/* Copyright (c) 2007, 2024, Oracle and/or its affiliates. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License, version 2.0, as published by the Free Software Foundation. This program is designed to work with certain software (including but not limited to OpenSSL) that is licensed under separate terms, as designated in a particular file or component or in included license documentation. The authors of MySQL hereby grant you an additional permission to link the program and your derivative works with the separately licensed software that they have either included with the program or referenced in the documentation. Without limiting anything contained in the foregoing, this file, which is part of C Driver for MySQL (Connector/C), is also subject to the Universal FOSS Exception, version 1.0, a copy of which can be found at http://oss.oracle.com/licenses/universal-foss-exception. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License, version 2.0, for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ /**************************************************************** This file incorporates work covered by the following copyright and permission notice: The author of this software is David M. Gay. Copyright (c) 1991, 2000, 2001 by Lucent Technologies. Permission to use, copy, modify, and distribute this software for any purpose without fee is hereby granted, provided that this entire notice is included in all copies of any software which is or includes a copy or modification of this software and in all copies of the supporting documentation for such software. THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. ***************************************************************/ #include "my_config.h" #include "mysql/strings/dtoa.h" #include #include #include #include #include #include #include #include #include "my_pointer_arithmetic.h" #include "template_utils.h" #ifndef EOVERFLOW #define EOVERFLOW 84 #endif /** Appears to suffice to not call malloc() in most cases. @todo see if it is possible to get rid of malloc(). this constant is sufficient to avoid malloc() on all inputs I have tried. */ #define DTOA_BUFF_SIZE (460 * sizeof(void *)) /* Magic value returned by dtoa() to indicate overflow */ #define DTOA_OVERFLOW 9999 static double my_strtod_int(const char *, const char **, int *, char *, size_t); static char *dtoa(double, int, int, int *, int *, char **, char *, size_t); static void dtoa_free(char *, char *, size_t); /** @brief Converts a given floating point number to a zero-terminated string representation using the 'f' format. @details This function is a wrapper around dtoa() to do the same as sprintf(to, "%-.*f", precision, x), though the conversion is usually more precise. The only difference is in handling [-,+]infinity and nan values, in which case we print '0\0' to the output string and indicate an overflow. @param x the input floating point number. @param precision the number of digits after the decimal point. All properties of sprintf() apply: - if the number of significant digits after the decimal point is less than precision, the resulting string is right-padded with zeros - if the precision is 0, no decimal point appears - if a decimal point appears, at least one digit appears before it @param to pointer to the output buffer. The longest string which my_fcvt() can return is FLOATING_POINT_BUFFER bytes (including the terminating '\0'). @param error if not NULL, points to a location where the status of conversion is stored upon return. false successful conversion true the input number is [-,+]infinity or nan. The output string in this case is always '0'. @param shorten Whether to minimize the number of significant digits. If true, write only the minimum number of digits necessary to reproduce the double value when parsing the string. If false, zeros are added to the end to reach the precision limit. @return number of written characters (excluding terminating '\0') */ static size_t my_fcvt_internal(double x, int precision, bool shorten, char *to, bool *error) { int decpt, sign, len, i; char *res, *src, *end, *dst = to; char buf[DTOA_BUFF_SIZE]; assert(precision >= 0 && precision < DECIMAL_NOT_SPECIFIED && to != nullptr); res = dtoa(x, 5, precision, &decpt, &sign, &end, buf, sizeof(buf)); if (decpt == DTOA_OVERFLOW) { dtoa_free(res, buf, sizeof(buf)); *to++ = '0'; *to = '\0'; if (error != nullptr) *error = true; return 1; } src = res; len = (int)(end - src); if (sign) *dst++ = '-'; if (decpt <= 0) { *dst++ = '0'; *dst++ = '.'; for (i = decpt; i < 0; i++) *dst++ = '0'; } for (i = 1; i <= len; i++) { *dst++ = *src++; if (i == decpt && i < len) *dst++ = '.'; } while (i++ <= decpt) *dst++ = '0'; if (precision > 0 && !shorten) { if (len <= decpt) *dst++ = '.'; for (i = precision - std::max(0, (len - decpt)); i > 0; i--) *dst++ = '0'; } *dst = '\0'; if (error != nullptr) *error = false; dtoa_free(res, buf, sizeof(buf)); return dst - to; } /** @brief Converts a given floating point number to a zero-terminated string representation using the 'f' format. @details This function is a wrapper around dtoa() to do the same as sprintf(to, "%-.