// Copyright (c) 2017, 2024, Oracle and/or its affiliates. // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License, version 2.0, // as published by the Free Software Foundation. // // This program is designed to work with certain software (including // but not limited to OpenSSL) that is licensed under separate terms, // as designated in a particular file or component or in included license // documentation. The authors of MySQL hereby grant you an additional // permission to link the program and your derivative works with the // separately licensed software that they have either included with // the program or referenced in the documentation. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License, version 2.0, for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. /// @file /// /// This file implements the overlaps functor and function. #include // std::unique_ptr #include #include "sql/dd/types/spatial_reference_system.h" // dd::Spatial_reference_system #include "sql/gis/box.h" #include "sql/gis/box_traits.h" #include "sql/gis/gc_utils.h" #include "sql/gis/geometries.h" #include "sql/gis/geometries_traits.h" #include "sql/gis/mbr_utils.h" #include "sql/gis/overlaps_functor.h" #include "sql/gis/relops.h" #include "sql/sql_exception_handler.h" // handle_gis_exception namespace bg = boost::geometry; namespace gis { /// Apply an Overlaps functor to two geometries, which both may be geometry /// collections, and return the booelan result of the functor applied on each /// combination of elements in the collections. /// /// @tparam GC Coordinate specific gometry collection type. /// /// @param f Functor to apply. /// @param g1 First geometry. /// @param g2 Second geometry. /// /// @retval true g1 overlaps g2. /// @retval false g1 doesn't overlap g2. template static bool geometry_collection_apply_overlaps(const Overlaps &f, const Geometry *g1, const Geometry *g2) { if (g1->type() == Geometry_type::kGeometrycollection && g2->type() == Geometry_type::kGeometrycollection) { std::unique_ptr g1_mpt; std::unique_ptr g1_mls; std::unique_ptr g1_mpy; std::unique_ptr g2_mpt; std::unique_ptr g2_mls; std::unique_ptr g2_mpy; split_gc(down_cast(g1), &g1_mpt, &g1_mls, &g1_mpy); gc_union(f.semi_major(), f.semi_minor(), &g1_mpt, &g1_mls, &g1_mpy); split_gc(down_cast(g2), &g2_mpt, &g2_mls, &g2_mpy); gc_union(f.semi_major(), f.semi_minor(), &g2_mpt, &g2_mls, &g2_mpy); int g1_dim; if (!g1_mpy->empty()) g1_dim = 2; else if (!g1_mls->empty()) g1_dim = 1; else if (!g1_mpt->empty()) g1_dim = 0; else { assert(false); /* purecov: inspected */ g1_dim = -1; /* purecov: inspected */ } int g2_dim; if (!g2_mpy->empty()) g2_dim = 2; else if (!g2_mls->empty()) g2_dim = 1; else if (!g2_mpt->empty()) g2_dim = 0; else { assert(false); /* purecov: inspected */ g2_dim = -1; /* purecov: inspected */ } if (g1_dim != g2_dim) throw null_value_exception(); switch (g1_dim) { case 0: return f(g1_mpt.get(), g2_mpt.get()); break; case 1: return f(g1_mpt.get(), g2_mpt.get()) || f(g1_mls.get(), g2_mls.get()); break; case 2: return f(g1_mpt.get(), g2_mpt.get()) || f(g1_mls.get(), g2_mls.get()) || f(g1_mpy.get(), g2_mpy.get()); break; default: assert(false); /* purecov: inspected */ throw null_value_exception(); /* purecov: inspected */ break; } } else if (g1->type() == Geometry_type::kGeometrycollection) { return f(g2, g1); } else if (g2->type() == Geometry_type::kGeometrycollection) { std::unique_ptr g2_mpt; std::unique_ptr g2_mls; std::unique_ptr g2_mpy; split_gc(down_cast(g2), &g2_mpt, &g2_mls, &g2_mpy); gc_union(f.semi_major(), f.semi_minor(), &g2_mpt, &g2_mls, &g2_mpy); int g2_dim; if (!g2_mpy->empty()) g2_dim = 2; else if (!g2_mls->empty()) g2_dim = 1; else if (!g2_mpt->empty()) g2_dim = 0; else { assert(false); /* purecov: inspected */ g2_dim = -1; /* purecov: inspected */ } switch (g1->type()) { case Geometry_type::kPoint: case Geometry_type::kMultipoint: if (g2_dim != 0) throw null_value_exception(); return f(g1, g2_mpt.get()); case Geometry_type::kLinestring: case Geometry_type::kMultilinestring: if (g2_dim != 1) throw null_value_exception(); return f(g1, g2_mls.get()); case Geometry_type::kPolygon: case Geometry_type::kMultipolygon: if (g2_dim != 2) throw null_value_exception(); return f(g1, g2_mpy.get()); default: // All possible combinations should be covered above. assert(false); /* purecov: inspected */ return false; } } else { assert(false); /* purecov: inspected */ return f(g1, g2); } } Overlaps::Overlaps(double semi_major, double semi_minor) : m_semi_major(semi_major), m_semi_minor(semi_minor), m_geographic_ll_aa_strategy( bg::srs::spheroid(semi_major, semi_minor)) {} bool Overlaps::operator()(const Geometry *g1, const Geometry *g2) const { return apply(*this, g1, g2); } bool Overlaps::operator()(const Box *b1, const Box *b2) const { assert(b1->coordinate_system() == b2->coordinate_system()); switch (b1->coordinate_system()) { case Coordinate_system::kCartesian: return eval(down_cast(b1), down_cast(b2)); case Coordinate_system::kGeographic: return eval(down_cast(b1), down_cast(b2)); } assert(false); return false; } bool Overlaps::eval(const Geometry *g1, const Geometry *g2) const { // All parameter type combinations have been implemented. assert(false); throw not_implemented_exception::for_non_projected(*g1, *g2); } ////////////////////////////////////////////////////////////////////////////// // overlaps(Cartesian_point, *) bool Overlaps::eval(const Cartesian_point *, const Cartesian_point *) const { // The interior of a point can never be within both the interior and exterior // of another geometry. return false; } bool Overlaps::eval(const Cartesian_point *, const Cartesian_linestring *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } bool Overlaps::eval(const Cartesian_point *, const Cartesian_polygon *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } bool Overlaps::eval(const Cartesian_point *g1, const Cartesian_geometrycollection *g2) const { return geometry_collection_apply_overlaps( *this, g1, g2); } bool Overlaps::eval(const Cartesian_point *, const Cartesian_multipoint *) const { // The interior of a point can never be within both the interior and exterior // of another geometry. return false; } bool Overlaps::eval(const Cartesian_point *, const Cartesian_multilinestring *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } bool Overlaps::eval(const Cartesian_point *, const Cartesian_multipolygon *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } ////////////////////////////////////////////////////////////////////////////// // overlaps(Cartesian_linestring, *) bool Overlaps::eval(const Cartesian_linestring *, const Cartesian_point *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } bool Overlaps::eval(const Cartesian_linestring *g1, const Cartesian_linestring *g2) const { return bg::overlaps(*g1, *g2); } bool Overlaps::eval(const Cartesian_linestring *, const Cartesian_polygon *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } bool Overlaps::eval(const Cartesian_linestring *g1, const Cartesian_geometrycollection *g2) const { return geometry_collection_apply_overlaps( *this, g1, g2); } bool Overlaps::eval(const Cartesian_linestring *, const Cartesian_multipoint *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } bool Overlaps::eval(const Cartesian_linestring *g1, const Cartesian_multilinestring *g2) const { return bg::overlaps(*g1, *g2); } bool Overlaps::eval(const Cartesian_linestring *, const Cartesian_multipolygon *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } ////////////////////////////////////////////////////////////////////////////// // overlaps(Cartesian_polygon, *) bool Overlaps::eval(const Cartesian_polygon *, const Cartesian_point *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } bool Overlaps::eval(const Cartesian_polygon *, const Cartesian_linestring *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } bool Overlaps::eval(const Cartesian_polygon *g1, const Cartesian_polygon *g2) const { return bg::overlaps(*g1, *g2); } bool Overlaps::eval(const Cartesian_polygon *g1, const Cartesian_geometrycollection *g2) const { return geometry_collection_apply_overlaps( *this, g1, g2); } bool Overlaps::eval(const Cartesian_polygon *, const Cartesian_multipoint *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } bool Overlaps::eval(const Cartesian_polygon *, const Cartesian_multilinestring *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } bool Overlaps::eval(const Cartesian_polygon *g1, const Cartesian_multipolygon *g2) const { return bg::overlaps(*g1, *g2); } ////////////////////////////////////////////////////////////////////////////// // overlaps(Cartesian_geometrycollection, *) bool Overlaps::eval(const Cartesian_geometrycollection *g1, const Geometry *g2) const { return geometry_collection_apply_overlaps( *this, g1, g2); } ////////////////////////////////////////////////////////////////////////////// // overlaps(Cartesian_multipoint, *) bool Overlaps::eval(const Cartesian_multipoint *, const Cartesian_point *) const { // The interior of a point can never be within both the interior and exterior // of another geometry. return false; } bool Overlaps::eval(const Cartesian_multipoint *, const Cartesian_linestring *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } bool Overlaps::eval(const Cartesian_multipoint *, const Cartesian_polygon *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } bool Overlaps::eval(const Cartesian_multipoint *g1, const Cartesian_geometrycollection *g2) const { return geometry_collection_apply_overlaps( *this, g1, g2); } bool Overlaps::eval(const Cartesian_multipoint *g1, const Cartesian_multipoint *g2) const { return bg::overlaps(*g1, *g2); } bool Overlaps::eval(const Cartesian_multipoint *, const Cartesian_multilinestring *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } bool Overlaps::eval(const Cartesian_multipoint *, const Cartesian_multipolygon *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } ////////////////////////////////////////////////////////////////////////////// // overlaps(Cartesian_multilinestring, *) bool Overlaps::eval(const Cartesian_multilinestring *, const Cartesian_point *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } bool Overlaps::eval(const Cartesian_multilinestring *g1, const Cartesian_linestring *g2) const { return bg::overlaps(*g1, *g2); } bool Overlaps::eval(const Cartesian_multilinestring *, const Cartesian_polygon *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } bool Overlaps::eval(const Cartesian_multilinestring *g1, const Cartesian_geometrycollection *g2) const { return geometry_collection_apply_overlaps( *this, g1, g2); } bool Overlaps::eval(const Cartesian_multilinestring *, const Cartesian_multipoint *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } bool Overlaps::eval(const Cartesian_multilinestring *g1, const Cartesian_multilinestring *g2) const { return bg::overlaps(*g1, *g2); } bool Overlaps::eval(const Cartesian_multilinestring *, const Cartesian_multipolygon *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } ////////////////////////////////////////////////////////////////////////////// // overlaps(Cartesian_multipolygon, *) bool Overlaps::eval(const Cartesian_multipolygon *, const Cartesian_point *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } bool Overlaps::eval(const Cartesian_multipolygon *, const Cartesian_linestring *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } bool Overlaps::eval(const Cartesian_multipolygon *g1, const Cartesian_polygon *g2) const { return bg::overlaps(*g1, *g2); } bool Overlaps::eval(const Cartesian_multipolygon *g1, const Cartesian_geometrycollection *g2) const { return geometry_collection_apply_overlaps( *this, g1, g2); } bool Overlaps::eval(const Cartesian_multipolygon *, const Cartesian_multipoint *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } bool Overlaps::eval(const Cartesian_multipolygon *, const Cartesian_multilinestring *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } bool Overlaps::eval(const Cartesian_multipolygon *g1, const Cartesian_multipolygon *g2) const { return bg::overlaps(*g1, *g2); } ////////////////////////////////////////////////////////////////////////////// // overlaps(Geographic_point, *) bool Overlaps::eval(const Geographic_point *, const Geographic_point *) const { // The interior of a point can never be within both the interior and exterior // of another geometry. return false; } bool Overlaps::eval(const Geographic_point *, const Geographic_linestring *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } bool Overlaps::eval(const Geographic_point *, const Geographic_polygon *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } bool Overlaps::eval(const Geographic_point *g1, const Geographic_geometrycollection *g2) const { return geometry_collection_apply_overlaps( *this, g1, g2); } bool Overlaps::eval(const Geographic_point *, const Geographic_multipoint *) const { // The interior of a point can never be within both the interior and exterior // of another geometry. return false; } bool Overlaps::eval(const Geographic_point *, const Geographic_multilinestring *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } bool Overlaps::eval(const Geographic_point *, const Geographic_multipolygon *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } ////////////////////////////////////////////////////////////////////////////// // overlaps(Geographic_linestring, *) bool Overlaps::eval(const Geographic_linestring *, const Geographic_point *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } bool Overlaps::eval(const Geographic_linestring *g1, const Geographic_linestring *g2) const { return bg::overlaps(*g1, *g2, m_geographic_ll_aa_strategy); } bool Overlaps::eval(const Geographic_linestring *, const Geographic_polygon *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } bool Overlaps::eval(const Geographic_linestring *g1, const Geographic_geometrycollection *g2) const { return geometry_collection_apply_overlaps( *this, g1, g2); } bool Overlaps::eval(const