#ifndef SQL_ARRAY_INCLUDED #define SQL_ARRAY_INCLUDED /* Copyright (c) 2005, 2024, Oracle and/or its affiliates. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License, version 2.0, as published by the Free Software Foundation. This program is designed to work with certain software (including but not limited to OpenSSL) that is licensed under separate terms, as designated in a particular file or component or in included license documentation. The authors of MySQL hereby grant you an additional permission to link the program and your derivative works with the separately licensed software that they have either included with the program or referenced in the documentation. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License, version 2.0, for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include "my_alloc.h" /** A wrapper class which provides array bounds checking. We do *not* own the array, we simply have a pointer to the first element, and a length. @remark We want the compiler-generated versions of: - the copy CTOR (memberwise initialization) - the assignment operator (memberwise assignment) This is roughly analogous to C++20's std::span. @tparam Element_type The type of the elements of the container. */ template class Bounds_checked_array { public: // Convenience typedef, same typedef name as std::vector typedef Element_type value_type; Bounds_checked_array() : m_array(nullptr), m_size(0) {} Bounds_checked_array(Element_type *el, size_t size_arg) : m_array(el), m_size(size_arg) {} // NOTE: non-const reference intentional; mirrors std::span's constructor. template explicit Bounds_checked_array(std::array &arr) : m_array(arr.data()), m_size(arr.size()) {} // Not a constructor because it does something else from the other // constructors (allocates new memory instead of wrapping existing memory), // and also because nullptr for the first argument be ambiguous. The latter // could be solved with an explicit nullptr_t overload, though. // // The elements of the array are initialized with value initialization. For // primitive types, like int and pointers, this means the elements will be set // to the equivalent of 0 (or false or nullptr). static Bounds_checked_array Alloc(MEM_ROOT *mem_root, size_t size) { return {mem_root->ArrayAlloc(size), size}; } /// Make a copy of '*this'. Allocate memory for m_array on 'mem_root'. Bounds_checked_array Clone(MEM_ROOT *mem_root) const { if (data() == nullptr) { return {}; } else { Bounds_checked_array duplicate = Alloc(mem_root, size()); if (duplicate.m_array != nullptr) { std::copy(cbegin(), cend(), duplicate.begin()); } return duplicate; } } void reset() { m_array = nullptr; m_size = 0; } void reset(Element_type *array, size_t size) { m_array = array; m_size = size; } /** Set a new bound on the array. Does not resize the underlying array, so the new size must be smaller than or equal to the current size. */ void resize(size_t new_size) { assert(new_size <= m_size); m_size = new_size; } /** Like resize(), but returns a new view of the array without modifying this one. */ Bounds_checked_array prefix(size_t new_size) { assert(new_size <= m_size); return Bounds_checked_array(m_array, new_size); } Element_type *data() { return m_array; } const Element_type *data() const { return m_array; } Element_type &operator[](size_t n) { assert(n < m_size); return m_array[n]; } const Element_type &operator[](size_t n) const { assert(n < m_size); return m_array[n]; } typedef Element_type *iterator; typedef const Element_type *const_iterator; /// begin : Returns a pointer to the first element in the array. iterator begin() { return m_array; } /// end : Returns a pointer to the past-the-end element in the array. iterator end() { return m_array + size(); } /// begin : Returns a pointer to the first element in the array. const_iterator begin() const { return m_array; } /// end : Returns a pointer to the past-the-end element in the array. const_iterator end() const { return m_array + size(); } /// Returns a pointer to the first element in the array. const_iterator cbegin() const { return m_array; } /// Returns a pointer to the past-the-end element in the array. const_iterator cend() const { return m_array + size(); } Bounds_checked_array without_back() const { assert(m_size > 0); return Bounds_checked_array{m_array, m_size - 1}; } size_t element_size() const { return sizeof(Element_type); } size_t size() const { return m_size; } bool empty() const { return m_size == 0; } bool is_null() const { return m_array == nullptr; } void pop_front() { assert(m_size > 0); m_array += 1; m_size -= 1; } Element_type *array() const { return m_array; } bool operator==(const Bounds_checked_array &rhs) const { return m_array == rhs.m_array && m_size == rhs.m_size; } bool operator!=(const Bounds_checked_array &rhs) const { return m_array != rhs.m_array || m_size != rhs.m_size; } private: Element_type *m_array; size_t m_size; }; template Bounds_checked_array make_array(Element_type *p, size_t n) { return Bounds_checked_array(p, n); } #endif /* SQL_ARRAY_INCLUDED */