*f", precision, x), though the conversion is usually more precise. The only difference is in handling [-,+]infinity and nan values, in which case we print '0\0' to the output string and indicate an overflow. @param x the input floating point number. @param precision the number of digits after the decimal point. All properties of sprintf() apply: - if the number of significant digits after the decimal point is less than precision, the resulting string is right-padded with zeros - if the precision is 0, no decimal point appears - if a decimal point appears, at least one digit appears before it @param to pointer to the output buffer. The longest string which my_fcvt() can return is FLOATING_POINT_BUFFER bytes (including the terminating '\0'). @param error if not NULL, points to a location where the status of conversion is stored upon return. false successful conversion true the input number is [-,+]infinity or nan. The output string in this case is always '0'. @return number of written characters (excluding terminating '\0') */ size_t my_fcvt(double x, int precision, char *to, bool *error) { return my_fcvt_internal(x, precision, false, to, error); } /** @brief Converts a given floating point number to a zero-terminated string representation using the 'f' format. @details This function is a wrapper around dtoa() to do almost the same as sprintf(to, "%-.*f", precision, x), though the conversion is usually more precise. The only difference is in handling [-,+]infinity and nan values, in which case we print '0\0' to the output string and indicate an overflow. The string always contains the minimum number of digits necessary to reproduce the same binary double value if the string is parsed back to a double value. @param x the input floating point number. @param to pointer to the output buffer. The longest string which my_fcvt() can return is FLOATING_POINT_BUFFER bytes (including the terminating '\0'). @param error if not NULL, points to a location where the status of conversion is stored upon return. false successful conversion true the input number is [-,+]infinity or nan. The output string in this case is always '0'. @return number of written characters (excluding terminating '\0') */ size_t my_fcvt_compact(double x, char *to, bool *error) { return my_fcvt_internal(x, std::numeric_limits::max_digits10, true, to, error); } /** @brief Converts a given floating point number to a zero-terminated string representation with a given field width using the 'e' format (aka scientific notation) or the 'f' one. @details The format is chosen automatically to provide the most number of significant digits (and thus, precision) with a given field width. In many cases, the result is similar to that of sprintf(to, "%g", x) with a few notable differences: - the conversion is usually more precise than C library functions. - there is no 'precision' argument. instead, we specify the number of characters available for conversion (i.e. a field width). - the result never exceeds the specified field width. If the field is too short to contain even a rounded decimal representation, my_gcvt() indicates overflow and truncates the output string to the specified width. - float-type arguments are handled differently than double ones. For a float input number (i.e. when the 'type' argument is MY_GCVT_ARG_FLOAT) we deliberately limit the precision of conversion by FLT_DIG digits to avoid garbage past the significant digits. - unlike sprintf(), in cases where the 'e' format is preferred, we don't zero-pad the exponent to save space for significant digits. The '+' sign for a positive exponent does not appear for the same reason. @param x the input floating point number. @param type is either MY_GCVT_ARG_FLOAT or MY_GCVT_ARG_DOUBLE. Specifies the type of the input number (see notes above). @param width field width in characters. The minimal field width to hold any number representation (albeit rounded) is 7 characters ("-Ne-NNN"). @param to pointer to the output buffer. The result is always zero-terminated, and the longest returned