the user should replace not_supported with. */ void report_unsupported_error(const char *not_supported, const char *try_instead); /** Add old and new version of key to array of indexes to be renamed. */ void add_renamed_key(KEY *old_key, KEY *new_key) { KEY_PAIR *key_pair = index_rename_buffer + index_rename_count++; key_pair->old_key = old_key; key_pair->new_key = new_key; DBUG_PRINT("info", ("index renamed: '%s' to '%s'", old_key->name, new_key->name)); } void add_altered_index_visibility(KEY *old_key, KEY *new_key) { KEY_PAIR *key_pair = index_altered_visibility_buffer + index_altered_visibility_count++; key_pair->old_key = old_key; key_pair->new_key = new_key; DBUG_PRINT("info", ("index had visibility altered: %i to %i", old_key->is_visible, new_key->is_visible)); } /** Add old and new version of modified key to arrays of indexes to be dropped and added (correspondingly). */ void add_modified_key(KEY *old_key, KEY *new_key) { index_drop_buffer[index_drop_count++] = old_key; index_add_buffer[index_add_count++] = (uint)(new_key - key_info_buffer); DBUG_PRINT("info", ("index changed: '%s'", old_key->name)); } /** Drop key to array of indexes to be dropped. */ void add_dropped_key(KEY *old_key) { index_drop_buffer[index_drop_count++] = old_key; DBUG_PRINT("info", ("index dropped: '%s'", old_key->name)); } /** Add key to array of indexes to be added. */ void add_added_key(KEY *new_key) { index_add_buffer[index_add_count++] = (uint)(new_key - key_info_buffer); DBUG_PRINT("info", ("index added: '%s'", new_key->name)); } }; struct HA_CHECK_OPT { uint flags{0}; /* isam layer flags (e.g. for myisamchk) */ uint sql_flags{0}; /* sql layer flags - for something myisamchk cannot do */ KEY_CACHE *key_cache; /* new key cache when changing key cache */ }; /* This is a buffer area that the handler can use to store rows. 'end_of_used_area' should be kept updated after calls to read-functions so that other parts of the code can use the remaining area (until next read calls is issued). */ struct HANDLER_BUFFER { uchar *buffer; /* Buffer one can start using */ uchar *buffer_end; /* End of buffer */ uchar *end_of_used_area; /* End of area that was used by handler */ }; typedef void *range_seq_t; struct RANGE_SEQ_IF { /* Initialize the traversal of range sequence SYNOPSIS init() init_params The seq_init_param parameter n_ranges The number of ranges obtained flags A combination of HA_MRR_SINGLE_POINT, HA_MRR_FIXED_KEY RETURN An opaque value to be used as RANGE_SEQ_IF::next() parameter */ range_seq_t (*init)(void *init_params, uint n_ranges, uint flags); /* Get the next range in the range sequence SYNOPSIS next() seq The value returned by RANGE_SEQ_IF::init() range OUT Information about the next range RETURN 0 - Ok, the range structure filled with info about the next range 1 - No more ranges */ uint (*next)(range_seq_t seq, KEY_MULTI_RANGE *range); /* Check whether range_info orders to skip the next record SYNOPSIS skip_record() seq The value returned by RANGE_SEQ_IF::init() range_info Information about the next range (Ignored if MRR_NO_ASSOCIATION is set) rowid Rowid of the record to be checked (ignored if set to 0) RETURN 1 - Record with this range_info and/or this rowid shall be filtered out from the stream of records returned by ha_multi_range_read_next() 0 - The record shall be left in the stream */ bool (*skip_record)(range_seq_t seq, char *range_info, uchar *rowid); }; /** Used to store optimizer cost estimates. The class consists of PODs only: default operator=, copy constructor and destructor are used. */ class Cost_estimate { private: double io_cost; ///< cost of I/O operations double cpu_cost; ///< cost of CPU operations double import_cost; ///< cost of remote operations double mem_cost; ///< memory used (bytes) public: Cost_estimate() : io_cost(0), cpu_cost(0), import_cost(0), mem_cost(0) {} /// Returns sum of time-consuming costs, i.e., not counting memory cost double total_cost() const { return io_cost + cpu_cost + import_cost; } double get_io_cost() const { return io_cost; } double get_cpu_cost() const { return cpu_cost; } double get_import_cost() const { return import_cost; } double get_mem_cost() const { return mem_cost; } /** Whether or not all costs in the object are zero @return true if all costs are zero, false otherwise */ bool is_zero() const { return !(io_cost || cpu_cost || import_cost || mem_cost); } /** Whether or not the total cost is the maximal double @return true if total cost is the maximal double, false otherwise */ bool is_max_cost() const { return io_cost == DBL_MAX; } /// Reset all costs to zero void reset() { io_cost = cpu_cost = import_cost = mem_cost = 0; } /// Set current cost to the maximal double void set_max_cost() { reset(); io_cost = DBL_MAX; } /// Multiply io, cpu and import costs by parameter void multiply(double m) { assert(!is_max_cost()); io_cost *= m; cpu_cost *= m; import_cost *= m; /* Don't multiply mem_cost */ } Cost_estimate &operator+=(const Cost_estimate &other) { assert(!is_max_cost() && !other.is_max_cost()); io_cost += other.io_cost; cpu_cost += other.cpu_cost; import_cost += other.import_cost; mem_cost += other.mem_cost; return *this; } Cost_estimate operator+(const Cost_estimate &other) { Cost_estimate result = *this; result += other; return result; } Cost_estimate operator-(const Cost_estimate &other) { Cost_estimate result; assert(!other.is_max_cost()); result.io_cost = io_cost - other.io_cost; result.cpu_cost = cpu_cost - other.cpu_cost; result.import_cost = import_cost - other.import_cost; result.mem_cost = mem_cost - other.mem_cost; return result; } bool operator>(const Cost_estimate &other) const { return total_cost() > other.total_cost() ? true : false; } bool operator<(const Cost_estimate &other) const { return other > *this ? true : false; } /// Add to IO cost void add_io(double add_io_cost) { assert(!is_max_cost()); io_cost += add_io_cost; } /// Add to CPU cost void add_cpu(double add_cpu_cost) { assert(!is_max_cost()); cpu_cost += add_cpu_cost; } /// Add to import cost void add_import(double add_import_cost) { assert(!is_max_cost()); import_cost += add_import_cost; } /// Add to memory cost void add_mem(double add_mem_cost) { assert(!is_max_cost()); mem_cost += add_mem_cost; } }; void get_sweep_read_cost(TABLE *table, ha_rows nrows, bool interrupted, Cost_estimate *cost); /* The below two are not used (and not handled) in this milestone of this WL entry because there seems to be no use for them at this stage of implementation. */ #define HA_MRR_SINGLE_POINT 1 #define HA_MRR_FIXED_KEY 2 /* Indicates that RANGE_SEQ_IF::next(&range) doesn't need to fill in the 'range' parameter. */ #define HA_MRR_NO_ASSOCIATION 4 /* The MRR user will provide ranges in key order, and MRR implementation must return rows in key order. Passing this flag to multi_read_range_init() may cause the default MRR handler to be used even if HA_MRR_USE_DEFAULT_IMPL was not specified. (If the native MRR impl. can not provide SORTED result) */ #define HA_MRR_SORTED 8 /* MRR implementation doesn't have to retrieve full records */ #define HA_MRR_INDEX_ONLY 16 /* The passed memory buffer is of maximum possible size, the caller can't assume larger buffer. */ #define HA_MRR_LIMITS 32 /* Flag set <=> default MRR implementation is used (The choice is made by **_info[_const]() function which may set this flag. SQL layer remembers the flag value and then passes it to multi_read_range_init(). */ #define HA_MRR_USE_DEFAULT_IMPL 64 /* Used only as parameter to multi_range_read_info(): Flag set <=> the caller guarantees that the bounds of the scanned ranges will not have NULL values. */ #define HA_MRR_NO_NULL_ENDPOINTS 128 /* Set by the MRR implementation to signal that it will natively produced sorted result if multi_range_read_init() is called with the HA_MRR_SORTED flag - Else multi_range_read_init(HA_MRR_SORTED) will revert to use the default MRR implementation. */ #define HA_MRR_SUPPORT_SORTED 256 class ha_statistics { public: ulonglong data_file_length; /* Length off data file */ ulonglong max_data_file_length; /* Length off data file */ ulonglong index_file_length; ulonglong max_index_file_length; ulonglong delete_length; /* Free bytes */ ulonglong auto_increment_value; /* The number of records in the table. 0 - means the table has exactly 0 rows other - if (table_flags() & HA_STATS_RECORDS_IS_EXACT) the value is the exact number of records in the table else it is an estimate */ ha_rows records; ha_rows deleted; /* Deleted records */ ulong mean_rec_length; /* physical reclength */ /* TODO: create_time should be retrieved from the new DD. Remove this. */ time_t create_time; /* When table was created */ ulong check_time; ulong update_time; uint block_size; /* index block size */ /* number of buffer bytes that native mrr implementation needs, */ uint mrr_length_per_rec; /** Estimate for how much of the table that is available in a memory buffer. Valid range is [0..1]. If it has the special value IN_MEMORY_ESTIMATE_UNKNOWN (defined in structs.h), it means that the storage engine has not supplied any value for it. */ double table_in_mem_estimate; ha_statistics() : data_file_length(0), max_data_file_length(0), index_file_length(0), delete_length(0), auto_increment_value(0), records(0), deleted(0), mean_rec_length(0), create_time(0), check_time(0), update_time(0), block_size(0), table_in_mem_estimate(IN_MEMORY_ESTIMATE_UNKNOWN) {} }; /** Calculates length of key. Given a key index and a map of key parts return length of buffer used by key parts. @param table Table containing the key @param key Key index @param keypart_map which key parts that is used @return Length of used key parts. */ uint calculate_key_len(TABLE *table, uint key, key_part_map keypart_map); /* bitmap with first N+1 bits set (keypart_map for a key prefix of [0..N] keyparts) */ #define make_keypart_map(N) (((key_part_map)2 << (N)) - 1) /* bitmap with first N bits set (keypart_map for a key prefix of [0..N-1] keyparts) */ #define make_prev_keypart_map(N) (((key_part_map)1 << (N)) - 1) /** Base class to be used by handlers different shares */ class Handler_share { public: Handler_share() = default; virtual ~Handler_share() = default; }; /** Wrapper for struct ft_hints. */ class Ft_hints { private: struct ft_hints hints; public: explicit Ft_hints(uint ft_flags) { hints.flags = ft_flags; hints.op_type = FT_OP_UNDEFINED; hints.op_value = 0.0; hints.limit = HA_POS_ERROR; } /** Set comparison operation type and and value for master MATCH function. @param type comparison operation type @param value comparison operation value */ void set_hint_op(enum ft_operation type, double value) { hints.op_type = type; hints.op_value = value; } /** Set Ft_hints flag. @param ft_flag Ft_hints flag */ void set_hint_flag(uint ft_flag) { hints.flags |= ft_flag; } /** Set Ft_hints limit. @param ft_limit limit */ void set_hint_limit(ha_rows ft_limit) { hints.limit = ft_limit; } /** Get Ft_hints limit. @return Ft_hints limit */ ha_rows get_limit() const { return hints.limit; } /** Get Ft_hints operation value. @return operation value */ double get_op_value() const { return hints.op_value; } /** Get Ft_hints operation type. @return operation type */ enum ft_operation get_op_type() const { return hints.op_type; } /** Get Ft_hints flags. @return Ft_hints flags */ uint get_flags() const { return hints.flags; } /** Get ft_hints struct. @return pointer to ft_hints struct */ struct ft_hints *get_hints() { return &hints; } }; /** The handler class is the interface for dynamically loadable storage engines. Do not add ifdefs and take care when adding or changing virtual functions to avoid vtable confusion Functions in this class accept and return table columns data. Two data representation formats are used: 1. TableRecordFormat - Used to pass [partial] table records to/from storage engine 2. KeyTupleFormat - used to pass index search tuples (aka "keys") to storage engine. See opt_range.cc for description of this format. TableRecordFormat ================= [Warning: this description is work in progress and may be incomplete] The table record is stored in a fixed-size buffer: record: null_bytes, column1_data, column2_data, ... The offsets of the parts of the buffer are also fixed: every column has an offset to its column{i}_data, and if it is nullable it also has its own bit in null_bytes. The record buffer only includes data about columns that are marked in the relevant column set (table->read_set and/or table->write_set, depending on the situation). It could be that it is required that null bits of non-present columns are set to 1 VARIOUS EXCEPTIONS AND SPECIAL CASES If the table has no nullable columns, then null_bytes is still present, its length is one byte which must be set to 0xFF at all times. If the table has columns of type BIT, then certain bits from those columns may be stored in null_bytes as well. Grep around for Field_bit for details. For blob columns (see Field_blob), the record buffer stores length of the data, following by memory pointer to the blob data. The pointer is owned by the storage engine and is valid until the next operation. If a blob column has NULL value, then its length and blob data pointer must be set to 0. Overview of main modules of the handler API =========================================== The overview below was copied from the storage/partition/ha_partition.h when support for non-native partitioning was removed. ------------------------------------------------------------------------- MODULE create/delete handler object ------------------------------------------------------------------------- Object create/delete method. Normally called when a table object exists. ------------------------------------------------------------------------- MODULE meta data changes ------------------------------------------------------------------------- Meta data routines to CREATE, DROP, RENAME table are often used at ALTER TABLE (update_create_info used from ALTER TABLE and SHOW ..). Methods: delete_table() rename_table() create() update_create_info() ------------------------------------------------------------------------- MODULE open/close object ------------------------------------------------------------------------- Open and close handler object to ensure all underlying files and objects allocated and deallocated for query handling is handled properly. A handler object is opened as part of its initialisation and before being used for normal queries (not before meta-data changes always. If the object was opened it will also be closed before being deleted. Methods: open() close() ------------------------------------------------------------------------- MODULE start/end statement ------------------------------------------------------------------------- This module contains methods that are used to understand start/end of statements, transaction boundaries, and aid for proper concurrency control. Methods: store_lock() external_lock() start_stmt() lock_count() unlock_row() was_semi_consistent_read() try_semi_consistent_read() ------------------------------------------------------------------------- MODULE change record ------------------------------------------------------------------------- This part of the handler interface is used to change the records after INSERT, DELETE, UPDATE, REPLACE method calls but also other special meta-data operations as ALTER TABLE, LOAD DATA, TRUNCATE. These methods are used for insert (write_row), update (update_row) and delete (delete_row). All