#ifndef SQL_EXECUTOR_INCLUDED #define SQL_EXECUTOR_INCLUDED /* Copyright (c) 2000, 2024, Oracle and/or its affiliates. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License, version 2.0, as published by the Free Software Foundation. This program is designed to work with certain software (including but not limited to OpenSSL) that is licensed under separate terms, as designated in a particular file or component or in included license documentation. The authors of MySQL hereby grant you an additional permission to link the program and your derivative works with the separately licensed software that they have either included with the program or referenced in the documentation. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License, version 2.0, for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ /** @file sql/sql_executor.h Classes for query execution. */ #include #include #include #include "my_alloc.h" #include "my_inttypes.h" #include "my_table_map.h" #include "sql/sql_lex.h" #include "sql/sql_opt_exec_shared.h" // QEP_shared_owner #include "sql/table.h" #include "sql/temp_table_param.h" // Temp_table_param class Cached_item; class Field; class Field_longlong; class Filesort; class Item; class Item_sum; class JOIN; class JOIN_TAB; class KEY; class Opt_trace_object; class QEP_TAB; class RowIterator; class THD; template class mem_root_deque; struct AccessPath; struct POSITION; template class List; template class Mem_root_array; /* Array of pointers to tables whose rowids compose the temporary table record. */ struct SJ_TMP_TABLE_TAB { QEP_TAB *qep_tab; uint rowid_offset; ushort null_byte; uchar null_bit; }; /* Temporary table used by semi-join DuplicateElimination strategy This consists of the temptable itself and data needed to put records into it. The table's DDL is as follows: CREATE TABLE tmptable (col VARCHAR(n) BINARY, PRIMARY KEY(col)); where the primary key can be replaced with unique constraint if n exceeds the limit (as it is always done for query execution-time temptables). The record value is a concatenation of rowids of tables from the join we're executing. If a join table is on the inner side of the outer join, we assume that its rowid can be NULL and provide means to store this rowid in the tuple. */ class SJ_TMP_TABLE { public: SJ_TMP_TABLE() : hash_field(nullptr) {} SJ_TMP_TABLE_TAB *tabs; SJ_TMP_TABLE_TAB *tabs_end; /* is_confluent==true means this is a special case where the temptable record has zero length (and presence of a unique key means that the temptable can have either 0 or 1 records). In this case we don't create the physical temptable but instead record its state in SJ_TMP_TABLE::have_confluent_record. */ bool is_confluent; /* When is_confluent==true: the contents of the table (whether it has the record or not). */ bool have_confluent_row; /* table record parameters */ uint null_bits; uint null_bytes; uint rowid_len; /* The temporary table itself (NULL means not created yet) */ TABLE *tmp_table; /* Pointer to next table (next->start_idx > this->end_idx) */ SJ_TMP_TABLE *next; /* Calc hash instead of too long key */ Field_longlong *hash_field; }; /** Executor structure for the materialized semi-join info, which contains - Description of expressions selected from subquery - The sj-materialization temporary table */ class Semijoin_mat_exec { public: Semijoin_mat_exec(Table_ref *sj_nest, bool is_scan, uint table_count, uint mat_table_index, uint inner_table_index) : sj_nest(sj_nest), is_scan(is_scan), table_count(table_count), mat_table_index(mat_table_index), inner_table_index(inner_table_index), table_param(), table(nullptr) {} ~Semijoin_mat_exec() = default; Table_ref *const sj_nest; ///< Semi-join nest for this materialization const bool is_scan; ///< true if executing a scan, false if lookup const uint table_count; ///< Number of tables in the sj-nest const uint mat_table_index; ///< Index in join_tab for materialized table const uint inner_table_index; ///< Index in join_tab for first inner table Temp_table_param table_param; ///< The temptable and its related info TABLE *table; ///< Reference to temporary table }; void setup_tmptable_write_func(QEP_TAB *tab, Opt_trace_object *trace); [[nodiscard]] bool copy_fields(Temp_table_param *param, const THD *thd, bool reverse_copy = false); enum Copy_func_type : int { /** In non-windowing step, copies functions */ CFT_ALL, /** In windowing step, copies framing window function, including all grouping aggregates, e.g. SUM, AVG and FIRST_VALUE, LAST_VALUE. */ CFT_WF_FRAMING, /** In windowing step, copies