string is thus 'width + 1' bytes. @param error if not NULL, points to a location where the status of conversion is stored upon return. false successful conversion true the input number is [-,+]infinity or nan. The output string in this case is always '0'. @return number of written characters (excluding terminating '\0') @todo Check if it is possible and makes sense to do our own rounding on top of dtoa() instead of calling dtoa() twice in (rare) cases when the resulting string representation does not fit in the specified field width and we want to re-round the input number with fewer significant digits. Examples: my_gcvt(-9e-3, ..., 4, ...); my_gcvt(-9e-3, ..., 2, ...); my_gcvt(1.87e-3, ..., 4, ...); my_gcvt(55, ..., 1, ...); We do our best to minimize such cases by: - passing to dtoa() the field width as the number of significant digits - removing the sign of the number early (and decreasing the width before passing it to dtoa()) - choosing the proper format to preserve the most number of significant digits. */ size_t my_gcvt(double x, my_gcvt_arg_type type, int width, char *to, bool *error) { int decpt, sign, len, exp_len; char *res, *src, *end, *dst = to, *dend = dst + width; char buf[DTOA_BUFF_SIZE]; bool have_space, force_e_format; assert(width > 0 && to != nullptr); /* We want to remove '-' from equations early */ if (x < 0.) width--; res = dtoa(x, 4, type == MY_GCVT_ARG_DOUBLE ? width : std::min(width, FLT_DIG), &decpt, &sign, &end, buf, sizeof(buf)); if (decpt == DTOA_OVERFLOW) { dtoa_free(res, buf, sizeof(buf)); *to++ = '0'; *to = '\0'; if (error != nullptr) *error = true; return 1; } if (error != nullptr) *error = false; src = res; len = (int)(end - res); /* Number of digits in the exponent from the 'e' conversion. The sign of the exponent is taken into account separately, we don't need to count it here. */ exp_len = 1 + (decpt >= 101 || decpt <= -99) + (decpt >= 11 || decpt <= -9); /* Do we have enough space for all digits in the 'f' format? Let 'len' be the number of significant digits returned by dtoa, and F be the length of the resulting decimal representation. Consider the following cases: 1. decpt <= 0, i.e. we have "0.NNN" => F = len - decpt + 2 2. 0 < decpt < len, i.e. we have "NNN.NNN" => F = len + 1 3. len <= decpt, i.e. we have "NNN00" => F = decpt */ have_space = (decpt <= 0 ? len - decpt + 2 : decpt > 0 && decpt < len ? len + 1 : decpt) <= width; /* The following is true when no significant digits can be placed with the specified field width using the 'f' format, and the 'e' format will not be truncated. */ force_e_format = (decpt <= 0 && width <= 2 - decpt && width >= 3 + exp_len); /* Assume that we don't have enough space to place all significant digits in the 'f' format. We have to choose between the 'e' format and the 'f' one to keep as many significant digits as possible. Let E and F be the lengths of decimal representation in the 'e' and 'f' formats, respectively. We want to use the 'f' format if, and only if F <= E. Consider the following cases: 1. decpt <= 0. F = len - decpt + 2 (see above) E = len + (len > 1) + 1 + 1 (decpt <= -99) + (decpt <= -9) + 1 ("N.NNe-MMM") (F <= E) <=> (len == 1 && decpt >= -1) || (len > 1 && decpt >= -2) We also need to ensure that if the 'f' format is chosen, the field width allows us to place at least one significant digit (i.e. width > 2 - decpt). If not, we prefer the 'e' format. 2. 0 < decpt < len F = len + 1 (see above) E = len + 1 + 1 + ... ("N.NNeMMM") F is always less than E. 3. len <= decpt <= width In this case we have enough space to represent the number in the 'f' format, so we prefer it with some exceptions. 4. width < decpt The number cannot be represented in the 'f' format at all, always use the 'e' 'one. */ if ((have_space || /* Not enough space, let's see if the 'f' format provides the most number of significant digits. */ ((decpt <= width && (decpt >= -1 || (decpt == -2 && (len > 1 || !force_e_format)))) && !force_e_format)) && /* Use the 'e' format in some cases even if we have enough space for the 'f' one. See comment for MAX_DECPT_FOR_F_FORMAT. */ (!have_space || (decpt >= -MAX_DECPT_FOR_F_FORMAT + 1 && (decpt <= MAX_DECPT_FOR_F_FORMAT || len > decpt)))) { /* 'f' format */ int i; width -= (decpt < len) + (decpt <= 0 ? 