methods to change data always work on one row at a time. update_row and delete_row also contains the old row. delete_all_rows will delete all rows in the table in one call as a special optimization for DELETE from table; Bulk inserts are supported if all underlying handlers support it. start_bulk_insert and end_bulk_insert is called before and after a number of calls to write_row. Methods: write_row() update_row() delete_row() delete_all_rows() start_bulk_insert() end_bulk_insert() ------------------------------------------------------------------------- MODULE full table scan ------------------------------------------------------------------------- This module is used for the most basic access method for any table handler. This is to fetch all data through a full table scan. No indexes are needed to implement this part. It contains one method to start the scan (rnd_init) that can also be called multiple times (typical in a nested loop join). Then proceeding to the next record (rnd_next) and closing the scan (rnd_end). To remember a record for later access there is a method (position) and there is a method used to retrieve the record based on the stored position. The position can be a file position, a primary key, a ROWID dependent on the handler below. All functions that retrieve records and are callable through the handler interface must indicate whether a record is present after the call or not. Record found is indicated by returning 0 and setting table status to "has row". Record not found is indicated by returning a non-zero value and setting table status to "no row". @see TABLE::set_found_row() and TABLE::set_no_row(). By enforcing these rules in the handler interface, storage handler functions need not set any status in struct TABLE. These notes also apply to module index scan, documented below. Methods: rnd_init() rnd_end() rnd_next() rnd_pos() rnd_pos_by_record() position() ------------------------------------------------------------------------- MODULE index scan ------------------------------------------------------------------------- This part of the handler interface is used to perform access through indexes. The interface is defined as a scan interface but the handler can also use key lookup if the index is a unique index or a primary key index. Index scans are mostly useful for SELECT queries but are an important part also of UPDATE, DELETE, REPLACE and CREATE TABLE table AS SELECT and so forth. Naturally an index is needed for an index scan and indexes can either be ordered, hash based. Some ordered indexes can return data in order but not necessarily all of them. There are many flags that define the behavior of indexes in the various handlers. These methods are found in the optimizer module. index_read is called to start a scan of an index. The find_flag defines the semantics of the scan. These flags are defined in include/my_base.h index_read_idx is the same but also initializes index before calling doing the same thing as index_read. Thus it is similar to index_init followed by index_read. This is also how we implement it. index_read/index_read_idx does also return the first row. Thus for key lookups, the index_read will be the only call to the handler in the index scan. index_init initializes an index before using it and index_end does any end processing needed. Methods: index_read_map() index_init() index_end() index_read_idx_map() index_next() index_prev() index_first() index_last() index_next_same() index_read_last_map() read_range_first() read_range_next() ------------------------------------------------------------------------- MODULE information calls ------------------------------------------------------------------------- This calls are used to inform the handler of specifics of the ongoing scans and other actions. Most of these are used for optimisation purposes. Methods: info() get_dynamic_partition_info extra() extra_opt() reset() ------------------------------------------------------------------------- MODULE optimizer support ------------------------------------------------------------------------- NOTE: One important part of the public handler interface that is not depicted in the methods is the attribute records which is defined in the base class. This is looked upon directly and is set by calling info(HA_STATUS_INFO) ? Methods: min_rows_for_estimate() get_biggest_used_partition() scan_time() read_time() records_in_range() estimate_rows_upper_bound() records() ------------------------------------------------------------------------- MODULE print messages ------------------------------------------------------------------------- This module contains various methods that returns text messages for table types, index type and error messages. Methods: table_type() get_row_type() print_error() get_error_message() ------------------------------------------------------------------------- MODULE handler characteristics ------------------------------------------------------------------------- This module contains a number of methods defining limitations and characteristics of the handler (see also documentation regarding the individual flags). Methods: table_flags() index_flags() min_of_the_max_uint() max_supported_record_length() max_supported_keys() max_supported_key_parts() max_supported_key_length() max_supported_key_part_length() low_byte_first() extra_rec_buf_length() min_record_length(uint options) primary_key_is_clustered() ha_key_alg get_default_index_algorithm() is_index_algorithm_supported() ------------------------------------------------------------------------- MODULE compare records ------------------------------------------------------------------------- cmp_ref checks if two references are the same. For most handlers this is a simple memcmp of the reference. However some handlers use primary key as reference and this can be the same even if memcmp says they are different. This is due to character sets and end spaces and so forth. Methods: cmp_ref() ------------------------------------------------------------------------- MODULE auto increment ------------------------------------------------------------------------- This module is used to handle the support of auto increments. This variable in the handler is used as part of the handler interface It is maintained by the parent handler object and should not be touched by child handler objects (see handler.cc for its use). Methods: get_auto_increment() release_auto_increment() ------------------------------------------------------------------------- MODULE initialize handler for HANDLER call ------------------------------------------------------------------------- This method is a special InnoDB method called before a HANDLER query. Methods: init_table_handle_for_HANDLER() ------------------------------------------------------------------------- MODULE fulltext index ------------------------------------------------------------------------- Fulltext index support. Methods: ft_init_ext_with_hints() ft_init() ft_init_ext() ft_read() ------------------------------------------------------------------------- MODULE in-place ALTER TABLE ------------------------------------------------------------------------- Methods for in-place ALTER TABLE support (implemented by InnoDB and NDB). Methods: check_if_supported_inplace_alter() prepare_inplace_alter_table() inplace_alter_table() commit_inplace_alter_table() notify_table_changed() ------------------------------------------------------------------------- MODULE tablespace support ------------------------------------------------------------------------- Methods: discard_or_import_tablespace() ------------------------------------------------------------------------- MODULE administrative DDL ------------------------------------------------------------------------- Methods: optimize() analyze() check() repair() check_and_repair() auto_repair() is_crashed() check_for_upgrade() checksum() assign_to_keycache() ------------------------------------------------------------------------- MODULE enable/disable indexes ------------------------------------------------------------------------- Enable/Disable Indexes are only supported by HEAP and MyISAM. Methods: disable_indexes() enable_indexes() indexes_are_disabled() ------------------------------------------------------------------------- MODULE append_create_info ------------------------------------------------------------------------- Only used by MyISAM MERGE tables. Methods: append_create_info() ------------------------------------------------------------------------- MODULE partitioning specific handler API ------------------------------------------------------------------------- Methods: get_partition_handler() */ class handler { friend class Partition_handler; public: typedef ulonglong Table_flags; protected: TABLE_SHARE *table_share; /* The table definition */ TABLE *table; /* The current open table */ Table_flags cached_table_flags{0}; /* Set on init() and open() */ ha_rows estimation_rows_to_insert; public: handlerton *ht; /* storage engine of this handler */ /** Pointer to current row */ uchar *ref; /** Pointer to duplicate row */ uchar *dup_ref; ha_statistics stats; /* MultiRangeRead-related members: */ range_seq_t mrr_iter; /* Iterator to traverse the range sequence */ RANGE_SEQ_IF mrr_funcs; /* Range sequence traversal functions */ HANDLER_BUFFER *multi_range_buffer; /* MRR buffer info */ uint ranges_in_seq; /* Total number of ranges in the traversed sequence */ /* true <=> source MRR ranges and the output are ordered */ bool mrr_is_output_sorted; /* true <=> we're currently traversing a range in mrr_cur_range. */ bool mrr_have_range; /* Current range (the one we're now returning rows from) */ KEY_MULTI_RANGE mrr_cur_range; /* The direction of the current range or index scan. This is used by the ICP implementation to determine if it has reached the end of the current range. */ enum enum_range_scan_direction { RANGE_SCAN_ASC, RANGE_SCAN_DESC }; private: Record_buffer *m_record_buffer = nullptr; ///< Buffer for multi-row reads. /* Storage space for the end range value. Should only be accessed using the end_range pointer. The content is invalid when end_range is NULL. */ key_range save_end_range; enum_range_scan_direction range_scan_direction; int key_compare_result_on_equal; /** Pointer to the handler of the table in the primary storage engine, if this handler represents a table in a secondary storage engine. */ handler *m_primary_handler{nullptr}; protected: KEY_PART_INFO *range_key_part; bool eq_range; /* true <=> the engine guarantees that returned records are within the range being scanned. */ bool in_range_check_pushed_down; public: /** End value for a range scan. If this is NULL the range scan has no end value. Should also be NULL when there is no ongoing range scan. Used by the read_range() functions and also evaluated by pushed index conditions. */ key_range *end_range; /** Flag which tells if #end_range contains a virtual generated column. The content is invalid when #end_range is @c nullptr. */ bool m_virt_gcol_in_end_range = false; uint errkey; /* Last dup key */ uint key_used_on_scan; uint active_index; /** Length of ref (1-8 or the clustered key length) */ uint ref_length; FT_INFO *ft_handler; enum { NONE = 0, INDEX, RND, SAMPLING } inited; bool implicit_emptied; /* Can be !=0 only if HEAP */ const Item *pushed_cond; Item *pushed_idx_cond; uint pushed_idx_cond_keyno; /* The index which the above condition is for */ /** next_insert_id is the next value which should be inserted into the auto_increment column: in a inserting-multi-row statement (like INSERT SELECT), for the first row where the autoinc value is not specified by the statement, get_auto_increment() called and asked to generate a value, next_insert_id is set to the next value, then for all other rows next_insert_id is used (and increased each time) without calling get_auto_increment(). */ ulonglong next_insert_id; /** insert id for the current row (*autogenerated*; if not autogenerated, it's 0). At first successful insertion, this variable is stored into THD::first_successful_insert_id_in_cur_stmt. */ ulonglong insert_id_for_cur_row; /** Interval returned by get_auto_increment() and being consumed by the inserter. */ Discrete_interval auto_inc_interval_for_cur_row; /** Number of reserved auto-increment intervals. Serves as a heuristic when we have no estimation of how many records the statement will insert: the more intervals we have reserved, the bigger the next one. Reset in handler::ha_release_auto_increment(). */ uint auto_inc_intervals_count; /** Instrumented table associated with this handler. */ PSI_table *m_psi; std::mt19937 *m_random_number_engine{nullptr}; double m_sampling_percentage; private: /** Internal state of the batch instrumentation. */ enum batch_mode_t { /** Batch mode not used. */ PSI_BATCH_MODE_NONE, /** Batch mode used, before first table io. */ PSI_BATCH_MODE_STARTING, /** Batch mode used, after first table io. */ PSI_BATCH_MODE_STARTED }; /** Batch mode state. @sa start_psi_batch_mode. @sa end_psi_batch_mode. */ batch_mode_t m_psi_batch_mode; /** The number of rows in the batch. @sa start_psi_batch_mode. @sa end_psi_batch_mode. */ ulonglong m_psi_numrows; /** The current event in a batch. @sa start_psi_batch_mode. @sa end_psi_batch_mode. */ PSI_table_locker *m_psi_locker; /** Storage for the event in a batch. @sa start_psi_batch_mode. @sa end_psi_batch_mode. */ PSI_table_locker_state m_psi_locker_state; public: void unbind_psi(); void rebind_psi(); /** Put the handler in 'batch' mode when collecting table io instrumented events. When operating in batch mode: - a single start event is generated in the performance schema. - all table io performed between @c start_psi_batch_mode and @c end_psi_batch_mode is not instrumented: the number of rows affected is counted instead in @c m_psi_numrows. - a single end event is generated in the performance schema when the batch mode ends with @c end_psi_batch_mode. */ void start_psi_batch_mode(); /** End a batch started with @c start_psi_batch_mode. */ void end_psi_batch_mode(); /** If a PSI batch was started, turn if off. @returns true if it was started. */ bool end_psi_batch_mode_if_started() { const bool rc = m_psi_batch_mode; if (rc) end_psi_batch_mode(); return rc; } private: /** The lock type set by when calling::ha_external_lock(). This is propagated down to the storage engine. The reason for also storing it here, is that when doing MRR we need to create/clone a second handler object. This cloned handler object needs to know about the lock_type used. */ int m_lock_type; /** Pointer where to store/retrieve the Handler_share pointer. For non partitioned handlers this is &TABLE_SHARE::ha_share. */ Handler_share **ha_share; /** Some non-virtual ha_* functions, responsible for reading rows, like ha_rnd_pos(), must ensure that virtual generated columns are calculated before they return. For that, they should set this member to true at their start, and check it before they return: if the member is still true, it means they should calculate; if it's false, it means the calculation has been done by some called lower-level function and does not need to be re-done (which is why we need this status flag: to avoid redundant calculations, for performance). Note that when updating generated fields, the NULL row status in the underlying TABLE objects matter, so be sure to reset them if needed! */ bool m_update_generated_read_fields; /* Filter