non framing window function, e.g. ROW_NUMBER, RANK, DENSE_RANK, except those that are two_pass cf. copy_two_pass_window_functions which are treated separately. */ CFT_WF_NON_FRAMING, /** In windowing step, copies window functions that need frame cardinality, that is we need to read all rows of a partition before we can compute the wf's value for the the first row in the partition. */ CFT_WF_NEEDS_PARTITION_CARDINALITY, /** In windowing step, copies framing window functions that read only one row per frame. */ CFT_WF_USES_ONLY_ONE_ROW, /** In first windowing step, copies non-window functions which do not rely on window functions, i.e. those that have Item::has_wf() == false. */ CFT_HAS_NO_WF, /** In final windowing step, copies all non-wf functions. Must be called after all wfs have been evaluated, as non-wf functions may reference wf, e.g. 1+RANK. */ CFT_HAS_WF, /** Copies all window functions. */ CFT_WF, /** Copies Item_field only (typically because other functions might depend on those fields). */ CFT_FIELDS, }; bool copy_funcs(Temp_table_param *, const THD *thd, Copy_func_type type = CFT_ALL); /** Copy the lookup key into the table ref's key buffer. @param thd pointer to the THD object @param table the table to read @param ref information about the index lookup key @retval false ref key copied successfully @retval true error detected during copying of key */ bool construct_lookup(THD *thd, TABLE *table, Index_lookup *ref); /** Help function when we get some an error from the table handler. */ int report_handler_error(TABLE *table, int error); int join_read_const_table(JOIN_TAB *tab, POSITION *pos); int do_sj_dups_weedout(THD *thd, SJ_TMP_TABLE *sjtbl); int update_item_cache_if_changed(List &list); size_t compute_ria_idx(const mem_root_deque &fields, size_t i, size_t added_non_hidden_fields, size_t border); // Create list for using with temporary table bool change_to_use_tmp_fields(mem_root_deque *fields, THD *thd, Ref_item_array ref_item_array, mem_root_deque *res_fields, size_t added_non_hidden_fields, bool windowing = false); // Create list for using with temporary table bool change_to_use_tmp_fields_except_sums(mem_root_deque *fields, THD *thd, Query_block *select, Ref_item_array ref_item_array, mem_root_deque *res_fields, size_t added_non_hidden_fields); bool prepare_sum_aggregators(Item_sum **func_ptr, bool need_distinct); bool setup_sum_funcs(THD *thd, Item_sum **func_ptr); bool make_group_fields(JOIN *main_join, JOIN *curr_join); bool check_unique_fields(TABLE *table); ulonglong calc_row_hash(TABLE *table); ulonglong calc_field_hash(const Field *field, ulonglong *hash); int read_const(TABLE *table, Index_lookup *ref); bool table_rec_cmp(TABLE *table); class QEP_TAB : public QEP_shared_owner { public: QEP_TAB() : QEP_shared_owner(), table_ref(nullptr), flush_weedout_table(nullptr), check_weed_out_table(nullptr), firstmatch_return(NO_PLAN_IDX), loosescan_key_len(0), match_tab(NO_PLAN_IDX), rematerialize(false), not_used_in_distinct(false), having(nullptr), tmp_table_param(nullptr), filesort(nullptr), ref_item_slice(REF_SLICE_SAVED_BASE), m_keyread_optim(false), m_reversed_access(false), lateral_derived_tables_depend_on_me(0) {} /// Initializes the object from a JOIN_TAB void init(JOIN_TAB *jt); // Cleans up. void cleanup(); // Getters and setters Item *condition_optim() const { return m_condition_optim; } void set_condition_optim() { m_condition_optim = condition(); } bool keyread_optim() const { return m_keyread_optim; } void set_keyread_optim() { if (table()) m_keyread_optim = table()->key_read; } bool reversed_access() const { return m_reversed_access; } void set_reversed_access(bool arg) { m_reversed_access = arg; } void set_table(TABLE *t) { m_qs->set_table(t); if (t) t->reginfo.qep_tab = this; } /// @returns semijoin strategy for this table. uint get_sj_strategy() const; /// Return true if join_tab should perform a FirstMatch action bool do_firstmatch() const { return firstmatch_return != NO_PLAN_IDX; } /// Return true if join_tab should perform a LooseScan action bool do_loosescan() const { return loosescan_key_len; } /// Return true if join_tab starts a Duplicate Weedout action bool starts_weedout() const { return flush_weedout_table; } /// Return true if join_tab finishes a Duplicate Weedout action bool finishes_weedout() const { return check_weed_out_table; } /** A helper function that allocates appropriate join cache object and sets next_query_block function of previous tab. */ void init_join_cache(JOIN_TAB *join_tab); /** @returns query block id for an inner