1 - decpt : 0); /* Do we have to truncate any digits? */ if (width < len) { if (width < decpt) { if (error != nullptr) *error = true; width = decpt; } /* We want to truncate (len - width) least significant digits after the decimal point. For this we are calling dtoa with mode=5, passing the number of significant digits = (len-decpt) - (len-width) = width-decpt */ dtoa_free(res, buf, sizeof(buf)); res = dtoa(x, 5, width - decpt, &decpt, &sign, &end, buf, sizeof(buf)); src = res; len = (int)(end - res); } if (len == 0) { /* Underflow. Just print '0' and exit */ *dst++ = '0'; goto end; } /* At this point we are sure we have enough space to put all digits returned by dtoa */ if (sign && dst < dend) *dst++ = '-'; if (decpt <= 0) { if (dst < dend) *dst++ = '0'; if (len > 0 && dst < dend) *dst++ = '.'; for (; decpt < 0 && dst < dend; decpt++) *dst++ = '0'; } for (i = 1; i <= len && dst < dend; i++) { *dst++ = *src++; if (i == decpt && i < len && dst < dend) *dst++ = '.'; } while (i++ <= decpt && dst < dend) *dst++ = '0'; } else { /* 'e' format */ int decpt_sign = 0; if (--decpt < 0) { decpt = -decpt; width--; decpt_sign = 1; } width -= 1 + exp_len; /* eNNN */ if (len > 1) width--; if (width <= 0) { /* Overflow */ if (error != nullptr) *error = true; width = 0; } /* Do we have to truncate any digits? */ if (width < len) { /* Yes, re-convert with a smaller width */ dtoa_free(res, buf, sizeof(buf)); res = dtoa(x, 4, width, &decpt, &sign, &end, buf, sizeof(buf)); src = res; len = (int)(end - res); if (--decpt < 0) decpt = -decpt; } /* At this point we are sure we have enough space to put all digits returned by dtoa */ if (sign && dst < dend) *dst++ = '-'; if (dst < dend) *dst++ = *src++; if (len > 1 && dst < dend) { *dst++ = '.'; while (src < end && dst < dend) *dst++ = *src++; } if (dst < dend) *dst++ = 'e'; if (decpt_sign && dst < dend) *dst++ = '-'; if (decpt >= 100 && dst < dend) { *dst++ = decpt / 100 + '0'; decpt %= 100; if (dst < dend) *dst++ = decpt / 10 + '0'; } else if (decpt >= 10 && dst < dend) *dst++ = decpt / 10 + '0'; if (dst < dend) *dst++ = decpt % 10 + '0'; } end: dtoa_free(res, buf, sizeof(buf)); *dst = '\0'; return dst - to; } /** @brief Converts string to double (string does not have to be zero-terminated) @details This is a wrapper around dtoa's version of strtod(). @param str input string @param end address of a pointer to the first character after the input string. Upon return the pointer is set to point to the first rejected character. @param error Upon return is set to EOVERFLOW in case of underflow or overflow. @return The resulting double value. In case of underflow, 0.0 is returned. In case overflow, signed DBL_MAX is returned. */ double my_strtod(const char *str, const char **end, int *error) { char buf[DTOA_BUFF_SIZE]; double res; assert(end != nullptr && ((str != nullptr && *end != nullptr) || (str == nullptr && *end == nullptr)) && error != nullptr); res = my_strtod_int(str, end, error, buf, sizeof(buf)); return (*error == 0) ? res : (res < 0 ? -DBL_MAX : DBL_MAX); } /**************************************************************** * * The author of this software is David M. Gay. * * Copyright (c) 1991, 2000, 2001 by Lucent Technologies. * * Permission to use, copy, modify, and distribute this software for any * purpose without fee is hereby granted, provided that this entire notice * is included in all copies of any software which is or includes a copy * or modification of this software and in all copies of the supporting * documentation for such software. * * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. * ***************************************************************/ /* Please send bug reports to David M. Gay (dmg at acm dot org, * with " at " changed at "@" and " dot " changed to "."). */ /* Original copy of the software is located at http://www.netlib.org/fp/dtoa.c It was adjusted to serve MySQL server needs: * strtod() was modified to not expect a zero-terminated string. It now honors 'se' (end of string) argument as the input parameter, not just as the output one. * in dtoa(), in case of overflow/underflow/NaN result string now contains "0"; decpt is set to DTOA_OVERFLOW to indicate overflow. * support for VAX, IBM mainframe and 16-bit hardware removed * we always assume that 64-bit integer type is available * support for Kernigan-Ritchie style headers (pre-ANSI compilers) removed * all gcc warnings ironed out * we always assume multithreaded environment, so we had to change memory allocation procedures to use stack in most cases; malloc is used as the last resort. * pow5mult rewritten to use pre-calculated pow5 list instead of the one generated on the fly. */ /* On a machine with IEEE extended-precision registers, it is necessary to specify double-precision (53-bit) rounding precision before invoking strtod or dtoa. If the machine uses (the equivalent of) Intel 80x87 arithmetic, the call _control87(PC_53, MCW_PC); does this with many compilers. Whether this or another call is appropriate depends on the compiler; for this to work, it may be necessary to #include "float.h" or another system-dependent header file. */ /* #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3 and dtoa should round accordingly. #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3 and Honor_FLT_ROUNDS is not #defined. TODO: check if we can get rid of the above two */ typedef union { double d; uint32_t L[2]; } U; #if defined(WORDS_BIGENDIAN) #define word0(x) (x)->L[0] #define word1(x) (x)->L[1] #else #define word0(x) (x)->L[1] #define word1(x) (x)->L[0] #endif #define dval(x) (x)->d /* #define P DBL_MANT_DIG */ /* Ten_pmax= floor(P*log(2)/log(5)) */ /* Bletch= (highest power of 2 < DBL_MAX_10_EXP) / 16 */ /* Quick_max= floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ /* Int_max= floor(P*log(FLT_RADIX)/log(10) - 1) */ #define Exp_shift 20 #define Exp_shift1 20 #define Exp_msk1 0x100000 #define Exp_mask 0x7ff00000 #define P 53 #define Bias 1023 #define Emin (-1022) #define Exp_1 0x3ff00000 #define Exp_11 0x3ff00000 #define Ebits 11 #define Frac_mask 0xfffff #define Frac_mask1 0xfffff #define Ten_pmax 22 #define Bletch 0x10 #define Bndry_mask 0xfffff #define Bndry_mask1 0xfffff #define LSB 1 #define Sign_bit 0x80000000 #define Log2P 1 #define Tiny1 1 #define Quick_max 14 #define Int_max 14 #ifndef Flt_Rounds #ifdef FLT_ROUNDS #define Flt_Rounds FLT_ROUNDS #else #define Flt_Rounds 1 #endif #endif /*Flt_Rounds*/ #ifdef Honor_FLT_ROUNDS #define Rounding rounding #undef Check_FLT_ROUNDS #define Check_FLT_ROUNDS #endif #define rounded_product(a, b) a *= b #define rounded_quotient(a, b) a /= b #define Big0 (Frac_mask1 | Exp_msk1 * (DBL_MAX_EXP + Bias - 1)) #define Big1 0xffffffff #define FFFFFFFF 0xffffffffUL /* This is tested to be enough for dtoa */ #define Kmax 15 #define Bcopy(x, y) \ memcpy((char *)&x->sign, (char *)&y->sign, \ 2 * sizeof(int) + (y)->wds * sizeof(uint32_t)) /* Arbitrary-length integer */ typedef struct Bigint { union { uint32_t *x; /* points right after this Bigint object */ struct Bigint *next; /* to maintain free lists */ } p; int k; /* 2^k = maxwds */ int maxwds; /* maximum length in 32-bit words */ int sign; /* not zero if number is negative */ int wds; /* current length in 32-bit words */ } Bigint; /* A simple stack-memory based allocator for Bigints */ typedef struct Stack_alloc { char *begin; char *free; char *end; /* Having list of free blocks lets us reduce maximum required amount of memory from ~4000 bytes to < 1680 (tested on x86). */ Bigint *freelist[Kmax + 1]; } Stack_alloc; /* Try to allocate object on stack, and resort to malloc if all stack memory is used. Ensure allocated objects to be aligned by the pointer size in order to not break the alignment rules when storing a pointer to a Bigint. */ static Bigint *Balloc(int k, Stack_alloc *alloc) { Bigint *rv; assert(k <= Kmax); if (k <= Kmax && alloc->freelist[k]) { rv = alloc->freelist[k]; alloc->freelist[k] = rv->p.next; } else { int x, len; x = 1 << k; len = MY_ALIGN(sizeof(Bigint) + x * sizeof(uint32_t), SIZEOF_CHARP); if (alloc->free + len <= alloc->end) { rv = (Bigint *)alloc->free; alloc->free += len; } else rv = (Bigint *)malloc(len); rv->k = k; rv->maxwds = x; } rv->sign = rv->wds = 0; rv->p.x = pointer_cast((rv + 1)); return rv; } /* If object was allocated on stack, try putting it to the free list. Otherwise call free(). */ static void Bfree(Bigint *v, Stack_alloc *alloc) { char *gptr = (char *)v; /* generic pointer */ if (gptr < alloc->begin || gptr >= alloc->end) free(gptr); else if (v->k <= Kmax) { /* Maintain free lists only for stack objects: this way we don't have to bother with freeing lists in the end of dtoa; heap should not be used normally anyway. */ v->p.next = alloc->freelist[v->k]; alloc->freelist[v->k] = v; } } /* This is to place return value of dtoa in: tries to use stack as well, but passes by free lists management and just aligns len by the pointer size in order to not break the alignment rules when storing a pointer to a Bigint. */ static char *dtoa_alloc(int i, Stack_alloc *alloc) { char *rv; int aligned_size = MY_ALIGN(i, SIZEOF_CHARP); if (alloc->free + aligned_size <= alloc->end) { rv = alloc->free; alloc->free += aligned_size; } else rv = static_cast(malloc(i)); return rv; } /* dtoa_free() must be used to free values s returned by dtoa() This is the counterpart of dtoa_alloc() */ static void dtoa_free(char *gptr, char *buf, size_t buf_size) { if (gptr < buf || gptr >= buf + buf_size) free(gptr); } /* Bigint arithmetic