row ids to weed out duplicates when multi-valued index is used */ Unique_on_insert *m_unique; public: handler(handlerton *ht_arg, TABLE_SHARE *share_arg) : table_share(share_arg), table(nullptr), estimation_rows_to_insert(0), ht(ht_arg), ref(nullptr), range_scan_direction(RANGE_SCAN_ASC), in_range_check_pushed_down(false), end_range(nullptr), key_used_on_scan(MAX_KEY), active_index(MAX_KEY), ref_length(sizeof(my_off_t)), ft_handler(nullptr), inited(NONE), implicit_emptied(false), pushed_cond(nullptr), pushed_idx_cond(nullptr), pushed_idx_cond_keyno(MAX_KEY), next_insert_id(0), insert_id_for_cur_row(0), auto_inc_intervals_count(0), m_psi(nullptr), m_psi_batch_mode(PSI_BATCH_MODE_NONE), m_psi_numrows(0), m_psi_locker(nullptr), m_lock_type(F_UNLCK), ha_share(nullptr), m_update_generated_read_fields(false), m_unique(nullptr) { DBUG_PRINT("info", ("handler created F_UNLCK %d F_RDLCK %d F_WRLCK %d", F_UNLCK, F_RDLCK, F_WRLCK)); } virtual ~handler(void) { assert(m_psi == nullptr); assert(m_psi_batch_mode == PSI_BATCH_MODE_NONE); assert(m_psi_locker == nullptr); assert(m_lock_type == F_UNLCK); assert(inited == NONE); } /** Return extra handler specific text for EXPLAIN. */ virtual std::string explain_extra() const { return ""; } /* @todo reorganize functions, make proper public/protected/private qualifiers */ virtual handler *clone(const char *name, MEM_ROOT *mem_root); /** This is called after create to allow us to set up cached variables */ void init() { cached_table_flags = table_flags(); } /* ha_ methods: public wrappers for private virtual API */ /** Set a record buffer that the storage engine can use for multi-row reads. The buffer has to be provided prior to the first read from an index or a table. @param buffer the buffer to use for multi-row reads */ void ha_set_record_buffer(Record_buffer *buffer) { m_record_buffer = buffer; } /** Get the record buffer that was set with ha_set_record_buffer(). @return the buffer to use for multi-row reads, or nullptr if there is none */ Record_buffer *ha_get_record_buffer() const { return m_record_buffer; } /** Does this handler want to get a Record_buffer for multi-row reads via the ha_set_record_buffer() function? And if so, what is the maximum number of records to allocate space for in the buffer? Storage engines that support using a Record_buffer should override handler::is_record_buffer_wanted(). @param[out] max_rows gets set to the maximum number of records to allocate space for in the buffer if the function returns true @retval true if the handler would like a Record_buffer @retval false if the handler does not want a Record_buffer */ bool ha_is_record_buffer_wanted(ha_rows *const max_rows) const { return is_record_buffer_wanted(max_rows); } int ha_open(TABLE *table, const char *name, int mode, int test_if_locked, const dd::Table *table_def); int ha_close(void); int ha_index_init(uint idx, bool sorted); int ha_index_end(); int ha_rnd_init(bool scan); int ha_rnd_end(); int ha_rnd_next(uchar *buf); // See the comment on m_update_generated_read_fields. int ha_rnd_pos(uchar *buf, uchar *pos); int ha_index_read_map(uchar *buf, const uchar *key, key_part_map keypart_map, enum ha_rkey_function find_flag); int ha_index_read_last_map(uchar *buf, const uchar *key, key_part_map keypart_map); int ha_index_read_idx_map(uchar *buf, uint index, const uchar *key, key_part_map keypart_map, enum ha_rkey_function find_flag); int ha_index_next(uchar *buf); int ha_index_prev(uchar *buf); int ha_index_first(uchar *buf); int ha_index_last(uchar *buf); int ha_index_next_same(uchar *buf, const uchar *key, uint keylen); int ha_reset(); /* this is necessary in many places, e.g. in HANDLER command */ int ha_index_or_rnd_end() { return inited == INDEX ? ha_index_end() : inited == RND ? ha_rnd_end() : 0; } /** The cached_table_flags is set at ha_open and ha_external_lock */ Table_flags ha_table_flags() const { return cached_table_flags; } /** These functions represent the public interface to *users* of the handler class, hence they are *not* virtual. For the inheritance interface, see the (private) functions write_row(), update_row(), and delete_row() below. */ int ha_external_lock(THD *thd, int lock_type); int ha_write_row(uchar *buf); /** Update the current row. @param old_data the old contents of the row @param new_data the new contents of the row @return error status (zero on success, HA_ERR_* error code on error) */ int ha_update_row(const uchar *old_data, uchar *new_data); int ha_delete_row(const uchar *buf); void ha_release_auto_increment(); int ha_check_for_upgrade(HA_CHECK_OPT *check_opt); /** to be actually called to get 'check()' functionality*/ int ha_check(THD *thd, HA_CHECK_OPT *check_opt); int ha_repair(THD *thd, HA_CHECK_OPT *check_opt); void ha_start_bulk_insert(ha_rows rows); int ha_end_bulk_insert(); int ha_bulk_update_row(const uchar *old_data, uchar *new_data, uint *dup_key_found); int ha_delete_all_rows(); int ha_truncate(dd::Table *table_def); int ha_optimize(THD *thd, HA_CHECK_OPT *check_opt); int ha_analyze(THD *thd, HA_CHECK_OPT *check_opt); bool ha_check_and_repair(THD *thd); int ha_disable_indexes(uint mode); int ha_enable_indexes(uint mode); int ha_discard_or_import_tablespace(bool discard, dd::Table *table_def); int ha_rename_table(const char *from, const char *to, const dd::Table *from_table_def, dd::Table *to_table_def); int ha_delete_table(const char *name, const dd::Table *table_def); void ha_drop_table(const char *name); int ha_create(const char *name, TABLE *form, HA_CREATE_INFO *info, dd::Table *table_def); int ha_load_table(const TABLE &table, bool *skip_metadata_update); int ha_unload_table(const char *db_name, const char *table_name, bool error_if_not_loaded); /** Initializes a parallel scan. It creates a parallel_scan_ctx that has to be used across all parallel_scan methods. Also, gets the number of threads that would be spawned for parallel scan. @param[out] scan_ctx The parallel scan context. @param[out] num_threads Number of threads used for the scan. @param[in] use_reserved_threads true if reserved threads are to be used if we exhaust the max cap of number of parallel read threads that can be spawned at a time @param[in] max_desired_threads Maximum number of desired scan threads; passing 0 has no effect, it is ignored. @return error code @retval 0 on success */ virtual int parallel_scan_init(void *&scan_ctx [[maybe_unused]], size_t *num_threads [[maybe_unused]], bool use_reserved_threads [[maybe_unused]], size_t max_desired_threads [[maybe_unused]]) { return 0; } /** This callback is called by each parallel load thread at the beginning of the parallel load for the adapter scan. @param cookie The cookie for this thread @param ncols Number of columns in each row @param row_len The size of a row in bytes @param col_offsets An array of size ncols, where each element represents the offset of a column in the row data. The memory of this array belongs to the caller and will be free-ed after the pload_end_cbk call. @param null_byte_offsets An array of size ncols, where each element represents the offset of a column in the row data. The memory of this array belongs to the caller and will be free-ed after the pload_end_cbk call. @param null_bitmasks An array of size ncols, where each element represents the bitmask required to get the null bit. The memory of this array belongs to the caller and will be free-ed after the pload_end_cbk call. */ using Load_init_cbk = std::function; /** This callback is called by each parallel load thread when processing of rows is required for the adapter scan. @param[in] cookie The cookie for this thread @param[in] nrows The nrows that are available @param[in] rowdata The mysql-in-memory row data buffer. This is a memory buffer for nrows records. The length of each record is fixed and communicated via Load_init_cbk @param[in] partition_id Partition id if it's a partitioned table, else std::numeric_limits::max() @returns true if there is an error, false otherwise. */ using Load_cbk = std::function; /** This callback is called by each parallel load thread when processing of rows has ended for the adapter scan. @param[in] cookie The cookie for this thread */ using Load_end_cbk = std::function; /** Run the parallel read of data. @param[in] scan_ctx Scan context of the parallel read. @param[in,out] thread_ctxs Caller thread contexts. @param[in] init_fn Callback called by each parallel load thread at the beginning of the parallel load. @param[in] load_fn Callback called by each parallel load thread when processing of rows is required. @param[in] end_fn Callback called by each parallel load thread when processing of rows has ended. @return error code @retval 0 on success */ virtual int parallel_scan(void *scan_ctx [[maybe_unused]], void **thread_ctxs [[maybe_unused]], Load_init_cbk init_fn [[maybe_unused]], Load_cbk load_fn [[maybe_unused]], Load_end_cbk end_fn [[maybe_unused]]) { return 0; } /** End of the parallel scan. @param[in] scan_ctx A scan context created by parallel_scan_init. */ virtual void parallel_scan_end(void *scan_ctx [[maybe_unused]]) { return; } /** Check if the table is ready for bulk load @param[in] thd user session @return true iff bulk load can be done on the table. */ virtual bool bulk_load_check(THD *thd [[maybe_unused]]) const { return false; } /** Get the total memory available for bulk load in SE. @param[in] thd user session @return available memory for bulk load */ virtual size_t bulk_load_available_memory(THD *thd [[maybe_unused]]) const { return 0; } /** Begin parallel bulk data load to the table. @param[in] thd user session @param[in] data_size total data size to load @param[in] memory memory to be used by SE @param[in] num_threads number of concurrent threads used for load. @return bulk load context or nullptr if unsuccessful. */ virtual void *bulk_load_begin(THD *thd [[maybe_unused]], size_t data_size [[maybe_unused]], size_t memory [[maybe_unused]], size_t num_threads [[maybe_unused]]) { return nullptr; } /** Execute bulk load operation. To be called by each of the concurrent threads idenified by thread index. @param[in,out] thd user session @param[in,out] load_ctx load execution context @param[in] thread_idx index of the thread executing @param[in] rows rows to be loaded to the table @return error code. */ virtual int bulk_load_execute(THD *thd [[maybe_unused]], void *load_ctx [[maybe_unused]], size_t thread_idx [[maybe_unused]], const Rows_mysql &rows [[maybe_unused]], Bulk_load::Stat_callbacks &wait_cbk [[maybe_unused]]) { return HA_ERR_UNSUPPORTED; } /** End bulk load operation. Must be called after all execution threads have completed. Must be called even if the bulk load execution failed. @param[in,out] thd user session @param[in,out] load_ctx load execution context @param[in] is_error true, if bulk load execution have failed @return error code. */ virtual int bulk_load_end(THD *thd [[maybe_unused]], void *load_ctx [[maybe_unused]], bool is_error [[maybe_unused]]) { return false; } /** Submit a dd::Table object representing a core DD table having hardcoded data to be filled in by the DDSE. This function can be used for retrieving the hard coded SE private data for the mysql.dd_properties table, before creating or opening it, or for retrieving the hard coded SE private data for a core table, before creating or opening them. @param dd_table [in,out] A dd::Table object representing a core DD table. @param reset Reset counters. @retval true An error occurred. @retval false Success - no errors. */ bool ha_get_se_private_data(dd::Table *dd_table, bool reset); void adjust_next_insert_id_after_explicit_value(ulonglong nr); int update_auto_increment(); virtual void print_error(int error, myf errflag); virtual bool get_error_message(int error, String *buf); uint get_dup_key(int error); /** Retrieves the names of the table and the key for which there was a duplicate entry in the case of HA_ERR_FOREIGN_DUPLICATE_KEY. If any of the table or key name is not available this method will return false and will not change any of child_table_name or child_key_name. @param [out] child_table_name Table name @param [in] child_table_name_len Table name buffer size @param [out] child_key_name Key name @param [in] child_key_name_len Key name buffer size @retval true table and key names were available and were written into the corresponding out parameters. @retval false table and key names were not available, the out parameters were not touched. */ virtual bool get_foreign_dup_key(char *child_table_name, uint child_table_name_len, char *child_key_name, uint child_key_name_len); /** Change the internal TABLE_SHARE pointer. @param table_arg TABLE object @param share New share to use @note Is used in error handling in ha_delete_table. */ virtual void change_table_ptr(TABLE *table_arg, TABLE_SHARE *share) { table = table_arg; table_share = share; } const TABLE_SHARE *get_table_share() const { return table_share; } const TABLE *get_table() const { return table; } /* Estimates calculation */ /** @deprecated This function is deprecated and will be removed in a future version. Use table_scan_cost() instead. */ virtual double scan_time() { return ulonglong2double(stats.data_file_length) / IO_SIZE + 2; } /** The cost of reading a set of ranges from the table using an index to access it. @deprecated This function is deprecated and will be removed in a future version. Use read_cost() instead. @param index The index number. @param ranges The number of ranges to be read. @param rows Total number of rows to be read. This method can be used to calculate the total cost of scanning a table using an index by calling it using read_time(index, 1, table_size). */ virtual double read_time(uint index [[maybe_unused]], uint ranges, ha_rows rows) { return rows2double(ranges + rows); } /** @deprecated This function is deprecated and will be removed in a future version. Use index_scan_cost() instead. */ virtual double index_only_read_time(uint keynr, double records); /** Cost estimate for doing a complete table scan. @note For this version it is recommended that storage engines continue to override scan_time() instead of this function. @returns the estimated cost */ virtual Cost_estimate table_scan_cost(); /** Cost estimate for reading a number of ranges from an index. The cost estimate will only include the cost of reading data that is contained in the index. If the records need to be read, use read_cost() instead. @note The ranges parameter is currently ignored and is not taken into account in the cost estimate. @note For this version it is recommended that storage engines continue to override index_only_read_time() instead of this function. @param index the index number @param ranges the number of ranges to be read @param rows total number of rows to be read @returns the estimated cost */ virtual Cost_estimate index_scan_cost(uint index, double ranges, double rows); /** Cost estimate for reading a set of ranges from the table using an index to access it. @note For this version it is recommended that storage engines continue to override read_time() instead of this function. @param index the index number @param ranges the number of ranges to be read @param rows total number of rows to be read @returns the estimated cost */ virtual Cost_estimate read_cost(uint index, double ranges, double rows); /** Cost estimate for doing a number of non-sequentially accesses against the storage engine. Such accesses can be either number of rows to read, or number of disk pages