Geographic_linestring *, const Geographic_multipoint *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } bool Overlaps::eval(const Geographic_linestring *g1, const Geographic_multilinestring *g2) const { return bg::overlaps(*g1, *g2, m_geographic_ll_aa_strategy); } bool Overlaps::eval(const Geographic_linestring *, const Geographic_multipolygon *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } ////////////////////////////////////////////////////////////////////////////// // overlaps(Geographic_polygon, *) bool Overlaps::eval(const Geographic_polygon *, const Geographic_point *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } bool Overlaps::eval(const Geographic_polygon *, const Geographic_linestring *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } bool Overlaps::eval(const Geographic_polygon *g1, const Geographic_polygon *g2) const { return bg::overlaps(*g1, *g2, m_geographic_ll_aa_strategy); } bool Overlaps::eval(const Geographic_polygon *g1, const Geographic_geometrycollection *g2) const { return geometry_collection_apply_overlaps( *this, g1, g2); } bool Overlaps::eval(const Geographic_polygon *, const Geographic_multipoint *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } bool Overlaps::eval(const Geographic_polygon *, const Geographic_multilinestring *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } bool Overlaps::eval(const Geographic_polygon *g1, const Geographic_multipolygon *g2) const { return bg::overlaps(*g1, *g2, m_geographic_ll_aa_strategy); } ////////////////////////////////////////////////////////////////////////////// // overlaps(Geographic_geometrycollection, *) bool Overlaps::eval(const Geographic_geometrycollection *g1, const Geometry *g2) const { return geometry_collection_apply_overlaps( *this, g1, g2); } ////////////////////////////////////////////////////////////////////////////// // overlaps(Geographic_multipoint, *) bool Overlaps::eval(const Geographic_multipoint *, const Geographic_point *) const { // The interior of a point can never be within both the interior and exterior // of another geometry. return false; } bool Overlaps::eval(const Geographic_multipoint *, const Geographic_linestring *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } bool Overlaps::eval(const Geographic_multipoint *, const Geographic_polygon *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } bool Overlaps::eval(const Geographic_multipoint *g1, const Geographic_geometrycollection *g2) const { return geometry_collection_apply_overlaps( *this, g1, g2); } bool Overlaps::eval(const Geographic_multipoint *g1, const Geographic_multipoint *g2) const { // Default strategy is OK. P/P computations do not depend on shape of // ellipsoid. return bg::overlaps(*g1, *g2); } bool Overlaps::eval(const Geographic_multipoint *, const Geographic_multilinestring *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } bool Overlaps::eval(const Geographic_multipoint *, const Geographic_multipolygon *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } ////////////////////////////////////////////////////////////////////////////// // overlaps(Geographic_multilinestring, *) bool Overlaps::eval(const Geographic_multilinestring *, const Geographic_point *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } bool Overlaps::eval(const Geographic_multilinestring *g1, const Geographic_linestring *g2) const { return bg::overlaps(*g1, *g2, m_geographic_ll_aa_strategy); } bool Overlaps::eval(const Geographic_multilinestring *, const Geographic_polygon *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } bool Overlaps::eval(const Geographic_multilinestring *g1, const Geographic_geometrycollection *g2) const { return geometry_collection_apply_overlaps( *this, g1, g2); } bool Overlaps::eval(const Geographic_multilinestring *, const Geographic_multipoint *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } bool Overlaps::eval(const Geographic_multilinestring *g1, const Geographic_multilinestring *g2) const { return bg::overlaps(*g1, *g2, m_geographic_ll_aa_strategy); } bool Overlaps::eval(const Geographic_multilinestring *, const Geographic_multipolygon *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } ////////////////////////////////////////////////////////////////////////////// // overlaps(Geographic_multipolygon, *) bool Overlaps::eval(const Geographic_multipolygon *, const Geographic_point *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } bool Overlaps::eval(const Geographic_multipolygon *, const Geographic_linestring *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } bool Overlaps::eval(const Geographic_multipolygon *g1, const Geographic_polygon *g2) const { return