/* Copyright (c) 2015, 2024, Oracle and/or its affiliates. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License, version 2.0, as published by the Free Software Foundation. This program is designed to work with certain software (including but not limited to OpenSSL) that is licensed under separate terms, as designated in a particular file or component or in included license documentation. The authors of MySQL hereby grant you an additional permission to link the program and your derivative works with the separately licensed software that they have either included with the program or referenced in the documentation. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License, version 2.0, for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "sql/tc_log.h" #include "my_config.h" #include #include #include #include #include "map_helpers.h" #include "my_alloc.h" #include "my_macros.h" #include "mysql/components/services/log_builtins.h" #include "mysql/my_loglevel.h" #include "mysql/psi/mysql_mutex.h" #include "mysqld_error.h" #ifdef HAVE_SYS_MMAN_H #include #endif #include "my_compiler.h" #include "my_dbug.h" #include "my_thread_local.h" #include "mysql/components/services/bits/psi_bits.h" #include "mysql/plugin.h" // MYSQL_STORAGE_ENGINE_PLUGIN #include "mysql/psi/mysql_file.h" #include "mysql/service_mysql_alloc.h" #include "sql/debug_sync.h" // CONDITIONAL_SYNC_POINT_FOR_TIMESTAMP #include "sql/handler.h" #include "sql/log.h" #include "sql/mysqld.h" // mysql_data_home #include "sql/psi_memory_key.h" // key_memory_TC_LOG_MMAP_pages #include "sql/raii/sentry.h" // raii::Sentry<> #include "sql/rpl_handler.h" // RUN_HOOK #include "sql/sql_class.h" // THD #include "sql/sql_const.h" #include "sql/sql_plugin.h" // plugin_foreach #include "sql/sql_plugin_ref.h" // plugin_ref #include "sql/transaction_info.h" #include "sql/xa.h" #include "thr_mutex.h" namespace { /** Invokes the handler interface for the storage engine, the `handler::commit_by_xid` function. @param thd The `THD` session object within which the command is being executed. @param plugin The `plugin_ref` object associated with the given storage engine. @param arg The XID of the transaction being committed. @return operation result @retval false Success @retval true Failure */ bool commit_one_ht(THD *thd, plugin_ref plugin, void *arg); /** Invokes the handler interface for the storage engine, the `handler::rollback_by_xid` function. @param thd The `THD` session object within which the command is being executed. @param plugin The `plugin_ref` object associated with the given storage engine. @param arg The XID of the transaction being relled back. @return operation result @retval false Success @retval true Failure */ bool rollback_one_ht(THD *thd, plugin_ref plugin, void *arg); /** Invokes the handler interface for the storage engine, the `handler::prepared_in_tc` function. @param thd The `THD` session object within which the command is being executed. @param ht The pointer to the target SE plugin. */ int set_prepared_in_tc_one_ht(THD *thd, handlerton *ht); } // namespace bool trx_coordinator::commit_detached_by_xid(THD *thd, bool run_after_commit) { DBUG_TRACE; auto trx_ctx = thd->get_transaction(); auto xs = trx_ctx->xid_state(); assert(xs->is_detached()); raii::Sentry<> reset_detached_guard{[&]() -> void { xs->reset(); }}; auto error = plugin_foreach(thd, ::commit_one_ht, MYSQL_STORAGE_ENGINE_PLUGIN, const_cast(xs->get_xid())); if (run_after_commit && trx_ctx->m_flags.run_hooks) { if (!error) (void)RUN_HOOK(transaction, after_commit, (thd, true)); trx_ctx->m_flags.run_hooks = false; } return error; } bool trx_coordinator::rollback_detached_by_xid(THD *thd) { DBUG_TRACE; auto xs = thd->get_transaction()->xid_state(); assert(xs->is_detached()); raii::Sentry<> reset_detached_guard{[&]() -> void { xs->reset(); }}; return plugin_foreach(thd, ::rollback_one_ht, MYSQL_STORAGE_ENGINE_PLUGIN, const_cast(xs->get_xid())); } bool trx_coordinator::commit_in_engines(THD *thd, bool all, bool run_after_commit) { if (all) { CONDITIONAL_SYNC_POINT_FOR_TIMESTAMP("before_commit_in_engines"); } if (thd->get_transaction() ->xid_state() ->is_detached()) // if processing a detached XA, commit by XID return trx_coordinator::commit_detached_by_xid(thd, run_after_commit); else // if not, commit normally return ha_commit_low(thd, all, run_after_commit); } bool trx_coordinator::rollback_in_engines(THD *thd, bool all) { if (all) { CONDITIONAL_SYNC_POINT_FOR_TIMESTAMP("before_rollback_in_engines"); } if (thd->get_transaction() ->xid_state() ->is_detached()) // if processing a detached XA, commit by XID return trx_coordinator::rollback_detached_by_xid(thd); else // if not, rollback normally return ha_rollback_low(thd, all); } int trx_coordinator::set_prepared_in_tc_in_engines(THD *thd, bool all) { DBUG_TRACE; if (!all || !trx_coordinator::should_statement_set_prepared_in_tc(thd)) return 0; CONDITIONAL_SYNC_POINT_FOR_TIMESTAMP("before_set_prepared_in_tc"); int error{0}; auto trn_ctx = thd->get_transaction(); auto ha_list = trn_ctx->ha_trx_info(Transaction_ctx::SESSION); for (auto const &ha_info : ha_list) { // Store in SE information that // trx is prepared in TC auto ht = ha_info.ht(); error = ::set_prepared_in_tc_one_ht(thd, ht); if (error != 0) return error; } return 0; } bool trx_coordinator::should_statement_set_prepared_in_tc(THD *thd) { return is_xa_prepare(thd); } namespace { bool commit_one_ht(THD *, plugin_ref plugin, void *arg) { DBUG_TRACE; auto ht = plugin_data(plugin); if (ht->commit_by_xid != nullptr && ht->state == SHOW_OPTION_YES && ht->recover != nullptr) { xa_status_code ret = ht->commit_by_xid(ht, static_cast(arg)); if (ret != XA_OK && ret != XAER_NOTA // XAER_NOTA is an expected result since it's not // necessary that SE represented by `handlerton` is // participating in the transaction, hence it may not // have any representation of the XID at this point ) { my_error(ER_XAER_RMERR, MYF(0)); return true; } } return false; } bool rollback_one_ht(THD *, plugin_ref plugin, void *arg) { DBUG_TRACE; auto ht = plugin_data(plugin); if (ht->rollback_by_xid != nullptr && ht->state == SHOW_OPTION_YES && ht->recover != nullptr) { xa_status_code ret = ht->rollback_by_xid(ht, static_cast(arg)); if (ret != XA_OK && ret != XAER_NOTA // XAER_NOTA is an expected result since it's not // necessary that SE represented by `handlerton` is // participating in the transaction, hence it may not // have any representation of the XID at this point ) { my_error(ER_XAER_RMERR, MYF(0)); return true; } } return false; } int set_prepared_in_tc_one_ht(THD *thd, handlerton *ht) { DBUG_TRACE; if (ht->set_prepared_in_tc != nullptr) { return ht->set_prepared_in_tc(ht, thd); } else { push_warning_printf(thd, Sql_condition::SL_WARNING, ER_ILLEGAL_HA, ER_THD(thd, ER_ILLEGAL_HA), ha_resolve_storage_engine_name(ht)); } return 0; } } // namespace int TC_LOG_DUMMY::open(const char *) { if (ha_recover()) { LogErr(ERROR_LEVEL, ER_TC_RECOVERY_FAILED_THESE_ARE_YOUR_OPTIONS); return 