to access. Each handler implementation is free to interpret that as best suited, depending on what is the dominating cost for that storage engine. This method is mainly provided as a temporary workaround for bug#33317872, where we fix problems caused by calling Cost_model::page_read_cost() directly from the optimizer. That should be avoided, as it introduced assumption about all storage engines being disk-page based, and having a 'page' cost. Furthermore, this page cost was even compared against read_cost(), which was computed with an entirely different algorithm, and thus could not be compared. The default implementation still call Cost_model::page_read_cost(), thus behaving just as before. However, handler implementation may override it to call handler::read_cost() instead(), which probably will be more correct. (If a page_read_cost should be included in the cost estimate, that should preferable be done inside each read_cost() implementation) Longer term we should consider to remove all page_read_cost() usage from the optimizer itself, making this method obsolete. @param index the index number @param reads the number of accesses being made @returns the estimated cost */ virtual double page_read_cost(uint index, double reads); /** Provide an upper cost-limit of doing a specified number of seek-and-read key lookups. This need to be comparable and calculated with the same 'metric' as page_read_cost. @param reads the number of rows read in the 'worst' case. @returns the estimated cost */ virtual double worst_seek_times(double reads); /** Return an estimate on the amount of memory the storage engine will use for caching data in memory. If this is unknown or the storage engine does not cache data in memory -1 is returned. */ virtual longlong get_memory_buffer_size() const { return -1; } /** Return an estimate of how much of the table that is currently stored in main memory. This estimate should be the fraction of the table that currently is available in a main memory buffer. The estimate should be in the range from 0.0 (nothing in memory) to 1.0 (entire table in memory). @return The fraction of the table in main memory buffer */ double table_in_memory_estimate() const; /** Return an estimate of how much of the index that is currently stored in main memory. This estimate should be the fraction of the index that currently is available in a main memory buffer. The estimate should be in the range from 0.0 (nothing in memory) to 1.0 (entire index in memory). @param keyno the index to get an estimate for @return The fraction of the index in main memory buffer */ double index_in_memory_estimate(uint keyno) const; /** Initialize sampling. @param[out] scan_ctx A scan context created by this method that has to be used in sample_next @param[in] sampling_percentage percentage of records that need to be sampled @param[in] sampling_seed random seed that the random generator will use @param[in] sampling_method sampling method to be used; currently only SYSTEM sampling is supported @param[in] tablesample true if the sampling is for tablesample @return 0 for success, else one of the HA_xxx values in case of error. */ int ha_sample_init(void *&scan_ctx, double sampling_percentage, int sampling_seed, enum_sampling_method sampling_method, const bool tablesample); /** Get the next record for sampling. @param[in] scan_ctx Scan context of the sampling @param[in] buf buffer to place the read record @return 0 for success, else one of the HA_xxx values in case of error. */ int ha_sample_next(void *scan_ctx, uchar *buf); /** End sampling. @param[in] scan_ctx Scan context of the sampling @return 0 for success, else one of the HA_xxx values in case of error. */ int ha_sample_end(void *scan_ctx); private: int check_collation_compatibility(); /** Make a guesstimate for how much of a table or index is in a memory buffer in the case where the storage engine has not provided any estimate for this. @param table_index_size size of the table or index @return The fraction of the table or index in main memory buffer */ double estimate_in_memory_buffer(ulonglong table_index_size) const; public: virtual ha_rows multi_range_read_info_const(uint keyno, RANGE_SEQ_IF *seq, void *seq_init_param, uint n_ranges, uint *bufsz, uint *flags, Cost_estimate *cost); virtual ha_rows multi_range_read_info(uint keyno, uint n_ranges, uint keys, uint *bufsz, uint *flags, Cost_estimate *cost); virtual int multi_range_read_init(RANGE_SEQ_IF *seq, void *seq_init_param, uint n_ranges, uint mode, HANDLER_BUFFER *buf); int ha_multi_range_read_next(char **range_info); int ha_read_range_first(const key_range *start_key, const key_range *end_key, bool eq_range, bool sorted); int ha_read_range_next(); bool has_transactions() { return (ha_table_flags() & HA_NO_TRANSACTIONS) == 0; } virtual uint extra_rec_buf_length() const { return 0; } /** @brief Determine whether an error can be ignored or not. @details This method is used to analyze the error to see whether the error is ignorable or not. Such errors will be reported as warnings instead of errors for IGNORE statements. This means that the statement will not abort, but instead continue to the next row. HA_ERR_FOUND_DUP_UNIQUE is a special case in MyISAM that means the same thing as HA_ERR_FOUND_DUP_KEY, but can in some cases lead to a slightly different error message. @param error error code received from the handler interface (HA_ERR_...) @return whether the error is ignorable or not @retval true the error is ignorable @retval false the error is not ignorable */ virtual bool is_ignorable_error(int error); /** @brief Determine whether an error is fatal or not. @details This method is used to analyze the error to see whether the error is fatal or not. A fatal error is an error that will not be possible to handle with SP handlers and will not be subject to retry attempts on the slave. @param error error code received from the handler interface (HA_ERR_...) @return whether the error is fatal or not @retval true the error is fatal @retval false the error is not fatal */ virtual bool is_fatal_error(int error); protected: virtual int multi_range_read_next(char **range_info); /** Number of rows in table. If HA_COUNT_ROWS_INSTANT is set, count is available instantly. Else do a table scan. @param num_rows [out] num_rows number of rows in table. @retval 0 for OK, one of the HA_xxx values in case of error. */ virtual int records(ha_rows *num_rows); /** Number of rows in table counted using the secondary index chosen by optimizer. See comments in optimize_aggregated_query() . @param num_rows [out] Number of rows in table. @param index Index chosen by optimizer for counting. @retval 0 for OK, one of the HA_xxx values in case of error. */ virtual int records_from_index(ha_rows *num_rows, uint index); private: /** Function will handle the error code from call to records() and records_from_index(). @param error return code from records() and records_from_index(). @param num_rows Check if it contains HA_POS_ERROR in case error < 0. @retval 0 for OK, one of the HA_xxx values in case of error. */ int handle_records_error(int error, ha_rows *num_rows); public: /** Wrapper function to call records() in storage engine. @param num_rows [out] Number of rows in table. @retval 0 for OK, one of the HA_xxx values in case of error. */ int ha_records(ha_rows *num_rows) { return handle_records_error(records(num_rows), num_rows); } /** Wrapper function to call records_from_index() in storage engine. @param num_rows [out] Number of rows in table. @param index Index chosen by optimizer for counting. @retval 0 for OK, one of the HA_xxx values in case of error. */ int ha_records(ha_rows *num_rows, uint index) { return handle_records_error(records_from_index(num_rows, index), num_rows); } /** Return upper bound of current number of records in the table (max. of how many records one will retrieve when doing a full table scan) If upper bound is not known, HA_POS_ERROR should be returned as a max possible upper bound. */ virtual ha_rows estimate_rows_upper_bound() { return stats.records + EXTRA_RECORDS; } /** Get real row type for the table created based on one specified by user, CREATE TABLE options and SE capabilities. */ virtual enum row_type get_real_row_type( const HA_CREATE_INFO *create_info) const { return (create_info->table_options & HA_OPTION_COMPRESS_RECORD) ? ROW_TYPE_COMPRESSED : ((create_info->table_options & HA_OPTION_PACK_RECORD) ? ROW_TYPE_DYNAMIC : ROW_TYPE_FIXED); } /** Get default key algorithm for SE. It is used when user has not provided algorithm explicitly or when algorithm specified is not supported by SE. */ virtual enum ha_key_alg get_default_index_algorithm() const { return HA_KEY_ALG_SE_SPECIFIC; } /** Check if SE supports specific key algorithm. @note This method is never used for FULLTEXT or SPATIAL keys. We rely on handler::ha_table_flags() to check if such keys are supported. */ virtual bool is_index_algorithm_supported(enum ha_key_alg key_alg) const { return key_alg == HA_KEY_ALG_SE_SPECIFIC; } /** Signal that the table->read_set and table->write_set table maps changed The handler is allowed to set additional bits in the above map in this call. Normally the handler should ignore all calls until we have done a ha_rnd_init() or ha_index_init(), write_row(), update_row or delete_row() as there may be several calls to this routine. */ virtual void column_bitmaps_signal(); uint get_index(void) const { return active_index; } /** @retval false Bulk update used by handler @retval true Bulk update not used, normal operation used */ virtual bool start_bulk_update() { return true; } /** @retval false Bulk delete used by handler @retval true Bulk delete not used, normal operation used */ virtual bool start_bulk_delete() { return true; } /** After this call all outstanding updates must be performed. The number of duplicate key errors are reported in the duplicate key parameter. It is allowed to continue to the batched update after this call, the handler has to wait until end_bulk_update with changing state. @param dup_key_found Number of duplicate keys found @retval 0 Success @retval >0 Error code */ virtual int exec_bulk_update(uint *dup_key_found [[maybe_unused]]) { assert(false); return HA_ERR_WRONG_COMMAND; } /** Perform any needed clean-up, no outstanding updates are there at the moment. */ virtual void end_bulk_update() { return; } /** Execute all outstanding deletes and close down the bulk delete. @retval 0 Success @retval >0 Error code */ virtual int end_bulk_delete() { assert(false); return HA_ERR_WRONG_COMMAND; } protected: /** @brief Positions an index cursor to the index specified in the handle ('active_index'). Fetches the row if available. If the key value is null, begin at the first key of the index. @returns 0 if success (found a record); non-zero if no record. */ virtual int index_read_map(uchar *buf, const uchar *key, key_part_map keypart_map, enum ha_rkey_function find_flag) { const uint key_len = calculate_key_len(table, active_index, keypart_map); return index_read(buf, key, key_len, find_flag); } /** Positions an index cursor to the index specified in argument. Fetches the row if available. If the key value is null, begin at the first key of the index. @sa index_read_map() */ virtual int index_read_idx_map(uchar *buf, uint index, const uchar *key, key_part_map keypart_map, enum ha_rkey_function find_flag); /* These methods are used to jump to next or previous entry in the index scan. There are also methods to jump to first and last entry. */ /// @see index_read_map(). virtual int index_next(uchar *) { return HA_ERR_WRONG_COMMAND; } /// @see index_read_map(). virtual int index_prev(uchar *) { return HA_ERR_WRONG_COMMAND; } /// @see index_read_map(). virtual int index_first(uchar *) { return HA_ERR_WRONG_COMMAND; } /// @see index_read_map(). virtual int index_last(uchar *) { return HA_ERR_WRONG_COMMAND; } /// @see index_read_map(). virtual int index_next_same(uchar *buf, const uchar *key, uint keylen); /** The following functions works like index_read, but it find the last row with the current key value or prefix. @see index_read_map(). */ virtual int index_read_last_map(uchar *buf, const uchar *key, key_part_map keypart_map) { const uint key_len = calculate_key_len(table, active_index, keypart_map); return index_read_last(buf, key, key_len); } virtual int read_range_first(const key_range *start_key, const key_range *end_key, bool eq_range_arg, bool sorted); virtual int read_range_next(); public: /** Set the end position for a range scan. This is used for checking for when to end the range scan and by the ICP code to determine that the next record is within the current range. @param range The end value for the range scan @param direction Direction of the range scan */ void set_end_range(const key_range *range, enum_range_scan_direction direction); int compare_key(key_range *range); int compare_key_icp(const key_range *range) const; int compare_key_in_buffer(const uchar *buf) const; virtual int ft_init() { return HA_ERR_WRONG_COMMAND; } virtual FT_INFO *ft_init_ext(uint flags, uint inx, String *key); virtual FT_INFO *ft_init_ext_with_hints(uint inx, String *key, Ft_hints *hints) { return ft_init_ext(hints->get_flags(), inx, key); } int ha_ft_read(uchar *buf); int ha_read_first_row(uchar *buf, uint primary_key); protected: /// @see index_read_map(). virtual int rnd_next(uchar *buf) = 0; /// @see index_read_map(). virtual int rnd_pos(uchar *buf, uchar *pos) = 0; virtual int ft_read(uchar *) { return HA_ERR_WRONG_COMMAND; } public: /** This function only works for handlers having HA_PRIMARY_KEY_REQUIRED_FOR_POSITION set. It will return the row with the PK given in the record argument. */ virtual int rnd_pos_by_record(uchar *record) { int error; assert(table_flags() & HA_PRIMARY_KEY_REQUIRED_FOR_POSITION); error = ha_rnd_init(false); if (error != 0) return error; position(record); error = ha_rnd_pos(record, ref); ha_rnd_end(); return error; } /** Find number of records in a range. Given a starting key, and an ending key estimate the number of rows that will exist between the two. max_key may be empty which in case determine if start_key matches any rows. Used by optimizer to calculate cost of using a particular index. @param inx Index number @param min_key Start of range @param max_key End of range @return Number of rows in range. */ virtual ha_rows records_in_range(uint inx [[maybe_unused]], key_range *min_key [[maybe_unused]], key_range *max_key [[maybe_unused]]) { return (ha_rows)10; } /* If HA_PRIMARY_KEY_REQUIRED_FOR_POSITION is set, then it sets ref (reference to the row, aka position, with the primary key given in the record). Otherwise it set ref to the current row. */ virtual void position(const uchar *record) = 0; /** General method to gather info from handler ::info() is used to return information to the optimizer. SHOW also makes use of this data Another note, if your handler doesn't proved exact record count, you will probably want to have the following in your code: if (records < 2) records = 2; The reason is that the server will optimize for cases of only a single record. If in a table scan you don't know the number of records it will probably be better to set records to two so you can return as many records as you need. Along with records a few more variables you may wish to set are: records deleted data_file_length index_file_length delete_length check_time Take a look at the public variables in handler.h for more information. See also