functions */ /* Multiply by m and add a */ static Bigint *multadd(Bigint *b, int m, int a, Stack_alloc *alloc) { uint64_t y = 0; Bigint *b1 = nullptr; int wds = b->wds; uint32_t *x = b->p.x; int i = 0; uint64_t carry = a; do { y = *x * (uint64_t)m + carry; carry = y >> 32; *x++ = (uint32_t)(y & FFFFFFFF); } while (++i < wds); if (carry) { if (wds >= b->maxwds) { b1 = Balloc(b->k + 1, alloc); Bcopy(b1, b); Bfree(b, alloc); b = b1; } b->p.x[wds++] = (uint32_t)carry; b->wds = wds; } return b; } /** Converts a string to Bigint. Now we have nd0 digits, starting at s, followed by a decimal point, followed by nd-nd0 digits. Unless nd0 == nd, in which case we have a number of the form: ".xxxxxx" or "xxxxxx." @param s Input string, already partially parsed by my_strtod_int(). @param nd0 Number of digits before decimal point. @param nd Total number of digits. @param y9 Pre-computed value of the first nine digits. @param alloc Stack allocator for Bigints. */ static Bigint *s2b(const char *s, int nd0, int nd, uint32_t y9, Stack_alloc *alloc) { Bigint *b; int i, k; int32_t y = 0; int32_t x = (nd + 8) / 9; for (k = 0, y = 1; x > y; y <<= 1, k++) ; b = Balloc(k, alloc); b->p.x[0] = y9; b->wds = 1; i = 9; if (9 < nd0) { s += 9; do b = multadd(b, 10, *s++ - '0', alloc); while (++i < nd0); s++; /* skip '.' */ } else s += 10; /* now do the fractional part */ for (; i < nd; i++) b = multadd(b, 10, *s++ - '0', alloc); return b; } static int hi0bits(uint32_t x) { int k = 0; if (!(x & 0xffff0000)) { k = 16; x <<= 16; } if (!(x & 0xff000000)) { k += 8; x <<= 8; } if (!(x & 0xf0000000)) { k += 4; x <<= 4; } if (!(x & 0xc0000000)) { k += 2; x <<= 2; } if (!(x & 0x80000000)) { k++; if (!(x & 0x40000000)) return 32; } return k; } static int lo0bits(uint32_t *y) { int k; uint32_t x = *y; if (x & 7) { if (x & 1) return 0; if (x & 2) { *y = x >> 1; return 1; } *y = x >> 2; return 2; } k = 0; if (!(x & 0xffff)) { k = 16; x >>= 16; } if (!(x & 0xff)) { k += 8; x >>= 8; } if (!(x & 0xf)) { k += 4; x >>= 4; } if (!(x & 0x3)) { k += 2; x >>= 2; } if (!(x & 1)) { k++; x >>= 1; if (!x) return 32; } *y = x; return k; } /* Convert integer to Bigint number */ static Bigint *i2b(int i, Stack_alloc *alloc) { Bigint *b; b = Balloc(1, alloc); b->p.x[0] = i; b->wds = 1; return b; } /* Multiply two Bigint numbers */ static Bigint *mult(Bigint *a, Bigint *b, Stack_alloc *alloc) { Bigint *c; int k, wa, wb, wc; uint32_t *x = nullptr; uint32_t *xa = nullptr; uint32_t *xc = nullptr; uint32_t y = 0; uint64_t carry = 0; uint64_t z = 0; if (a->wds < b->wds) { c = a; a = b; b = c; } k = a->k; wa = a->wds; wb = b->wds; wc = wa + wb; if (wc > a->maxwds) k++; c = Balloc(k, alloc); for (x = c->p.x, xa = x + wc; x < xa; x++) *x = 0; xa = a->p.x; uint32_t *xae = xa + wa; uint32_t *xb = b->p.x; uint32_t *xbe = xb + wb; uint32_t *xc0 = c->p.x; for (; xb < xbe; xc0++) { if ((y = *xb++)) { x = xa; xc = xc0; carry = 0; do { z = *x++ * (uint64_t)y + *xc + carry; carry = z >> 32; *xc++ = (uint32_t)(z & FFFFFFFF); } while (x < xae); *xc = (uint32_t)carry; } } for (xc0 = c->p.x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ; c->wds = wc; return c; } /* Precalculated array of powers of 5: tested to be enough for vasting majority of dtoa_r cases. */ static uint32_t powers5[] = { 625UL, 390625UL, 2264035265UL, 35UL, 2242703233UL, 762134875UL, 1262UL, 3211403009UL, 1849224548UL, 3668416493UL, 3913284084UL, 1593091UL, 781532673UL, 64985353UL, 253049085UL, 594863151UL, 3553621484UL, 3288652808UL, 3167596762UL, 2788392729UL, 3911132675UL, 590UL, 2553183233UL, 3201533787UL, 3638140786UL, 303378311UL, 1809731782UL, 3477761648UL, 3583367183UL, 649228654UL, 2915460784UL, 487929380UL, 1011012442UL, 1677677582UL, 3428152256UL, 1710878487UL, 1438394610UL, 2161952759UL, 4100910556UL, 1608314830UL, 349175UL}; static Bigint p5_a[] = { /* { x } - k - maxwds - sign - wds */ {{powers5}, 1, 1, 0, 1}, {{powers5 + 1}, 1, 1, 0, 1}, {{powers5 + 2}, 1, 2, 0, 2}, {{powers5 + 4}, 2, 3, 0, 3}, {{powers5 + 7}, 3, 5, 0, 5}, {{powers5 + 12}, 4, 10, 0, 10}, {{powers5 + 22}, 5, 19, 0, 19}}; #define P5A_MAX (sizeof(p5_a) / sizeof(*p5_a) - 1) static Bigint *pow5mult(Bigint *b, int k, Stack_alloc *alloc) { Bigint *b1, *p5, *p51 = nullptr; int i; static int p05[3] = {5, 25, 125}; bool overflow = false; if ((i = k & 3)) b = multadd(b, p05[i - 1], 0, alloc); if (!(k >>= 2)) return b; p5 = p5_a; for (;;) { if (k & 1) { b1 = mult(b, p5, alloc); Bfree(b, alloc); b = b1; } if (!