1; } return 0; } TC_LOG::enum_result TC_LOG_DUMMY::commit(THD *thd, bool all) { if (all) { CONDITIONAL_SYNC_POINT_FOR_TIMESTAMP("before_commit_in_tc"); } return trx_coordinator::commit_in_engines(thd, all) ? RESULT_ABORTED : RESULT_SUCCESS; } int TC_LOG_DUMMY::rollback(THD *thd, bool all) { if (all) { CONDITIONAL_SYNC_POINT_FOR_TIMESTAMP("before_rollback_in_tc"); } return trx_coordinator::rollback_in_engines(thd, all); } int TC_LOG_DUMMY::prepare(THD *thd, bool all) { CONDITIONAL_SYNC_POINT_FOR_TIMESTAMP("before_prepare_in_engines"); const int error = ha_prepare_low(thd, all); if (error != 0) return error; CONDITIONAL_SYNC_POINT_FOR_TIMESTAMP("after_ha_prepare_low"); return trx_coordinator::set_prepared_in_tc_in_engines(thd, all); } /********* transaction coordinator log for 2pc - mmap() based solution *******/ /* the log consists of a file, mmapped to a memory. file is divided on pages of tc_log_page_size size. (usable size of the first page is smaller because of log header) there's PAGE control structure for each page each page (or rather PAGE control structure) can be in one of three states - active, syncing, pool. there could be only one page in active or syncing states, but many in pool - pool is fifo queue. usual lifecycle of a page is pool->active->syncing->pool "active" page - is a page where new xid's are logged. the page stays active as long as syncing slot is taken. "syncing" page is being synced to disk. no new xid can be added to it. when the sync is done the page is moved to a pool and an active page becomes "syncing". the result of such an architecture is a natural "commit grouping" - If commits are coming faster than the system can sync, they do not stall. Instead, all commit that came since the last sync are logged to the same page, and they all are synced with the next - one - sync. Thus, thought individual commits are delayed, throughput is not decreasing. when a xid is added to an active page, the thread of this xid waits for a page's condition until the page is synced. when syncing slot becomes vacant one of these waiters is awaken to take care of syncing. it syncs the page and signals all waiters that the page is synced. PAGE::waiters is used to count these waiters, and a page may never become active again until waiters==0 (that is all waiters from the previous sync have noticed the sync was completed) note, that the page becomes "dirty" and has to be synced only when a new xid is added into it. Removing a xid from a page does not make it dirty - we don't sync removals to disk. */ ulong tc_log_page_waits = 0; #define TC_LOG_HEADER_SIZE (sizeof(tc_log_magic) + 1) static const char tc_log_magic[] = {(char)254, 0x23, 0x05, 0x74}; ulong tc_log_max_pages_used = 0, tc_log_page_size = 0, tc_log_cur_pages_used = 0; int TC_LOG_MMAP::open(const char *opt_name) { uint i; bool crashed = false; PAGE *pg; assert(total_ha_2pc > 1); assert(opt_name && opt_name[0]); tc_log_page_size = my_getpagesize(); fn_format(logname, opt_name, mysql_data_home, "", MY_UNPACK_FILENAME); if ((fd = mysql_file_open(key_file_tclog, logname, O_RDWR, MYF(0))) < 0) { if (my_errno() != ENOENT) goto err; if (using_heuristic_recover()) return 1; if ((fd = mysql_file_create(key_file_tclog, logname, CREATE_MODE, O_RDWR, MYF(MY_WME))) < 0) goto err; inited = 1; file_length = opt_tc_log_size; if (mysql_file_chsize(fd, file_length, 0, MYF(MY_WME))) goto err; } else { inited = 1; crashed = true; LogErr(INFORMATION_LEVEL, ER_TC_RECOVERING_AFTER_CRASH_USING, opt_name); if (tc_heuristic_recover != TC_HEURISTIC_NOT_USED) { LogErr(ERROR_LEVEL, ER_TC_CANT_AUTO_RECOVER_WITH_TC_HEURISTIC_RECOVER); goto err; } file_length = mysql_file_seek(fd, 0L, MY_SEEK_END, MYF(MY_WME + MY_FAE)); if (file_length == MY_FILEPOS_ERROR || file_length % tc_log_page_size) goto err; } data = (uchar *)my_mmap(nullptr, (size_t)file_length, PROT_READ | PROT_WRITE, MAP_NOSYNC | MAP_SHARED, fd, 0); if (data == MAP_FAILED) { set_my_errno(errno); goto err; } inited = 2; npages = (uint)file_length / tc_log_page_size; assert(npages >= 3); // to guarantee non-empty pool if (!(pages = (PAGE *)my_malloc(key_memory_TC_LOG_MMAP_pages, npages * sizeof(PAGE), MYF(MY_WME | MY_ZEROFILL)))) goto err; inited = 3; for (pg = pages, i = 0; i < npages; i++, pg++) { pg->next = pg + 1; pg->waiters = 0; pg->state = PS_POOL; mysql_cond_init(key_PAGE_cond, &pg->cond); pg->size = pg->free = tc_log_page_size / sizeof(my_xid); pg->start = (my_xid *)(data + i * tc_log_page_size); pg->end = pg->start + pg->size; pg->ptr = pg->start; } pages[0].size = pages[0].free = (tc_log_page_size - TC_LOG_HEADER_SIZE) / sizeof(my_xid); pages[0].start = pages[0].end - pages[0].size; pages[npages - 1].next = nullptr; inited = 4; if (crashed) { if (recover()) goto err; } else if (ha_recover()) { LogErr(ERROR_LEVEL, ER_TC_RECOVERY_FAILED_THESE_ARE_YOUR_OPTIONS); goto err; } memcpy(data, tc_log_magic, sizeof(tc_log_magic)); data[sizeof(tc_log_magic)] = (uchar)total_ha_2pc; my_msync(fd, data, tc_log_page_size, MS_SYNC); inited = 5; mysql_mutex_init(key_LOCK_tc, &LOCK_tc, MY_MUTEX_INIT_FAST); mysql_cond_init(key_COND_active, &COND_active); mysql_cond_init(key_COND_pool, &COND_pool); inited = 6; syncing = nullptr; active = pages; pool = pages + 1; pool_last_ptr = &pages[npages - 1].next; return 0; err: close(); return 1; } /** Get the total amount of potentially usable slots for XIDs in TC log. */ uint TC_LOG_MMAP::size() const { return (tc_log_page_size - TC_LOG_HEADER_SIZE) / sizeof(my_xid) + (npages - 1) * (tc_log_page_size / sizeof(my_xid)); } /** there is no active page, let's got one from the pool. Two strategies here: -# take the first from the pool -# if there're waiters - take the one with the most free space. @todo TODO page merging. try to allocate adjacent page first, so that they can be flushed both in one sync @returns Pointer to qualifying page or NULL if no page in the pool can be made active. */ TC_LOG_MMAP::PAGE *TC_LOG_MMAP::get_active_from_pool() { PAGE **best_p = &pool; if ((*best_p)->waiters != 0 || (*best_p)->free == 0) { /* if the first page can't be used try second strategy */ int best_free = 0; PAGE **p = &pool; for (p = &(*p)->next; *p; p = &(*p)->next) { if ((*p)->waiters == 0 && (*p)->free > best_free) { best_free = (*p)->free; best_p = p; } } if (*best_p == nullptr || best_free == 0) return nullptr; } PAGE *new_active = *best_p; if (new_active->free == new_active->size) // we've chosen an empty page { tc_log_cur_pages_used++; tc_log_max_pages_used = std::max(tc_log_max_pages_used, tc_log_cur_pages_used); } *best_p = (*best_p)->next; if (!