my_base.h for a full description. @param flag Specifies what info is requested */ virtual int info(uint flag) = 0; virtual uint32 calculate_key_hash_value(Field **field_array [[maybe_unused]]) { assert(0); return 0; } /** Request storage engine to do an extra operation: enable,disable or run some functionality. @param operation the operation to perform @returns 0 on success error otherwise */ int ha_extra(enum ha_extra_function operation); private: /** Storage engine specific implementation of ha_extra() @param operation the operation to perform @returns 0 on success error otherwise */ virtual int extra(enum ha_extra_function operation [[maybe_unused]]) { return 0; } public: virtual int extra_opt(enum ha_extra_function operation, ulong cache_size [[maybe_unused]]) { return extra(operation); } /** Get the handlerton of the storage engine if the SE is capable of pushing down some of the AccessPath functionality. (Join, Filter conditions, ... possiby more) Call the handlerton::push_to_engine() method for performing the actual pushdown of (parts of) the AccessPath functionality @returns handlerton* of the SE if it may be capable of off loading part of the query by calling handlerton::push_to_engine() Else, 'nullptr' is returned. */ virtual const handlerton *hton_supporting_engine_pushdown() { return nullptr; } /** Start read (before write) removal on the current table. @see HA_READ_BEFORE_WRITE_REMOVAL */ virtual bool start_read_removal(void) { assert(0); return false; } /** End read (before write) removal and return the number of rows really written @see HA_READ_BEFORE_WRITE_REMOVAL */ virtual ha_rows end_read_removal(void) { assert(0); return (ha_rows)0; } /** Normally, when running UPDATE or DELETE queries, we need to wait for other transactions to release their locks on a given row before we can read it and potentially update it. However, in READ UNCOMMITTED and READ COMMITTED, we can ignore these locks if we don't intend to modify the row (e.g., because it failed a WHERE). This is signaled through enabling “semi-consistent read”, by calling try_semi_consistent_read(true) (and then setting it back to false after finishing the query). If semi-consistent read is enabled, and we are in READ UNCOMMITTED or READ COMMITTED, the storage engine is permitted to return rows that are locked and thus un-updatable. If the optimizer doesn't want the row, e.g., because it got filtered out, it can call unlock_row() as usual. However, if it intends to update the row, it needs to call was_semi_consistent_read() before doing so. If was_semi_consistent_read() returns false, the row was never locked to begin with and can be updated as usual. However, if it returns 1, it was read optimistically, must be discarded (ie., do not try to update the row) and must be re-read with locking enabled. The next read call after was_semi_consistent_read() will automatically re-read the same row, this time with locking enabled. Thus, typical use in an UPDATE scenario would look like this: file->try_semi_consistent_read(true); file->ha_rnd_init(true); while (file->ha_rnd_next(table->record[0]) == 0) { if (row is filtered...) { file->unlock_row(); continue; } if (file->was_semi_consistent_read()) { // Discard the row; next ha_rnd_next() will read it again with // locking. continue; } // Process row here. } file->ha_rnd_end(); file->try_semi_consistent_read(false); If the transaction isolation level is REPEATABLE READ or SERIALIZABLE, enabling this flag has no effect. */ virtual bool was_semi_consistent_read() { return false; } /** Tell the engine whether it should avoid unnecessary lock waits. If yes, in an UPDATE or DELETE, if the row under the cursor was locked by another transaction, the engine may try an optimistic read of the last committed row value under the cursor. */ virtual void try_semi_consistent_read(bool) {} /** Unlock last accessed row. Record currently processed was not in the result set of the statement and is thus unlocked. Used for UPDATE and DELETE queries. */ virtual void unlock_row() {} /** Start a statement when table is locked This method is called instead of external lock when the table is locked before the statement is executed. @param thd Thread object. @param lock_type Type of external lock. @retval >0 Error code. @retval 0 Success. */ virtual int start_stmt(THD *thd [[maybe_unused]], thr_lock_type lock_type [[maybe_unused]]) { return 0; } virtual void get_auto_increment(ulonglong offset, ulonglong increment, ulonglong nb_desired_values, ulonglong *first_value, ulonglong *nb_reserved_values); void set_next_insert_id(ulonglong id) { DBUG_PRINT("info", ("auto_increment: next value %lu", (ulong)id)); next_insert_id = id; } void restore_auto_increment(ulonglong prev_insert_id) { /* Insertion of a row failed, re-use the lastly generated auto_increment id, for the next row. This is achieved by resetting next_insert_id to what it was before the failed insertion (that old value is provided by the caller). If that value was 0, it was the first row of the INSERT; then if insert_id_for_cur_row contains 0 it means no id was generated for this first row, so no id was generated since the INSERT started, so we should set next_insert_id to 0; if insert_id_for_cur_row is not 0, it is the generated id of the first and failed row, so we use it. */ next_insert_id = (prev_insert_id > 0) ? prev_insert_id : insert_id_for_cur_row; } /** Update create info as part of ALTER TABLE. Forward this handler call to the storage engine foreach partition handler. The data_file_name for each partition may need to be reset if the tablespace was moved. Use a dummy HA_CREATE_INFO structure and transfer necessary data. @param create_info Create info from ALTER TABLE. */ virtual void update_create_info(HA_CREATE_INFO *create_info [[maybe_unused]]) {} virtual int assign_to_keycache(THD *, HA_CHECK_OPT *) { return HA_ADMIN_NOT_IMPLEMENTED; } virtual int preload_keys(THD *, HA_CHECK_OPT *) { return HA_ADMIN_NOT_IMPLEMENTED; } /* end of the list of admin commands */ /** Check if indexes are disabled. @retval 0 Indexes are enabled. @retval != 0 Indexes are disabled. */ virtual int indexes_are_disabled(void) { return 0; } virtual void append_create_info(String *packet [[maybe_unused]]) {} virtual void init_table_handle_for_HANDLER() { return; } /* prepare InnoDB for HANDLER */ /** The following can be called without an open handler */ virtual const char *table_type() const = 0; virtual ulong index_flags(uint idx, uint part, bool all_parts) const = 0; uint max_record_length() const { return std::min(HA_MAX_REC_LENGTH, max_supported_record_length()); } uint max_keys() const { return std::min(MAX_KEY, max_supported_keys()); } uint max_key_parts() const { return std::min(MAX_REF_PARTS, max_supported_key_parts()); } uint max_key_length() const { return std::min(MAX_KEY_LENGTH, max_supported_key_length()); } uint max_key_part_length(HA_CREATE_INFO *create_info) const { return std::min(MAX_KEY_LENGTH, max_supported_key_part_length(create_info)); } virtual uint max_supported_record_length() const { return HA_MAX_REC_LENGTH; } virtual uint max_supported_keys() const { return 0; } virtual uint max_supported_key_parts() const { return MAX_REF_PARTS; } virtual uint max_supported_key_length() const { return MAX_KEY_LENGTH; } virtual uint max_supported_key_part_length(HA_CREATE_INFO *create_info [[maybe_unused]]) const { return 255; } virtual uint min_record_length(uint options [[maybe_unused]]) const { return 1; } virtual bool low_byte_first() const { return true; } virtual ha_checksum checksum() const { return 0; } /** Check if the table is crashed. @retval true Crashed @retval false Not crashed */ virtual bool is_crashed() const { return false; } /** Check if the table can be automatically repaired. @retval true Can be auto repaired @retval false Cannot be auto repaired */ virtual bool auto_repair() const { return false; } /** Get number of lock objects returned in store_lock. Returns the number of store locks needed in call to store lock. We return number of partitions we will lock multiplied with number of locks needed by each partition. Assists the above functions in allocating sufficient space for lock structures. @returns Number of locks returned in call to store_lock. @note lock_count() can return > 1 if the table is MERGE or partitioned. */ virtual uint lock_count(void) const { return 1; } /** Is not invoked for non-transactional temporary tables. @note store_lock() can return more than one lock if the table is MERGE or partitioned. @note that one can NOT rely on table->in_use in store_lock(). It may refer to a different thread if called from mysql_lock_abort_for_thread(). @note If the table is MERGE, store_lock() can return less locks than lock_count() claimed. This can happen when the MERGE children are not attached when this is called from another thread. The idea with handler::store_lock() is the following: The statement decided which locks we should need for the table for updates/deletes/inserts we get WRITE locks, for SELECT... we get read locks. Before adding the lock into the table lock handler (see thr_lock.c) mysqld calls store lock with the requested locks. Store lock can now modify a write lock to a read lock (or some other lock), ignore the lock (if we don't want to use MySQL table locks at all) or add locks for many tables (like we do when we are using a MERGE handler). In some exceptional cases MySQL may send a request for a TL_IGNORE; This means that we are requesting the same lock as last time and this should also be ignored. Called from lock.cc by get_lock_data(). */ virtual THR_LOCK_DATA **store_lock(THD *thd, THR_LOCK_DATA **to, enum thr_lock_type lock_type) = 0; /** Check if the primary key is clustered or not. @retval true Primary key (if there is one) is a clustered key covering all fields @retval false otherwise */ virtual bool primary_key_is_clustered() const { return false; } /** Compare two positions. @param ref1 First position. @param ref2 Second position. @retval <0 ref1 < ref2. @retval 0 Equal. @retval >0 ref1 > ref2. */ virtual int cmp_ref(const uchar *ref1, const uchar *ref2) const { return memcmp(ref1, ref2, ref_length); } /* Condition pushdown to storage engines */ /** Push condition down to the table handler. @param cond Condition to be pushed. The condition tree must not be modified by the caller. @return The 'remainder' condition that caller must use to filter out records. NULL means the handler will not return rows that do not match the passed condition. @note handler->ha_reset() call discard any pushed conditions. Calls to rnd_init/rnd_end, index_init/index_end etc do not affect the pushed conditions. */ virtual const Item *cond_push(const Item *cond) { assert(pushed_cond == nullptr); return cond; } /** Push down an index condition to the handler. The server will use this method to push down a condition it wants the handler to evaluate when retrieving records using a specified index. The pushed index condition will only refer to fields from this handler that is contained in the index (but it may also refer to fields in other handlers). Before the handler evaluates the condition it must read the content of the index entry into the record buffer. The handler is free to decide if and how much of the condition it will take responsibility for evaluating. Based on this evaluation it should return the part of the condition it will not evaluate. If it decides to evaluate the entire condition it should return NULL. If it decides not to evaluate any part of the condition it should return a pointer to the same condition as given as argument. @param keyno the index number to evaluate the condition on @param idx_cond the condition to be evaluated by the handler @return The part of the pushed condition that the handler decides not to evaluate */ virtual Item *idx_cond_push(uint keyno [[maybe_unused]], Item *idx_cond) { return idx_cond; } /** Reset information about pushed index conditions */ virtual void cancel_pushed_idx_cond() { pushed_idx_cond = nullptr; pushed_idx_cond_keyno = MAX_KEY; in_range_check_pushed_down = false; } /** Reports number of tables included in pushed join which this handler instance is part of. ==0 -> Not pushed */ virtual uint number_of_pushed_joins() const { return 0; } /** If this handler instance is part of a pushed join sequence returned TABLE instance being root of the pushed query? */ virtual const TABLE *member_of_pushed_join() const { return nullptr; } /** If this handler instance is a child in a pushed join sequence returned TABLE instance being my parent? */ virtual const TABLE *parent_of_pushed_join() const { return nullptr; } /// @returns a map of the tables involved in this pushed join, or 0 if not /// part of a pushed join. virtual table_map tables_in_pushed_join() const { return 0; } int ha_index_read_pushed(uchar *buf, const uchar *key, key_part_map keypart_map); int ha_index_next_pushed(uchar *buf); protected: virtual int index_read_pushed(uchar *, const uchar *, key_part_map) { return HA_ERR_WRONG_COMMAND; } virtual int index_next_pushed(uchar *) { return HA_ERR_WRONG_COMMAND; } public: /** Part of old, deprecated in-place ALTER API. */ virtual bool check_if_incompatible_data(HA_CREATE_INFO *create_info [[maybe_unused]], uint table_changes [[maybe_unused]]) { return COMPATIBLE_DATA_NO; } /* On-line/in-place/instant ALTER TABLE interface. */ /* Here is an outline of on-line/in-place ALTER TABLE execution through this interface. Phase 1 : Initialization ======================== During this phase we determine which algorithm should be used for execution of ALTER TABLE and what level concurrency it will require. *) This phase starts by opening the table and preparing description of the new version of the table. *) Then we check if it is impossible even in theory to carry out this ALTER TABLE using the in-place/instant algorithm. For example, because we need to change storage engine or the user has explicitly requested usage of the "copy" algorithm. *) If in-place/instant ALTER TABLE is theoretically possible, we continue by compiling differences between old and new versions of the table in the form of HA_ALTER_FLAGS bitmap. We also build a few auxiliary structures describing requested changes and store all these data in the Alter_inplace_info object. *) Then the handler::check_if_supported_inplace_alter() method is called in order to find if the storage engine can carry out changes requested by this ALTER TABLE using the in-place or instant algorithm. To determine this, the engine can rely on data in HA_ALTER_FLAGS/ Alter_inplace_info passed to it as well as on its own checks. If the in-place algorithm can be used for this ALTER TABLE, the level of required concurrency for its execution is also returned. If any errors occur during the handler call, ALTER TABLE is aborted and no further handler functions are called. Note that in cases when there is difference between in-place and instant algorithm and user explicitly asked for usage of in-place algorithm storage engine MUST return one of values corresponding to in-place algorithm and not HA_ALTER_INPLACE_INSTANT from this method. *) Locking requirements of the in-place algorithm are compared to any concurrency requirements specified by user. If there is a conflict between them, we either switch to the copy algorithm or emit an error. Phase 2 : Execution =================== In this phase the operations are executed. *) As the first step, we acquire a lock corresponding to the