bg::overlaps(*g1, *g2, m_geographic_ll_aa_strategy); } bool Overlaps::eval(const Geographic_multipolygon *g1, const Geographic_geometrycollection *g2) const { return geometry_collection_apply_overlaps( *this, g1, g2); } bool Overlaps::eval(const Geographic_multipolygon *, const Geographic_multipoint *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } bool Overlaps::eval(const Geographic_multipolygon *, const Geographic_multilinestring *) const { // If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54). throw null_value_exception(); } bool Overlaps::eval(const Geographic_multipolygon *g1, const Geographic_multipolygon *g2) const { return bg::overlaps(*g1, *g2, m_geographic_ll_aa_strategy); } ////////////////////////////////////////////////////////////////////////////// // overlaps(Box, Box) bool Overlaps::eval(const Cartesian_box *b1, const Cartesian_box *b2) const { // Work around bugs in BG for boxes that have zero height and/or width. if (mbr_is_point(*b1) || mbr_is_point(*b2)) { // A bounding box around a point may never overlap another box. The point is // either entirely in the interior, boundary or exterior of the other box. return false; } if (mbr_is_line(*b1) && mbr_is_line(*b2)) { Cartesian_point b1_ls_start(b1->min_corner().x(), b1->min_corner().y()); Cartesian_point b1_ls_end(b1->max_corner().x(), b1->max_corner().y()); Cartesian_linestring b1_ls; b1_ls.push_back(b1_ls_start); b1_ls.push_back(b1_ls_end); Cartesian_point b2_ls_start(b2->min_corner().x(), b2->min_corner().y()); Cartesian_point b2_ls_end(b2->max_corner().x(), b2->max_corner().y()); Cartesian_linestring b2_ls; b2_ls.push_back(b2_ls_start); b2_ls.push_back(b2_ls_end); return bg::overlaps(b1_ls, b2_ls) || bg::crosses(b1_ls, b2_ls); } return bg::overlaps(*b1, *b2); } bool Overlaps::eval(const Geographic_box *b1, const Geographic_box *b2) const { // Work around bugs in BG for boxes that have zero height and/or width. if (mbr_is_point(*b1) || mbr_is_point(*b2)) { // A bounding box around a point may never overlap another box. The point is // either entirely in the interior, boundary or exterior of the other box. return false; } if (mbr_is_line(*b1) && mbr_is_line(*b2)) { Geographic_point b1_ls_start(b1->min_corner().x(), b1->min_corner().y()); Geographic_point b1_ls_end(b1->max_corner().x(), b1->max_corner().y()); Geographic_linestring b1_ls; b1_ls.push_back(b1_ls_start); b1_ls.push_back(b1_ls_end); Geographic_point b2_ls_start(b2->min_corner().x(), b2->min_corner().y()); Geographic_point b2_ls_end(b2->max_corner().x(), b2->max_corner().y()); Geographic_linestring b2_ls; b2_ls.push_back(b2_ls_start); b2_ls.push_back(b2_ls_end); return bg::overlaps(b1_ls, b2_ls) || bg::crosses(b1_ls, b2_ls); } return bg::overlaps(*b1, *b2); } ////////////////////////////////////////////////////////////////////////////// bool overlaps(const dd::Spatial_reference_system *srs, const Geometry *g1, const Geometry *g2, const char *func_name, bool *overlaps, bool *null) noexcept { try { assert(g1->coordinate_system() == g2->coordinate_system()); assert(srs == nullptr || ((srs->is_cartesian() && g1->coordinate_system() == Coordinate_system::kCartesian) || (srs->is_geographic() && g1->coordinate_system() == Coordinate_system::kGeographic))); if ((*null = (g1->is_empty() || g2->is_empty()))) return false; Overlaps overlaps_func(srs ? srs->semi_major_axis() : 0.0, srs ? srs->semi_minor_axis() : 0.0); *overlaps = overlaps_func(g1, g2); } catch (const null_value_exception &) { *null = true; return false; } catch (...) { handle_gis_exception(func_name); return true; } return false; } bool mbr_overlaps(const dd::Spatial_reference_system *srs, const Geometry *g1, const Geometry *g2, const char *func_name, bool *overlaps, bool *null) noexcept { try { assert(g1->coordinate_system() == g2->coordinate_system()); assert(srs == nullptr || ((srs->is_cartesian() && g1->coordinate_system() == Coordinate_system::kCartesian) || (srs->is_geographic() && g1->coordinate_system() == Coordinate_system::kGeographic))); if ((*null = (g1->is_empty() || g2->is_empty()))) return false; Overlaps overlaps_func(srs ? srs->semi_major_axis() : 0.0, srs ? srs->semi_minor_axis() : 0.0); switch (g1->coordinate_system()) { case Coordinate_system::kCartesian: { Cartesian_box mbr1; box_envelope(g1, srs, &mbr1); Cartesian_box mbr2; box_envelope(g2, srs, &mbr2); *overlaps = overlaps_func(&mbr1, &mbr2); break; } case Coordinate_system::kGeographic: { Geographic_box mbr1; box_envelope(g1, srs, &mbr1); Geographic_box mbr2; box_envelope(g2, srs, &mbr2); *overlaps = overlaps_func(&mbr1, &mbr2); break; } } } catch (...) { handle_gis_exception(func_name); return true; } return false; } } // namespace gis