table of materialized semi-join, and 0 for all other tables. @note implementation is not efficient (loops over all tables) - use this function only in EXPLAIN. */ uint sjm_query_block_id() const; /// @returns whether this is doing QS_DYNAMIC_RANGE bool dynamic_range() const { if (!position()) return false; // tmp table return using_dynamic_range; } bool use_order() const; ///< Use ordering provided by chosen index? /** Construct an access path for reading from this table in the query, using the access method that has been determined previously (e.g., table scan, ref access, optional sort afterwards, etc.). */ AccessPath *access_path(); void push_index_cond(const JOIN_TAB *join_tab, uint keyno, Opt_trace_object *trace_obj); /// @return the index used for a table in a QEP uint effective_index() const; bool pfs_batch_update(const JOIN *join) const; public: /// Pointer to table reference Table_ref *table_ref; /* Variables for semi-join duplicate elimination */ SJ_TMP_TABLE *flush_weedout_table; SJ_TMP_TABLE *check_weed_out_table; /* If set, means we should stop join enumeration after we've got the first match and return to the specified join tab. May be PRE_FIRST_PLAN_IDX which means stopping join execution after the first match. */ plan_idx firstmatch_return; /* Length of key tuple (depends on #keyparts used) to use for loose scan. If zero, means that loosescan is not used. */ uint loosescan_key_len; /* If doing a LooseScan, this QEP is the first (i.e. "driving") QEP_TAB, and match_tab points to the last QEP_TAB handled by the strategy. match_tab->found_match should be checked to see if the current value group had a match. */ plan_idx match_tab; /// Dependent table functions have to be materialized on each new scan bool rematerialize; enum Setup_func { NO_SETUP, MATERIALIZE_TABLE_FUNCTION, MATERIALIZE_DERIVED, MATERIALIZE_SEMIJOIN }; Setup_func materialize_table = NO_SETUP; bool using_dynamic_range = false; /** true <=> remove duplicates on this table. */ bool needs_duplicate_removal = false; // If we have a query of the type SELECT DISTINCT t1.* FROM t1 JOIN t2 // ON ..., (ie., we join in one or more tables that we don't actually // read any columns from), we can stop scanning t2 as soon as we see the // first row. This pattern seems to be a workaround for lack of semijoins // in older versions of MySQL. bool not_used_in_distinct; /** HAVING condition for checking prior saving a record into tmp table*/ Item *having; // Operation between the previous QEP_TAB and this one. enum enum_op_type { // Regular nested loop. OT_NONE, // Aggregate (GROUP BY). OT_AGGREGATE, // Various temporary table operations, used at the end of the join. OT_MATERIALIZE, OT_AGGREGATE_THEN_MATERIALIZE, OT_AGGREGATE_INTO_TMP_TABLE, OT_WINDOWING_FUNCTION, // Block-nested loop (rewritten to hash join). OT_BNL, // Batch key access. OT_BKA } op_type = OT_NONE; /* Tmp table info */ Temp_table_param *tmp_table_param; /* Sorting related info */ Filesort *filesort; /** If we pushed a global ORDER BY down onto this first table, that ORDER BY list will be preserved here. */ ORDER *filesort_pushed_order = nullptr; /** Slice number of the ref items array to switch to before reading rows from this table. */ uint ref_item_slice; /// Condition as it was set by the optimizer, used for EXPLAIN. /// m_condition may be overwritten at a later stage. Item *m_condition_optim = nullptr; /** True if only index is going to be read for this table. This is the optimizer's decision. */ bool m_keyread_optim; /** True if reversed scan is used. This is the optimizer's decision. */ bool m_reversed_access; /** Maps of all lateral derived tables which should be refreshed when execution reads a new row from this table. @note that if a LDT depends on t1 and t2, and t2 is after t1 in the plan, then only t2::lateral_derived_tables_depend_on_me gets the map of the LDT, for efficiency (less useless calls to QEP_TAB::refresh_lateral()) and clarity in EXPLAIN. */ qep_tab_map lateral_derived_tables_depend_on_me; Mem_root_array *invalidators = nullptr; QEP_TAB(const QEP_TAB &); // not defined QEP_TAB &operator=(const QEP_TAB &); // not defined }; bool set_record_buffer(TABLE *table, double expected_rows_to_fetch); void init_tmptable_sum_functions(Item_sum **func_ptr); void update_tmptable_sum_func(Item_sum **func_ptr, TABLE *tmp_table); bool has_rollup_result(Item *item); bool is_rollup_group_wrapper(const Item *item); Item *unwrap_rollup_group(Item *item); /* If a condition cannot be applied right away, for instance because it is a WHERE condition and