(k >>= 1)) break; /* Calculate next power of 5 */ if (overflow) { p51 = mult(p5, p5, alloc); Bfree(p5, alloc); p5 = p51; } else if (p5 < p5_a + P5A_MAX) ++p5; else if (p5 == p5_a + P5A_MAX) { p5 = mult(p5, p5, alloc); overflow = true; } } if (p51) Bfree(p51, alloc); return b; } static Bigint *lshift(Bigint *b, int k, Stack_alloc *alloc) { int i, k1, n, n1; Bigint *b1; uint32_t z = 0; n = k >> 5; k1 = b->k; n1 = n + b->wds + 1; for (i = b->maxwds; n1 > i; i <<= 1) k1++; b1 = Balloc(k1, alloc); uint32_t *x1 = b1->p.x; for (i = 0; i < n; i++) *x1++ = 0; uint32_t *x = b->p.x; uint32_t *xe = x + b->wds; if (k &= 0x1f) { k1 = 32 - k; z = 0; do { *x1++ = *x << k | z; z = *x++ >> k1; } while (x < xe); if ((*x1 = z)) ++n1; } else do *x1++ = *x++; while (x < xe); b1->wds = n1 - 1; Bfree(b, alloc); return b1; } static int cmp(Bigint *a, Bigint *b) { int i, j; i = a->wds; j = b->wds; if (i -= j) return i; uint32_t *xa0 = a->p.x; uint32_t *xa = xa0 + j; uint32_t *xb0 = b->p.x; uint32_t *xb = xb0 + j; for (;;) { if (*--xa != *--xb) return *xa < *xb ? -1 : 1; if (xa <= xa0) break; } return 0; } static Bigint *diff(Bigint *a, Bigint *b, Stack_alloc *alloc) { Bigint *c = nullptr; int i, wa, wb; uint64_t borrow = 0; uint64_t y = 0; i = cmp(a, b); if (!i) { c = Balloc(0, alloc); c->wds = 1; c->p.x[0] = 0; return c; } if (i < 0) { c = a; a = b; b = c; i = 1; } else i = 0; c = Balloc(a->k, alloc); c->sign = i; wa = a->wds; uint32_t *xa = a->p.x; uint32_t *xae = xa + wa; wb = b->wds; uint32_t *xb = b->p.x; uint32_t *xbe = xb + wb; uint32_t *xc = c->p.x; borrow = 0; do { y = (uint64_t)*xa++ - *xb++ - borrow; borrow = y >> 32 & (uint32_t)1; *xc++ = (uint32_t)(y & FFFFFFFF); } while (xb < xbe); while (xa < xae) { y = *xa++ - borrow; borrow = y >> 32 & (uint32_t)1; *xc++ = (uint32_t)(y & FFFFFFFF); } while (!*--xc) wa--; c->wds = wa; return c; } static double ulp(U *x) { U u; int32_t L = (word0(x) & Exp_mask) - (P - 1) * Exp_msk1; word0(&u) = L; word1(&u) = 0; return dval(&u); } static double b2d(Bigint *a, int *e) { uint32_t z = 0; int k; U d; #define d0 word0(&d) #define d1 word1(&d) uint32_t *xa0 = a->p.x; uint32_t *xa = xa0 + a->wds; uint32_t y = *--xa; k = hi0bits(y); *e = 32 - k; if (k < Ebits) { d0 = Exp_1 | y >> (Ebits - k); uint32_t w = xa > xa0 ? *--xa : 0; d1 = y << ((32 - Ebits) + k) | w >> (Ebits - k); goto ret_d; } z = xa > xa0 ? *--xa : 0; if (k -= Ebits) { d0 = Exp_1 | y << k | z >> (32 - k); y = xa > xa0 ? *--xa : 0; d1 = z << k | y >> (32 - k); } else { d0 = Exp_1 | y; d1 = z; } ret_d: #undef d0 #undef d1 return dval(&d); } static Bigint *d2b(U *d, int *e, int *bits, Stack_alloc *alloc) { Bigint *b; int de, k; uint32_t y = 0; uint32_t z = 0; int i; #define d0 word0(d) #define d1 word1(d) b = Balloc(1, alloc); uint32_t *x = b->p.x; z = d0 & Frac_mask; d0 &= 0x7fffffff; /* clear sign bit, which we ignore */ if ((de = (int)(d0 >> Exp_shift))) z |= Exp_msk1; if ((y = d1)) { if ((k = lo0bits(&y))) { x[0] = y | z << (32 - k); z >>= k; } else x[0] = y; i = b->wds = (x[1] = z) ? 2 : 1; } else { k = lo0bits(&z); x[0] = z; i = b->wds = 1; k += 32; } if (de) { *e = de - Bias - (P - 1) + k; *bits = P - k; } else { *e = de - Bias - (P - 1) + 1 + k; *bits = 32 * i - hi0bits(x[i - 1]); } return b; #undef d0 #undef d1 } static double ratio(Bigint *a, Bigint *b) { U da, db; int k, ka, kb; dval(&da) = b2d(a, &ka); dval(&db) = b2d(b, &kb); k = ka - kb + 32 * (a->wds - b->wds); if (k > 0) word0(&da) += k * Exp_msk1; else { k = -k; word0(&db) += k * Exp_msk1; } return dval(&da) / dval(&db); } static const double tens[] = {1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22}; static const double bigtens[] = {1e16, 1e32, 1e64, 1e128, 1e256}; static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, 9007199254740992. * 9007199254740992.e-256 /* = 2^106 * 1e-53 */ }; /* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow flag unnecessarily. It leads to a song and dance at the end of strtod. */ #define Scale_Bit 0x10 #define n_bigtens 5 /* strtod for IEEE--arithmetic machines. This strtod returns a nearest machine number to the input decimal string (or sets errno to EOVERFLOW). Ties are broken by the IEEE round-even rule. Inspired loosely by William D. Clinger's paper "How to Read Floating Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. Modifications: 1. We only require IEEE (not IEEE double-extended). 2. We get by with floating-point arithmetic in a case that Clinger missed -- when we're computing d * 10^n for a small integer d and the integer n is not too much larger than 22 (the maximum integer k for which we can represent 10^k exactly), we may be able to compute (d*10^k) * 10^(e-k) with just one roundoff. 