*best_p) pool_last_ptr = best_p; return new_active; } /** @todo perhaps, increase log size ? */ void TC_LOG_MMAP::overflow() { /* simple overflow handling - just wait TODO perhaps, increase log size ? let's check the behaviour of tc_log_page_waits first */ const ulong old_log_page_waits = tc_log_page_waits; mysql_cond_wait(&COND_pool, &LOCK_tc); if (old_log_page_waits == tc_log_page_waits) { /* When several threads are waiting in overflow() simultaneously we want to increase counter only once and not for each thread. */ tc_log_page_waits++; } } /** Commit the transaction. @note When the TC_LOG interface was changed, this function was added and uses the functions that were there with the old interface to implement the logic. */ TC_LOG::enum_result TC_LOG_MMAP::commit(THD *thd, bool all) { DBUG_TRACE; ulong cookie = 0; const my_xid xid = thd->get_transaction()->xid_state()->get_xid()->get_my_xid(); if (all) { CONDITIONAL_SYNC_POINT_FOR_TIMESTAMP("before_commit_in_tc"); if (xid) if (!(cookie = log_xid(xid))) return RESULT_ABORTED; // Failed to log the transaction } if (trx_coordinator::commit_in_engines(thd, all)) return RESULT_INCONSISTENT; // Transaction logged, if not XA , but not // committed /* If cookie is non-zero, something was logged */ if (cookie) unlog(cookie, xid); return RESULT_SUCCESS; } int TC_LOG_MMAP::rollback(THD *thd, bool all) { if (all) { CONDITIONAL_SYNC_POINT_FOR_TIMESTAMP("before_rollback_in_tc"); } return trx_coordinator::rollback_in_engines(thd, all); } int TC_LOG_MMAP::prepare(THD *thd, bool all) { CONDITIONAL_SYNC_POINT_FOR_TIMESTAMP("before_prepare_in_engines"); const int error = ha_prepare_low(thd, all); if (error != 0) return error; CONDITIONAL_SYNC_POINT_FOR_TIMESTAMP("after_ha_prepare_low"); return trx_coordinator::set_prepared_in_tc_in_engines(thd, all); } /** Record that transaction XID is committed on the persistent storage. This function is called in the middle of two-phase commit: First all resources prepare the transaction, then tc_log->log() is called, then all resources commit the transaction, then tc_log->unlog() is called. All access to active page is serialized but it's not a problem, as we're assuming that fsync() will be a main bottleneck. That is, parallelizing writes to log pages we'll decrease number of threads waiting for a page, but then all these threads will be waiting for a fsync() anyway If tc_log == MYSQL_BIN_LOG then tc_log writes transaction to binlog and records XID in a special Xid_log_event. If tc_log = TC_LOG_MMAP then xid is written in a special memory-mapped log. @returns "cookie", a number that will be passed as an argument to unlog() call. tc_log can define it any way it wants, and use for whatever purposes. TC_LOG_MMAP sets it to the position in memory where xid was logged to. @retval 0 error */ ulong TC_LOG_MMAP::log_xid(my_xid xid) { mysql_mutex_lock(&LOCK_tc); while (true) { /* If active page is full - just wait... */ while (unlikely(active && active->free == 0)) mysql_cond_wait(&COND_active, &LOCK_tc); /* no active page ? take one from the pool. */ if (active == nullptr) { active = get_active_from_pool(); /* There are no pages with free slots? Wait and retry. */ if (active == nullptr) { overflow(); continue; } } break; } PAGE *p = active; const ulong cookie = store_xid_in_empty_slot(xid, p, data); bool err; if (syncing) { // somebody's syncing. let's wait err = wait_sync_completion(p); if (p->state != PS_DIRTY) // page was synced { if (p->waiters == 0) mysql_cond_broadcast(&COND_pool); // in case somebody's waiting mysql_mutex_unlock(&LOCK_tc); goto done; // we're done } } // page was not synced! do it now assert(active == p && syncing == nullptr); syncing = p; // place is vacant - take it active = nullptr; // page is not active anymore mysql_cond_broadcast(&COND_active); // in case somebody's waiting mysql_mutex_unlock(&LOCK_tc); err = sync(); done: return err ? 