we're on the right side of an outer join, we have to return it up so that it can be applied on a higher recursion level. This structure represents such a condition. */ struct PendingCondition { Item *cond; int table_index_to_attach_to; // -1 means “on the last possible outer join”. }; /** Cache invalidator iterators we need to apply, but cannot yet due to outer joins. As soon as “table_index_to_invalidate” is visible in our current join nest (which means there could no longer be NULL-complemented rows we could forget), we can and must output this invalidator and remove it from the array. */ struct PendingInvalidator { /** The table whose every (post-join) row invalidates one or more derived lateral tables. */ QEP_TAB *qep_tab; plan_idx table_index_to_invalidate; }; enum CallingContext { TOP_LEVEL, DIRECTLY_UNDER_SEMIJOIN, DIRECTLY_UNDER_OUTER_JOIN, DIRECTLY_UNDER_WEEDOUT }; /** Create an AND conjunction of all given items. If there are no items, returns nullptr. If there's only one item, returns that item. */ Item *CreateConjunction(List *items); unique_ptr_destroy_only PossiblyAttachFilterIterator( unique_ptr_destroy_only iterator, const std::vector &conditions, THD *thd); void SplitConditions(Item *condition, QEP_TAB *current_table, std::vector *predicates_below_join, std::vector *predicates_above_join, std::vector *join_conditions, plan_idx semi_join_table_idx, qep_tab_map left_tables); /** For a MATERIALIZE access path, move any non-basic iterators (e.g. sorts and filters) from table_path to above the path, for easier EXPLAIN and generally simpler structure. Note the assert in CreateIteratorFromAccessPath() that we succeeded. (ALTERNATIVE counts as a basic iterator in this regard.) We do this by finding the second-bottommost access path, and inserting our materialize node as its child. The bottommost one becomes the actual table access path. If a ZERO_ROWS access path is materialized, we simply replace the MATERIALIZE path with the ZERO_ROWS path, since there is nothing to materialize. @param thd The current thread. @param path the MATERIALIZE path. @param query_block The query block in which 'path' belongs. @returns The new root of the set of AccessPaths formed by 'path' and its descendants. */ AccessPath *MoveCompositeIteratorsFromTablePath(THD *thd, AccessPath *path, const Query_block &query_block); AccessPath *GetAccessPathForDerivedTable( THD *thd, Table_ref *table_ref, TABLE *table, bool rematerialize, Mem_root_array *invalidators, bool need_rowid, AccessPath *table_path); void ConvertItemsToCopy(const mem_root_deque &items, Field **fields, Temp_table_param *param); std::string RefToString(const Index_lookup &ref, const KEY &key, bool include_nulls); bool MaterializeIsDoingDeduplication(TABLE *table); /** Split AND conditions into their constituent parts, recursively. Conditions that are not AND conditions are appended unchanged onto condition_parts. E.g. if you have ((a AND b) AND c), condition_parts will contain [a, b, c], plus whatever it contained before the call. */ bool ExtractConditions(Item *condition, Mem_root_array *condition_parts); AccessPath *create_table_access_path(THD *thd, TABLE *table, AccessPath *range_scan, Table_ref *table_ref, POSITION *position, bool count_examined_rows); /** Creates an iterator for the given table, then calls Init() on the resulting iterator. Unlike create_table_iterator(), this can create iterators for sort buffer results (which are set in the TABLE object during query execution). Returns nullptr on failure. */ unique_ptr_destroy_only init_table_iterator( THD *thd, TABLE *table, AccessPath *range_scan, Table_ref *table_ref, POSITION *position, bool ignore_not_found_rows, bool count_examined_rows); /** A short form for when there's no range scan, recursive CTEs or cost information; just a unique_result or a simple table scan. Normally, you should prefer just instantiating an iterator yourself -- this is for legacy use only. */ inline unique_ptr_destroy_only init_table_iterator( THD *thd, TABLE *table, bool ignore_not_found_rows, bool count_examined_rows) { return init_table_iterator(thd, table, nullptr, nullptr, nullptr, ignore_not_found_rows, count_examined_rows); } AccessPath *ConnectJoins(plan_idx upper_first_idx, plan_idx first_idx, plan_idx last_idx, QEP_TAB *qep_tabs, THD *thd, CallingContext calling_context, std::vector *pending_conditions, std::vector *pending_invalidators, std::vector *pending_join_conditions, qep_tab_map *unhandled_duplicates, table_map *conditions_depend_on_outer_tables); #endif /* SQL_EXECUTOR_INCLUDED */