concurrency level which was returned by handler::check_if_supported_inplace_alter() and requested by the user. This lock is held for most of the duration of in-place ALTER (if HA_ALTER_INPLACE_SHARED_LOCK_AFTER_PREPARE or HA_ALTER_INPLACE_NO_LOCK_AFTER_PREPARE were returned we acquire an exclusive lock for duration of the next step only). For HA_ALTER_INPLACE_INSTANT we keep shared upgradable metadata lock which was acquired at table open time. *) After that we call handler::ha_prepare_inplace_alter_table() to give the storage engine a chance to update its internal structures with a higher lock level than the one that will be used for the main step of algorithm. After that we downgrade the lock if it is necessary. This step should be no-op for instant algorithm. *) After that, the main step of this phase and algorithm is executed. We call the handler::ha_inplace_alter_table() method, which carries out the changes requested by ALTER TABLE but does not makes them visible to other connections yet. This step should be no-op for instant algorithm as well. *) We ensure that no other connection uses the table by upgrading our lock on it to exclusive. *) a) If the previous step succeeds, handler::ha_commit_inplace_alter_table() is called to allow the storage engine to do any final updates to its structures, to make all earlier changes durable and visible to other connections. For instant algorithm this is the step during which SE changes are done. Engines that support atomic DDL only prepare for the commit during this step but do not finalize it. Real commit happens later when the whole statement is committed. Also in some situations statement might be rolled back after call to commit_inplace_alter_table() for such storage engines. In the latter special case SE might require call to handlerton::dict_cache_reset() in order to invalidate its internal table definition cache after rollback. b) If we have failed to upgrade lock or any errors have occurred during the handler functions calls (including commit), we call handler::ha_commit_inplace_alter_table() to rollback all changes which were done during previous steps. All the above calls to SE are provided with dd::Table objects describing old and new version of table being altered. Engines which support atomic DDL are allowed to adjust object corresponding to the new version. During phase 3 these changes are saved to the data-dictionary. Phase 3 : Final =============== In this phase we: a) For engines which don't support atomic DDL: *) Update the SQL-layer data-dictionary by replacing description of old version of the table with its new version. This change is immediately committed. *) Inform the storage engine about this change by calling the handler::ha_notify_table_changed() method. *) Process the RENAME clause by calling handler::ha_rename_table() and updating the data-dictionary accordingly. Again this change is immediately committed. *) Destroy the Alter_inplace_info and handler_ctx objects. b) For engines which support atomic DDL: *) Update the SQL-layer data-dictionary by replacing description of old version of the table with its new version. *) Process the RENAME clause by calling handler::ha_rename_table() and updating the data-dictionary accordingly. *) Commit the statement/transaction. *) Finalize atomic DDL operation by calling handlerton::post_ddl() hook for the storage engine. *) Additionally inform the storage engine about completion of ALTER TABLE for the table by calling the handler::ha_notify_table_changed() method. *) Destroy the Alter_inplace_info and handler_ctx objects. */ /** Check if a storage engine supports a particular alter table in-place @param altered_table TABLE object for new version of table. @param ha_alter_info Structure describing changes to be done by ALTER TABLE and holding data used during in-place alter. @retval HA_ALTER_ERROR Unexpected error. @retval HA_ALTER_INPLACE_NOT_SUPPORTED Not supported, must use copy. @retval HA_ALTER_INPLACE_EXCLUSIVE_LOCK Supported, but requires X lock. @retval HA_ALTER_INPLACE_SHARED_LOCK_AFTER_PREPARE Supported, but requires SNW lock during main phase. Prepare phase requires X lock. @retval HA_ALTER_INPLACE_SHARED_LOCK Supported, but requires SNW lock. @retval HA_ALTER_INPLACE_NO_LOCK_AFTER_PREPARE Supported, concurrent reads/writes allowed. However, prepare phase requires X lock. @retval HA_ALTER_INPLACE_NO_LOCK Supported, concurrent reads/writes allowed. @retval HA_ALTER_INPLACE_INSTANT Instant algorithm is supported. Prepare and main phases are no-op. Changes happen during commit phase and it should be "instant". We keep SU lock, allowing concurrent reads and writes during no-op phases and upgrade it to X lock before commit phase. @note The default implementation uses the old in-place ALTER API to determine if the storage engine supports in-place ALTER or not. @note In cases when there is difference between in-place and instant algorithm and explicit ALGORITHM=INPLACE clause was provided SE MUST return one of values corresponding to in-place algorithm and not HA_ALTER_INPLACE_INSTANT from this method. @note Called without holding thr_lock.c lock. */ virtual enum_alter_inplace_result check_if_supported_inplace_alter( TABLE *altered_table, Alter_inplace_info *ha_alter_info); /** Public functions wrapping the actual handler call. @see prepare_inplace_alter_table() */ bool ha_prepare_inplace_alter_table(TABLE *altered_table, Alter_inplace_info *ha_alter_info, const dd::Table *old_table_def, dd::Table *new_table_def); /** Public function wrapping the actual handler call. @see inplace_alter_table() */ bool ha_inplace_alter_table(TABLE *altered_table, Alter_inplace_info *ha_alter_info, const dd::Table *old_table_def, dd::Table *new_table_def) { return inplace_alter_table(altered_table, ha_alter_info, old_table_def, new_table_def); } /** Public function wrapping the actual handler call. Allows us to enforce asserts regardless of handler implementation. @see commit_inplace_alter_table() */ bool ha_commit_inplace_alter_table(TABLE *altered_table, Alter_inplace_info *ha_alter_info, bool commit, const dd::Table *old_table_def, dd::Table *new_table_def); /** Public function wrapping the actual handler call. @see notify_table_changed() */ void ha_notify_table_changed(Alter_inplace_info *ha_alter_info) { notify_table_changed(ha_alter_info); } protected: /** Allows the storage engine to update internal structures with concurrent writes blocked. If check_if_supported_inplace_alter() returns HA_ALTER_INPLACE_NO_LOCK_AFTER_PREPARE or HA_ALTER_INPLACE_SHARED_AFTER_PREPARE, this function is called with exclusive lock otherwise the same level of locking as for inplace_alter_table() will be used. @note Should be no-op for instant algorithm. @note Storage engines are responsible for reporting any errors by calling my_error()/print_error() @note If this function reports error, commit_inplace_alter_table() will be called with commit= false. @note For partitioning, failing to prepare one partition, means that commit_inplace_alter_table() will be called to roll back changes for all partitions. This means that commit_inplace_alter_table() might be called without prepare_inplace_alter_table() having been called first for a given partition. @param altered_table TABLE object for new version of table. @param ha_alter_info Structure describing changes to be done by ALTER TABLE and holding data used during in-place alter. @param old_table_def dd::Table object describing old version of the table. @param new_table_def dd::Table object for the new version of the table. Can be adjusted by this call if SE supports atomic DDL. These changes to the table definition will be persisted in the data-dictionary at statement commit time. @retval true Error @retval false Success */ virtual bool prepare_inplace_alter_table( TABLE *altered_table [[maybe_unused]], Alter_inplace_info *ha_alter_info [[maybe_unused]], const dd::Table *old_table_def [[maybe_unused]], dd::Table *new_table_def [[maybe_unused]]) { return false; } /** Alter the table structure in-place with operations specified using HA_ALTER_FLAGS and Alter_inplace_info. The level of concurrency allowed during this operation depends on the return value from check_if_supported_inplace_alter(). @note Should be no-op for instant algorithm. @note Storage engines are responsible for reporting any errors by calling my_error()/print_error() @note If this function reports error, commit_inplace_alter_table() will be called with commit= false. @param altered_table TABLE object for new version of table. @param ha_alter_info Structure describing changes to be done by ALTER TABLE and holding data used during in-place alter. @param old_table_def dd::Table object describing old version of the table. @param new_table_def dd::Table object for the new version of the table. Can be adjusted by this call if SE supports atomic DDL. These changes to the table definition will be persisted in the data-dictionary at statement commit time. @retval true Error @retval false Success */ virtual bool inplace_alter_table(TABLE *altered_table [[maybe_unused]], Alter_inplace_info *ha_alter_info [[maybe_unused]], const dd::Table *old_table_def [[maybe_unused]], dd::Table *new_table_def [[maybe_unused]]) { return false; } /** Commit or rollback the changes made during prepare_inplace_alter_table() and inplace_alter_table() inside the storage engine. Note that in case of rollback the allowed level of concurrency during this operation will be the same as for inplace_alter_table() and thus might be higher than during prepare_inplace_alter_table(). (For example, concurrent writes were blocked during prepare, but might not be during rollback). @note This is the place where SE changes happen for instant algorithm. @note For storage engines supporting atomic DDL this method should only prepare for the commit but do not finalize it. Real commit should happen later when the whole statement is committed. Also in some situations statement might be rolled back after call to commit_inplace_alter_table() for such storage engines. In the latter special case SE might require call to handlerton::dict_cache_reset() in order to invalidate its internal table definition cache after rollback. @note Storage engines are responsible for reporting any errors by calling my_error()/print_error() @note If this function with commit= true reports error, it will be called again with commit= false. @note In case of partitioning, this function might be called for rollback without prepare_inplace_alter_table() having been called first. Also partitioned tables sets ha_alter_info->group_commit_ctx to a NULL terminated array of the partitions handlers and if all of them are committed as one, then group_commit_ctx should be set to NULL to indicate to the partitioning handler that all partitions handlers are committed. @see prepare_inplace_alter_table(). @param altered_table TABLE object for new version of table. @param ha_alter_info Structure describing changes to be done by ALTER TABLE and holding data used during in-place alter. @param commit True => Commit, False => Rollback. @param old_table_def dd::Table object describing old version of the table. @param new_table_def dd::Table object for the new version of the table. Can be adjusted by this call if SE supports atomic DDL. These changes to the table definition will be persisted in the data-dictionary at statement commit time. @retval true Error @retval false Success */ virtual bool commit_inplace_alter_table(TABLE *altered_table [[maybe_unused]], Alter_inplace_info *ha_alter_info [[maybe_unused]], bool commit [[maybe_unused]], const dd::Table *old_table_def [[maybe_unused]], dd::Table *new_table_def [[maybe_unused]]) { /* Nothing to commit/rollback, mark all handlers committed! */ ha_alter_info->group_commit_ctx = nullptr; return false; } /** Notify the storage engine that the table definition has been updated. @param ha_alter_info Structure describing changes done by ALTER TABLE and holding data used during in-place alter. @note No errors are allowed during notify_table_changed(). @note For storage engines supporting atomic DDL this method is invoked after the whole ALTER TABLE is completed and committed. Particularly this means that for ALTER TABLE statements with RENAME clause TABLE/handler object used for invoking this method will be associated with new table name. If storage engine needs to know the old schema and table name in this method for some reason it has to use ha_alter_info object to figure it out. */ virtual void notify_table_changed(Alter_inplace_info *ha_alter_info [[maybe_unused]]) {} public: /* End of On-line/in-place ALTER TABLE interface. */ /** use_hidden_primary_key() is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key */ virtual void use_hidden_primary_key(); protected: /* Service methods for use by storage engines. */ void ha_statistic_increment(ulonglong System_status_var::*offset) const; THD *ha_thd() const; /** Acquire the instrumented table information from a table share. @param share a table share @return an instrumented table share, or NULL. */ PSI_table_share *ha_table_share_psi(const TABLE_SHARE *share) const; /** Default rename_table() and delete_table() rename/delete files with a given name and extensions from handlerton::file_extensions. These methods can be overridden, but their default implementation provide useful functionality. @param [in] from Path for the old table name. @param [in] to Path for the new table name. @param [in] from_table_def Old version of definition for table being renamed (i.e. prior to rename). @param [in,out] to_table_def New version of definition for table being renamed. Storage engines which support atomic DDL (i.e. having HTON_SUPPORTS_ATOMIC_DDL flag set) are allowed to adjust this object. @retval >0 Error. @retval 0 Success. */ virtual int rename_table(const char *from, const char *to, const dd::Table *from_table_def, dd::Table *to_table_def); /** Delete a table. Used to delete a table. By the time delete_table() has been called all opened references to this table will have been closed (and your globally shared references released. The variable name will just be the name of the table. You will need to remove any files you have created at this point. Called for base as well as temporary tables. @param name Full path of table name. @param table_def dd::Table describing table being deleted (can be NULL for temporary tables created by optimizer). @return Zero on success, nonzero otherwise. */ virtual int delete_table(const char *name, const dd::Table *table_def); private: /* Private helpers */ void mark_trx_read_write(); /* Low-level primitives for storage engines. These should be overridden by the storage engine class. To call these methods, use the corresponding 'ha_*' method above. */ virtual int open(const char *name, int mode, uint test_if_locked, const dd::Table *table_def) = 0; virtual int close(void) = 0; virtual int index_init(uint idx, bool sorted [[maybe_unused]]) { active_index = idx; return 0; } virtual int index_end() { active_index = MAX_KEY; return 0; } /** rnd_init() can be called two times without rnd_end() in between (it only makes sense if scan=1). then the second call should prepare for the new table scan (e.g if rnd_init allocates the cursor, second call should position it to the start of the table, no need to deallocate and allocate it again */ virtual int rnd_init(bool scan) = 0; virtual int rnd_end() { return 0; } /** Write a