0 : cookie; } /** Write the page data being synchronized to the disk. @retval false Success @retval true Failure */ bool TC_LOG_MMAP::sync() { /* sit down and relax - this can take a while... note - no locks are held at this point */ const int err = do_msync_and_fsync(fd, syncing->start, syncing->size * sizeof(my_xid), MS_SYNC); mysql_mutex_lock(&LOCK_tc); assert(syncing != active); /* Page is synced. Let's move it to the pool. */ *pool_last_ptr = syncing; pool_last_ptr = &(syncing->next); syncing->next = nullptr; syncing->state = err ? PS_ERROR : PS_POOL; mysql_cond_broadcast(&COND_pool); // in case somebody's waiting /* Wake-up all threads which are waiting for syncing of the same page. */ mysql_cond_broadcast(&syncing->cond); /* Mark syncing slot as free and wake-up new syncer. */ syncing = nullptr; if (active) mysql_cond_signal(&active->cond); mysql_mutex_unlock(&LOCK_tc); return err != 0; } /** erase xid from the page, update page free space counters/pointers. cookie points directly to the memory where xid was logged. */ void TC_LOG_MMAP::unlog(ulong cookie, my_xid xid [[maybe_unused]]) { PAGE *p = pages + (cookie / tc_log_page_size); my_xid *x = (my_xid *)(data + cookie); assert(*x == xid); assert(x >= p->start && x < p->end); mysql_mutex_lock(&LOCK_tc); *x = 0; p->free++; assert(p->free <= p->size); p->ptr = std::min(p->ptr, x); if (p->free == p->size) // the page is completely empty tc_log_cur_pages_used--; if (p->waiters == 0) // the page is in pool and ready to rock mysql_cond_broadcast(&COND_pool); // ping ... for overflow() mysql_mutex_unlock(&LOCK_tc); } void TC_LOG_MMAP::close() { uint i; switch (inited) { case 6: mysql_mutex_destroy(&LOCK_tc); mysql_cond_destroy(&COND_pool); [[fallthrough]]; case 5: data[0] = 'A'; // garble the first (signature) byte, in case // mysql_file_delete fails [[fallthrough]]; case 4: for (i = 0; i < npages; i++) { if (pages[i].ptr == nullptr) break; mysql_cond_destroy(&pages[i].cond); } [[fallthrough]]; case 3: my_free(pages); [[fallthrough]]; case 2: my_munmap((char *)data, (size_t)file_length); [[fallthrough]]; case 1: mysql_file_close(fd, MYF(0)); } if (inited >= 5) // cannot do in the switch because of Windows mysql_file_delete(key_file_tclog, logname, MYF(MY_WME)); inited = 0; } int TC_LOG_MMAP::recover() { PAGE *p = pages, *end_p = pages + npages; if (memcmp(data, tc_log_magic, sizeof(tc_log_magic))) { LogErr(ERROR_LEVEL, ER_TC_BAD_MAGIC_IN_TC_LOG); goto err1; } /* the first byte after magic signature is set to current number of storage engines on startup */ if (data[sizeof(tc_log_magic)] != total_ha_2pc) { LogErr(ERROR_LEVEL, ER_TC_NEED_N_SE_SUPPORTING_2PC_FOR_RECOVERY, data[sizeof(tc_log_magic)]); goto err1; } { MEM_ROOT mem_root(PSI_INSTRUMENT_ME, tc_log_page_size / 3); mem_root_unordered_set xids(&mem_root); for (; p < end_p; p++) { for (my_xid *x = p->start; x < p->end; x++) { if (*x) xids.insert(*x); } } bool err = ha_recover(&xids); if (err) goto err1; } memset(data, 0, (size_t)file_length); return 0; err1: LogErr(ERROR_LEVEL, ER_TC_RECOVERY_FAILED_THESE_ARE_YOUR_OPTIONS); return 1; } TC_LOG *tc_log; TC_LOG_DUMMY tc_log_dummy; TC_LOG_MMAP tc_log_mmap; bool TC_LOG::using_heuristic_recover() { if (tc_heuristic_recover == TC_HEURISTIC_NOT_USED) return false; LogErr(INFORMATION_LEVEL, ER_TC_HEURISTIC_RECOVERY_MODE); if (ha_recover(nullptr)) LogErr(ERROR_LEVEL, ER_TC_HEURISTIC_RECOVERY_FAILED); LogErr(INFORMATION_LEVEL, ER_TC_RESTART_WITHOUT_TC_HEURISTIC_RECOVER); return true; }