row. write_row() inserts a row. buf is a byte array of data, normally record[0]. You can use the field information to extract the data from the native byte array type. Example of this would be: for (Field **field=table->field ; *field ; field++) { ... } @param buf Buffer to write from. @return Operation status. @retval 0 Success. @retval != 0 Error code. */ virtual int write_row(uchar *buf [[maybe_unused]]) { return HA_ERR_WRONG_COMMAND; } /** Update a single row. Note: If HA_ERR_FOUND_DUPP_KEY is returned, the handler must read all columns of the row so MySQL can create an error message. If the columns required for the error message are not read, the error message will contain garbage. */ virtual int update_row(const uchar *old_data [[maybe_unused]], uchar *new_data [[maybe_unused]]) { return HA_ERR_WRONG_COMMAND; } virtual int delete_row(const uchar *buf [[maybe_unused]]) { return HA_ERR_WRONG_COMMAND; } /** Reset state of file to after 'open'. This function is called after every statement for all tables used by that statement. */ virtual int reset() { return 0; } virtual Table_flags table_flags(void) const = 0; /** Is not invoked for non-transactional temporary tables. Tells the storage engine that we intend to read or write data from the table. This call is prefixed with a call to handler::store_lock() and is invoked only for those handler instances that stored the lock. Calls to @c rnd_init / @c index_init are prefixed with this call. When table IO is complete, we call @code external_lock(F_UNLCK) @endcode. A storage engine writer should expect that each call to @code ::external_lock(F_[RD|WR]LOCK @endcode is followed by a call to @code ::external_lock(F_UNLCK) @endcode. If it is not, it is a bug in MySQL. The name and signature originate from the first implementation in MyISAM, which would call @c fcntl to set/clear an advisory lock on the data file in this method. Originally this method was used to set locks on file level to enable several MySQL Servers to work on the same data. For transactional engines it has been "abused" to also mean start and end of statements to enable proper rollback of statements and transactions. When LOCK TABLES has been issued the start_stmt method takes over the role of indicating start of statement but in this case there is no end of statement indicator(?). Called from lock.cc by lock_external() and unlock_external(). Also called from sql_table.cc by copy_data_between_tables(). @param thd the current thread @param lock_type F_RDLCK, F_WRLCK, F_UNLCK @return non-0 in case of failure, 0 in case of success. When lock_type is F_UNLCK, the return value is ignored. */ virtual int external_lock(THD *thd [[maybe_unused]], int lock_type [[maybe_unused]]) { return 0; } virtual void release_auto_increment() { return; } /** admin commands - called from mysql_admin_table */ virtual int check_for_upgrade(HA_CHECK_OPT *) { return 0; } virtual int check(THD *, HA_CHECK_OPT *) { return HA_ADMIN_NOT_IMPLEMENTED; } /** In this method check_opt can be modified to specify CHECK option to use to call check() upon the table. */ virtual int repair(THD *, HA_CHECK_OPT *) { assert(!(ha_table_flags() & HA_CAN_REPAIR)); return HA_ADMIN_NOT_IMPLEMENTED; } virtual void start_bulk_insert(ha_rows) {} virtual int end_bulk_insert() { return 0; } /** Does this handler want to get a Record_buffer for multi-row reads via the ha_set_record_buffer() function? And if so, what is the maximum number of records to allocate space for in the buffer? Storage engines that support using a Record_buffer should override this function and return true for scans that could benefit from a buffer. @param[out] max_rows gets set to the maximum number of records to allocate space for in the buffer if the function returns true @retval true if the handler would like a Record_buffer @retval false if the handler does not want a Record_buffer */ virtual bool is_record_buffer_wanted(ha_rows *const max_rows) const { *max_rows = 0; return false; } // Set se_private_id and se_private_data during upgrade virtual bool upgrade_table(THD *thd [[maybe_unused]], const char *dbname [[maybe_unused]], const char *table_name [[maybe_unused]], dd::Table *dd_table [[maybe_unused]]) { return false; } /** Initialize sampling. @param[out] scan_ctx A scan context created by this method that has to be used in sample_next @param[in] sampling_percentage percentage of records that need to be sampled @param[in] sampling_seed random seed @param[in] sampling_method sampling method to be used; currently only SYSTEM sampling is supported @param[in] tablesample true if the sampling is for tablesample @return 0 for success, else failure. */ virtual int sample_init(void *&scan_ctx, double sampling_percentage, int sampling_seed, enum_sampling_method sampling_method, const bool tablesample); /** Get the next record for sampling. @param[in] scan_ctx Scan context of the sampling @param[in] buf buffer to place the read record @return 0 for success, else failure. */ virtual int sample_next(void *scan_ctx, uchar *buf); /** End sampling. @param[in] scan_ctx Scan context of the sampling @return 0 for success, else failure. */ virtual int sample_end(void *scan_ctx); /** * Loads a table into its defined secondary storage engine. * * @param[in] table - Table opened in primary storage engine. Its read_set * tells which columns to load. * @param[out] skip_metadata_update - should the DD metadata be updated for * the load of this table * * @return 0 if success, error code otherwise. */ virtual int load_table(const TABLE &table [[maybe_unused]], bool *skip_metadata_update [[maybe_unused]]) { /* purecov: begin inspected */ assert(false); return HA_ERR_WRONG_COMMAND; /* purecov: end */ } /** * Unloads a table from its defined secondary storage engine. * * @param db_name Database name. * @param table_name Table name. * @param error_if_not_loaded If true, then errors will be reported by this * function. If false, no errors will be reported * (silently fail). This case of false is useful * during DROP TABLE where a failure to unload * should not prevent dropping the whole table. * @return 0 if success, error code otherwise. */ virtual int unload_table(const char *db_name [[maybe_unused]], const char *table_name [[maybe_unused]], bool error_if_not_loaded [[maybe_unused]]) { /* purecov: begin inspected */ assert(false); return HA_ERR_WRONG_COMMAND; /* purecov: end */ } protected: virtual int index_read(uchar *buf [[maybe_unused]], const uchar *key [[maybe_unused]], uint key_len [[maybe_unused]], enum ha_rkey_function find_flag [[maybe_unused]]) { return HA_ERR_WRONG_COMMAND; } virtual int index_read_last(uchar *buf [[maybe_unused]], const uchar *key [[maybe_unused]], uint key_len [[maybe_unused]]) { set_my_errno(HA_ERR_WRONG_COMMAND); return HA_ERR_WRONG_COMMAND; } public: /** This method is similar to update_row, however the handler doesn't need to execute the updates at this point in time. The handler can be certain that another call to bulk_update_row will occur OR a call to exec_bulk_update before the set of updates in this query is concluded. Note: If HA_ERR_FOUND_DUPP_KEY is returned, the handler must read all columns of the row so MySQL can create an error message. If the columns required for the error message are not read, the error message will contain garbage. @param old_data Old record @param new_data New record @param dup_key_found Number of duplicate keys found */ virtual int bulk_update_row(const uchar *old_data [[maybe_unused]], uchar *new_data [[maybe_unused]], uint *dup_key_found [[maybe_unused]]) { assert(false); return HA_ERR_WRONG_COMMAND; } /** Delete all rows in a table. This is called both for cases of truncate and for cases where the optimizer realizes that all rows will be removed as a result of an SQL statement. If the handler don't support this, then this function will return HA_ERR_WRONG_COMMAND and MySQL will delete the rows one by one. */ virtual int delete_all_rows() { set_my_errno(HA_ERR_WRONG_COMMAND); return HA_ERR_WRONG_COMMAND; } /** Quickly remove all rows from a table. @param[in,out] table_def dd::Table object for table being truncated. @remark This method is responsible for implementing MySQL's TRUNCATE TABLE statement, which is a DDL operation. As such, a engine can bypass certain integrity checks and in some cases avoid fine-grained locking (e.g. row locks) which would normally be required for a DELETE statement. @remark Typically, truncate is not used if it can result in integrity violation. For example, truncate is not used when a foreign key references the table, but it might be used if foreign key checks are disabled. @remark Engine is responsible for resetting the auto-increment counter. @remark The table is locked in exclusive mode. All open TABLE/handler instances except the one which is used for truncate() call are closed. @note It is assumed that transactional storage engines implementing this method can revert its effects if transaction is rolled back (e.g. because we failed to write statement to the binary log). @note Changes to dd::Table object done by this method will be saved to data-dictionary only if storage engine supports atomic DDL (i.e. has HTON_SUPPORTS_ATOMIC_DDL flag set). */ virtual int truncate(dd::Table *table_def [[maybe_unused]]) { return HA_ERR_WRONG_COMMAND; } virtual int optimize(THD *, HA_CHECK_OPT *) { return HA_ADMIN_NOT_IMPLEMENTED; } virtual int analyze(THD *, HA_CHECK_OPT *) { return HA_ADMIN_NOT_IMPLEMENTED; } /** @brief Check and repair the table if necessary. @param thd Thread object @retval true Error/Not supported @retval false Success @note Called if open_table_from_share fails and is_crashed(). */ virtual bool check_and_repair(THD *thd [[maybe_unused]]) { return true; } /** Disable indexes for a while. @param mode Mode. @retval 0 Success. @retval != 0 Error. */ virtual int disable_indexes(uint mode [[maybe_unused]]) { return HA_ERR_WRONG_COMMAND; } /** Enable indexes again. @param mode Mode. @retval 0 Success. @retval != 0 Error. */ virtual int enable_indexes(uint mode [[maybe_unused]]) { return HA_ERR_WRONG_COMMAND; } /** Discard or import tablespace. @param [in] discard Indicates whether this is discard operation. @param [in,out] table_def dd::Table object describing the table in which tablespace needs to be discarded or imported. This object can be adjusted by storage engine if it supports atomic DDL (i.e. has HTON_SUPPORTS_ATOMIC_DDL flag set). These changes will be persisted in the data-dictionary. @retval 0 Success. @retval != 0 Error. */ virtual int discard_or_import_tablespace(bool discard [[maybe_unused]], dd::Table *table_def [[maybe_unused]]) { set_my_errno(HA_ERR_WRONG_COMMAND); return HA_ERR_WRONG_COMMAND; } virtual void drop_table(const char *name); /** Create table (implementation). @param [in] name Table name. @param [in] form TABLE object describing the table to be created. @param [in] info HA_CREATE_INFO describing table. @param [in,out] table_def dd::Table object describing the table to be created. This object can be adjusted by storage engine if it supports atomic DDL (i.e. has HTON_SUPPORTS_ATOMIC_DDL flag set). These changes will be persisted in the data-dictionary. Can be NULL for temporary tables created by optimizer. @retval 0 Success. @retval non-0 Error. */ virtual int create(const char *name, TABLE *form, HA_CREATE_INFO *info, dd::Table *table_def) = 0; virtual bool get_se_private_data(dd::Table *dd_table [[maybe_unused]], bool reset [[maybe_unused]]) { return false; } /** Adjust definition of table to be created by adding implicit columns and indexes necessary for the storage engine. @param [in] create_info HA_CREATE_INFO describing the table. @param [in] create_list List of columns in the table. @param [in] key_info Array of KEY objects describing table indexes. @param [in] key_count Number of indexes in the table. @param [in,out] table_obj dd::Table object describing the table to be created. Implicit columns and indexes are to be added to this object. Adjusted table description will be saved into the data-dictionary. @retval 0 Success. @retval non-0 Error. */ virtual int get_extra_columns_and_keys( const HA_CREATE_INFO *create_info [[maybe_unused]], const List *create_list [[maybe_unused]], const KEY *key_info [[maybe_unused]], uint key_count [[maybe_unused]], dd::Table *table_obj [[maybe_unused]]) { return 0; } virtual bool set_ha_share_ref(Handler_share **arg_ha_share) { ha_share = arg_ha_share; return false; } void set_ha_table(TABLE *table_arg) { table = table_arg; } int get_lock_type() const { return m_lock_type; } /** Callback function that will be called by my_prepare_gcolumn_template once the table has been opened. */ typedef void (*my_gcolumn_template_callback_t)(const TABLE *, void *); static bool my_prepare_gcolumn_template(THD *thd, const char *db_name, const char *table_name, my_gcolumn_template_callback_t myc, void *ib_table); static bool my_eval_gcolumn_expr_with_open(THD *thd, const char *db_name, const char *table_name, const MY_BITMAP *const fields, uchar *record, const char **mv_data_ptr, ulong *mv_length); /** Callback for computing generated column values. Storage engines that need to have virtual column values for a row can use this function to get the values computed. The storage engine must have filled in the values for the base columns that the virtual columns depend on. @param thd thread handle @param table table object @param fields bitmap of field index of evaluated generated column @param[in,out] record buff of base columns generated column depends. After calling this function, it will be used to return the value of the generated columns. @param[out] mv_data_ptr When given (not null) and the field needs to be calculated is a typed array field, it will contain pointer to field's calculated value. @param[out] mv_length Length of the data above @retval true in case of error @retval false on success */ static bool my_eval_gcolumn_expr(THD *thd, TABLE *table, const MY_BITMAP *const fields, uchar *record, const char **mv_data_ptr, ulong *mv_length); /* This must be implemented if the handlerton's partition_flags() is set. */ virtual Partition_handler *get_partition_handler() { return nullptr; } /** Set se_private_id and se_private_data during upgrade @param thd Pointer of THD @param dbname Database name @param table_name Table name @param dd_table dd::Table for the table @param table_arg TABLE object for the table. @return Operation status @retval false Success @retval true Error */ bool ha_upgrade_table(THD *thd, const char *dbname, const char *table_name, dd::Table *dd_table, TABLE *table_arg); /** Store a pointer to the handler of the primary table that corresponds to the secondary table in this handler. */ void ha_set_primary_handler(handler *primary_handler); /** Get a pointer to a handler for the table in the primary storage engine, if this handler is for a table in a secondary storage engine. */ handler *ha_get_primary_handler() const { return m_primary_handler; } /** Return max limits for a single set of multi-valued keys @param[out] num_keys number of keys to store @param[out] keys_length total length of keys, bytes */ void ha_mv_key_capacity(uint *num_keys, size_t *keys_length) const { return mv_key_capacity(num_keys, keys_length); } /** Propagates the secondary storage engine offload failure reason for a query to the external engine when the offloaded query fails in the secondary storage engine. */ virtual void set_external_table_offload_error(const char * /*reason*/) {} /** Identifies and throws the propagated external engine query offload or exec failure reason given by the external engine handler. */ virtual void external_table_offload_error() const {} private: /** Engine-specific function for ha_can_store_mv_keys(). Dummy function. SE's overloaded method is used instead. */ /* purecov: begin inspected */ virtual void mv_key_capacity(uint *num_keys, size_t *keys_length) const { *num_keys = 0; *keys_length = 0; } /* purecov: end */ /** Filter duplicate records when multi-valued index is used for retrieval @returns true duplicate, such row id was already seen false row id is seen for the first time */ bool filter_dup_records(); protected: Handler_share *get_ha_share_ptr(); void set_ha_share_ptr(Handler_share *arg_ha_share); void lock_shared_ha_data(); void unlock_shared_ha_data(); friend class DsMrr_impl; }; /* Temporary Table handle for opening uncached table */ class Temp_table_handle { public: Temp_table_handle() : table(nullptr) {} /** Open the table handler @param[in] thd Thread object @param[in] db_name Database name @param[in] table_name Table name @return table object or nullptr */ TABLE *open(THD *thd, const char *db_name, const char *table_name); ~Temp_table_handle(); private: TABLE *table; }; /** Function identifies any old data type present in table. This function was handler::check_old_types(). Function is not part of SE API. It is now converted to auxiliary standalone function. @param[in] table TABLE object @retval 0 ON SUCCESS @retval error code ON FAILURE */ int check_table_for_old_types(const TABLE *table); /* A Disk-Sweep MRR interface implementation This implementation makes range (and, in the future, 'ref') scans to read table rows in disk sweeps. Currently it is used by MyISAM and InnoDB. Potentially it can be used with any table handler that has non-clustered indexes and on-disk rows. */ class DsMrr_impl { public: DsMrr_impl(handler *owner) : h(owner), table(nullptr), h2(nullptr) {} ~DsMrr_impl() { /* If ha_reset() has not been called then the h2 dialog might still exist. This must be closed and deleted (this is the case for internally created temporary tables). */ if (h2) reset(); assert(h2 == nullptr); } private: /* The "owner" handler object (the one that calls dsmrr_XXX functions. It is used to retrieve full table rows by calling rnd_pos(). */ handler *const h; TABLE *table; /* Always equal to h->table */ /* Secondary handler object. It is used for scanning the index */ handler *h2; /* Buffer to store rowids, or (rowid, range_id) pairs */ uchar *rowids_buf; uchar *rowids_buf_cur; /* Current position when reading/writing */ uchar *rowids_buf_last; /* When reading: end of used buffer space */ uchar *rowids_buf_end; /* End of the buffer */ bool dsmrr_eof; /* true <=> We have reached EOF when reading index tuples */ /* true <=> need range association, buffer holds {rowid, range_id} pairs */ bool is_mrr_assoc; bool use_default_impl; /* true <=> shortcut all calls to default MRR impl */ public: /** Initialize the DsMrr_impl object. This object is used for both doing default MRR scans and DS-MRR scans. This function just initializes the object. To do a DS-MRR scan, this must also be initialized by calling dsmrr_init(). @param table_arg pointer to the TABLE that owns the handler */ void init(TABLE *table_arg) { assert(table_arg != nullptr); table = table_arg; } int dsmrr_init(RANGE_SEQ_IF *seq_funcs, void *seq_init_param, uint n_ranges, uint mode, HANDLER_BUFFER *buf); void dsmrr_close(); /** Resets the DS-MRR object to the state it had after being initialized. If there is an open scan then it will be closed. This function should be called by handler::ha_reset() which is called when a statement is completed in order to make the handler object ready for re-use by a different statement. */ void reset(); int dsmrr_fill_buffer(); int dsmrr_next(char **range_info); ha_rows dsmrr_info(uint keyno, uint n_ranges, uint keys, uint *bufsz, uint *flags, Cost_estimate *cost); ha_rows dsmrr_info_const(uint keyno, RANGE_SEQ_IF *seq, void *seq_init_param, uint n_ranges, uint *bufsz, uint *flags, Cost_estimate *cost); private: bool choose_mrr_impl(uint keyno, ha_rows rows, uint *flags, uint *bufsz, Cost_estimate *cost); bool get_disk_sweep_mrr_cost(uint keynr, ha_rows rows, uint flags, uint *buffer_size, Cost_estimate *cost); }; /* lookups */ handlerton *ha_default_handlerton(THD *thd); handlerton *ha_default_temp_handlerton(THD *thd); /** Resolve handlerton plugin by name, without checking for "DEFAULT" or HTON_NOT_USER_SELECTABLE. @param thd Thread context. @param name Plugin name. @return plugin or NULL if not found. */ plugin_ref ha_resolve_by_name_raw(THD *thd, const LEX_CSTRING &name); plugin_ref ha_resolve_by_name(THD *thd, const LEX_CSTRING *name, bool is_temp_table); plugin_ref ha_lock_engine(THD *thd, const handlerton *hton); handlerton *ha_resolve_by_legacy_type(THD *thd, enum legacy_db_type db_type); handler *get_new_handler(TABLE_SHARE *share, bool partitioned, MEM_ROOT *alloc, handlerton *db_type); handlerton *ha_checktype(THD *thd, enum legacy_db_type database_type, bool no_substitute, bool report_error); bool ha_secondary_engine_supports_ddl( THD *thd, const LEX_CSTRING &secondary_engine) noexcept; /** Get default handlerton, if handler supplied is null. @param thd Thread context. @param hton The handlerton passed. @returns pointer to handlerton. */ inline handlerton *get_default_handlerton(THD *thd, handlerton *hton) { if (!hton) { hton = ha_checktype(thd, DB_TYPE_UNKNOWN, false, false); assert(hton); } return hton; } static inline enum legacy_db_type ha_legacy_type(const handlerton *db_type) { return (db_type == nullptr) ? DB_TYPE_UNKNOWN : db_type->db_type; } const char *ha_resolve_storage_engine_name(const handlerton *db_type); static inline bool ha_check_storage_engine_flag(const handlerton *db_type, uint32 flag) { return db_type == nullptr ? false : (db_type->flags & flag); } /** Predicate to determine if a storage engine, represented by a handlerton*, is enabled. @note "Enabled" in this context refers only the state of the handlerton object, and does not consider the disabled_storage_engines system variable. This leads to the very counter-intuitive and confusing situation that it is possible for a storage engine to be enabled, but at the same time also be disabled. */ inline bool ha_storage_engine_is_enabled(const handlerton *db_type) { return (db_type && db_type->create) ? (db_type->state == SHOW_OPTION_YES) : false; } /* basic stuff */ int ha_init_errors(void); int ha_init(void); void ha_end(); int ha_initialize_handlerton(st_plugin_int *plugin); int ha_finalize_handlerton(st_plugin_int *plugin); TYPELIB *ha_known_exts(); int ha_panic(enum ha_panic_function flag); void ha_reset_plugin_vars(THD *thd); void ha_close_connection(THD *thd); void ha_kill_connection(THD *thd); /** Invoke handlerton::pre_dd_shutdown() on every storage engine plugin. */ void ha_pre_dd_shutdown(void); /** Flush the log(s) of storage engine(s). @param binlog_group_flush true if we got invoked by binlog group commit during flush stage, false in other cases. @retval false Succeed @retval true Error */ bool ha_flush_logs(bool binlog_group_flush = false); void ha_drop_database(char *path); int ha_create_table(THD *thd, const char *path, const char *db, const char *table_name, HA_CREATE_INFO *create_info, bool update_create_info, bool is_temp_table, dd::Table *table_def); int ha_delete_table(THD *thd, handlerton *db_type, const char *path, const char *db, const char *alias, const dd::Table *table_def, bool generate_warning); bool ha_check_reserved_db_name(const char *name); /* statistics and info */ bool ha_show_status(THD *thd, handlerton *db_type, enum ha_stat_type stat); typedef bool Log_func(THD *, TABLE *, bool, const uchar *, const uchar *); int binlog_log_row(TABLE *table, const uchar *before_record, const uchar *after_record, Log_func *log_func); /* discovery */ int ha_create_table_from_engine(THD *thd, const char *db, const char *name); bool ha_check_if_table_exists(THD *thd, const char *db, const char *name, bool *exists); int ha_find_files(THD *thd, const char *db, const char *path, const char *wild, bool dir, List *files); int ha_table_exists_in_engine(THD *thd, const char *db, const char *name); bool ha_check_if_supported_system_table(handlerton *hton, const char *db, const char *table_name); bool ha_rm_tmp_tables(THD *thd, List *files); bool default_rm_tmp_tables(handlerton *hton, THD *thd, List *files); /* key cache */ int ha_init_key_cache(std::string_view name, KEY_CACHE *key_cache); int ha_resize_key_cache(KEY_CACHE *key_cache); int ha_change_key_cache(KEY_CACHE *old_key_cache, KEY_CACHE *new_key_cache); /* transactions: interface to handlerton functions */ int ha_start_consistent_snapshot(THD *thd); int ha_commit_trans(THD *thd, bool all, bool ignore_global_read_lock = false); int ha_commit_attachable(THD *thd); int ha_rollback_trans(THD *thd, bool all); /** Stage of the recovery process where information is collected from the storage engines (SE), merged with information from the transaction coordinator (TC) and transactions states are determined and enforced. Implemented heuristics is as follows: 1. The `commit_list` parameter contains the set of internally coordinated transactions that the TC ensures were marked as committed. 2. The `xa_state_list` parameter contains the list of externally coordinated transactions and their states, as recorded by the TC. 3. For each SE: a. Collect list of transactions found in `PREPARED_IN_TC` state in the SE and merge it with the information collected from the TC, in `xa_state_list`. b. Retrieve the list of transactions found in prepared state in the SE. c. For each internally coordinated transactions found in prepared state: 1. If the transaction is found in `commit_list`, commit it. 2. If the transaction is NOT found in `commit_list` but `tc_heuristic_recover = TC_HEURISTIC_RECOVER_COMMIT`, commit it. 3. Otherwise, roll it back. d. For each externally coordinated transactions found in prepared state: 1. If the transaction isn't found in `xa_state_list`, roll it back. 2. If the transaction is found in `xa_state_list` in `COMMITTED` state, commit it. 3. If the transaction is found in `xa_state_list` in `ROLLEDBACK` state, roll it back. 4. If the transaction is found in `xa_state_list` in `PREPARED` state, ensure that the transaction state in the SE is `PREPARED_IN_TC`. @param commit_list Set of XIDs of internally coordinated transactions found as been committed in the transaction coordinator state. @param xa_state_list Map between XIDs and states of externally coordinated transactions as found in the internal transaction coordinator state. @return 0 if recovery was successful, non-zero otherwise. */ int ha_recover(Xid_commit_list *commit_list = nullptr, Xa_state_list *xa_state_list = nullptr); /** Perform SE-specific cleanup after recovery of transactions. @note SE supporting atomic DDL can use this method to perform post-DDL actions for DDL statements which were committed or rolled back during recovery stage. */ void ha_post_recover(); /* transactions: interface to low-level handlerton functions. These are intended to be used by the transaction coordinators to commit/prepare/rollback transactions in the engines. */ int ha_commit_low(THD *thd, bool all, bool run_after_commit = true); /** Prepares the underlying transaction of the THD session object parameter in the storage engines that participate in the transaction. In case of failure, an error will be emitted by the function in the case of internally coordinated transactions. In the case of externally coordinated transactions (XA), the error treatment must follow the XA/Open specification and is handled by the `Sql_cmd_xa_prepare` class. @param thd The THD session object holding the transaction to be prepared. @param all Whether or not the prepare regards a full transaction or the statement being executed.. @return 0 if the transaction was successfully prepared, non-zero otherwise. */ int ha_prepare_low(THD *thd, bool all); int ha_rollback_low(THD *thd, bool all); /* transactions: these functions never call handlerton functions directly */ int ha_enable_transaction(THD *thd, bool on); /* savepoints */ int ha_rollback_to_savepoint(THD *thd, SAVEPOINT *sv); bool ha_rollback_to_savepoint_can_release_mdl(THD *thd); int ha_savepoint(THD *thd, SAVEPOINT *sv); int ha_release_savepoint(THD *thd, SAVEPOINT *sv); /* these are called by storage engines */ void trans_register_ha(THD *thd, bool all, handlerton *ht, const ulonglong *trxid); int ha_reset_logs(THD *thd); int ha_binlog_index_purge_file(THD *thd, const char *file); void ha_reset_slave(THD *thd); void ha_binlog_log_query(THD *thd, handlerton *db_type, enum_binlog_command binlog_command, const char *query, size_t query_length, const char *db, const char *table_name); void ha_acl_notify(THD *thd, class Acl_change_notification *); void ha_binlog_wait(THD *thd); /* It is required by basic binlog features on both MySQL server and libmysqld */ int ha_binlog_end(THD *thd); const char *get_canonical_filename(handler *file, const char *path, char *tmp_path); const char *table_case_name(const HA_CREATE_INFO *info, const char *name); void print_keydup_error(TABLE *table, KEY *key, const char *msg, myf errflag, const char *org_table_name); void print_keydup_error(TABLE *table, KEY *key, myf errflag, const char *org_table_name); inline void print_keydup_error(TABLE *table, KEY *key, const char *msg, myf errflag) { print_keydup_error(table, key, msg, errflag, nullptr); } inline void print_keydup_error(TABLE *table, KEY *key, myf errflag) { print_keydup_error(table, key, errflag, nullptr); } bool ha_is_storage_engine_disabled(handlerton *se_engine); bool ha_notify_exclusive_mdl(THD *thd, const MDL_key *mdl_key, ha_notification_type notification_type, bool *victimized); bool ha_notify_table_ddl(THD *thd, const MDL_key *mdl_key, ha_notification_type notification_type, ha_ddl_type ddl_type, const char *old_db_name, const char *old_table_name, const char *new_db_name, const char *new_table_name); std::pair commit_owned_gtids(THD *thd, bool all); bool set_tx_isolation(THD *thd, enum_tx_isolation tx_isolation, bool one_shot); bool is_index_access_error(int error); /* This class is used by INFORMATION_SCHEMA.FILES to read SE specific tablespace dynamic metadata. Some member like m_type and id, is not really dynamic, but as this information is not stored in data dictionary in a generic format and still is SE specific Some member like m_type and id, is not really dynamic, but as this information is not stored in data dictionary in a generic format and still needs SE specific decision, we are requesting the same from SE. */ class ha_tablespace_statistics { public: ha_tablespace_statistics() : m_id(0), m_logfile_group_number(~0ULL), m_free_extents(0), m_total_extents(0), m_extent_size(0), m_initial_size(0), m_maximum_size(0), m_autoextend_size(0), m_version(~0ULL), m_data_free(0) {} ulonglong m_id; dd::String_type m_type; dd::String_type m_logfile_group_name; // NDB only ulonglong m_logfile_group_number; // NDB only ulonglong m_free_extents; ulonglong m_total_extents; ulonglong m_extent_size; ulonglong m_initial_size; ulonglong m_maximum_size; ulonglong m_autoextend_size; ulonglong m_version; // NDB only dd::String_type m_row_format; // NDB only ulonglong m_data_free; // InnoDB dd::String_type m_status; dd::String_type m_extra; // NDB only }; #endif /* HANDLER_INCLUDED */