3. Rather than a bit-at-a-time adjustment of the binary result in the hard case, we use floating-point arithmetic to determine the adjustment to within one bit; only in really hard cases do we need to compute a second residual. 4. Because of 3., we don't need a large table of powers of 10 for ten-to-e (just some small tables, e.g. of 10^k for 0 <= k <= 22). */ static double my_strtod_int(const char *s00, const char **se, int *error, char *buf, size_t buf_size) { int scale; int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c = 0, dsign, e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign; const char *s, *s0, *s1, *end = *se; double aadj, aadj1; U aadj2, adj, rv, rv0; int32_t L = 0; uint32_t y = 0; uint32_t z = 0; Bigint *bb = nullptr, *bb1, *bd = nullptr, *bd0, *bs = nullptr, *delta = nullptr; #ifdef Honor_FLT_ROUNDS int rounding; #endif Stack_alloc alloc; *error = 0; alloc.begin = alloc.free = buf; alloc.end = buf + buf_size; memset(alloc.freelist, 0, sizeof(alloc.freelist)); sign = nz0 = nz = 0; dval(&rv) = 0.; for (s = s00; s < end; s++) switch (*s) { case '-': sign = 1; [[fallthrough]]; case '+': s++; goto break2; case '\t': case '\n': case '\v': case '\f': case '\r': case ' ': continue; default: goto break2; } break2: if (s >= end) goto ret0; // Gobble up leading zeros. if (*s == '0') { nz0 = 1; while (++s < end && *s == '0') ; if (s >= end) goto ret; } s0 = s; y = z = 0; for (nd = nf = 0; s < end && (c = *s) >= '0' && c <= '9'; nd++, s++) if (nd < 9) y = 10 * y + c - '0'; else if (nd < 16) z = 10 * z + c - '0'; nd0 = nd; if (s < end && c == '.') { if (++s < end) c = *s; // Only leading zeros, now count number of leading zeros after the '.' if (!nd) { for (; s < end; ++s) { c = *s; if (c != '0') break; nz++; } if (s < end && c > '0' && c <= '9') { s0 = s; nf += nz; nz = 0; } else goto dig_done; } for (; s < end; ++s) { c = *s; if (c < '0' || c > '9') break; // We have seen some digits, but not enough of them are non-zero. // Gobble up all the rest of the digits, and look for exponent. if (nd > 0 && nz > DBL_MAX_10_EXP) { continue; } /* Here we are parsing the fractional part. We can stop counting digits after a while: the extra digits will not contribute to the actual result produced by s2b(). We have to continue scanning, in case there is an exponent part. */ if (nd < 2 * DBL_DIG) { nz++; if (c -= '0') { nf += nz; for (i = 1; i < nz; i++) if (nd++ < 9) y *= 10; else if (nd <= DBL_DIG + 1) z *= 10; if (nd++ < 9) y = 10 * y + c; else if (nd <= DBL_DIG + 1) z = 10 * z + c; nz = 0; } } } } dig_done: e = 0; if (s < end && (c == 'e' || c == 'E')) { if (!nd && !nz && !nz0) goto ret0; s00 = s; esign = 0; if (++s < end) switch (c = *s) { case '-': esign = 1; [[fallthrough]]; case '+': if (++s < end) c = *s; } if (s < end && c >= '0' && c <= '9') { while (s < end && *s == '0') ++s; // Skip leading zeros in exponent. if (s < end) c = *s; // First significant digit in exponent, if any. if (s < end && c > '0' && c <= '9') { L = c - '0'; s1 = s; // Avoid overflow in loop body below. while (++s < end && (c = *s) >= '0' && c <= '9' && L < (std::numeric_limits::max() - 255) / 10) { L = 10 * L + c - '0'; } if (s - s1 > 8 || L > 19999) /* Avoid confusion from exponents * so large that e might overflow. */ e = 19999; /* safe for 16 bit ints */ else e = (int)L; if (esign) e = -e; } else e = 0; } else s = s00; } if (!nd) { if (!nz && !nz0) { ret0: s = s00; sign = 0; } goto ret; } e1 = e -= nf; /* Now we have nd0 digits, starting at s0, followed by a decimal point, followed by nd-nd0 digits. The number we're after is the integer represented by those digits times 10**e */ if (!nd0) nd0 = nd; k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1; dval(&rv) = y; if (k > 9) { dval(&rv) = tens[k - 9] * dval(&rv) + z; } bd0 = nullptr; if (nd <= DBL_DIG #ifndef Honor_FLT_ROUNDS && Flt_Rounds == 1 #endif ) { if (!e) goto ret; if (e > 0) { if (e <= Ten_pmax) { #ifdef Honor_FLT_ROUNDS /* round correctly FLT_ROUNDS = 2 or 3 */ if (sign) { rv.d = -rv.d; sign = 0; } #endif /* rv = */ rounded_product(dval(&rv), tens[e]); goto ret; } i = DBL_DIG - nd; if (e <= Ten_pmax + i) { /* A fancier test would sometimes let us do this for larger i values. */ #ifdef Honor_FLT_ROUNDS /* round correctly FLT_ROUNDS = 2 or 3 */ if (sign) { rv.d = -rv.d; sign = 0; } #endif e -= i; dval(&rv) *= tens[i]; /* rv = */ rounded_product(dval(&rv), tens[e]); goto ret; } } #ifndef Inaccurate_Divide else if (e >= -Ten_pmax) { #ifdef Honor_FLT_ROUNDS /* round correctly FLT_ROUNDS = 2 or 3 */ if (sign) { rv.d = -rv.d; sign = 0; } #endif /* rv = */ rounded_quotient(dval(&rv), tens[-e]); goto ret; } #endif } e1 += nd - k; scale = 0; #ifdef Honor_FLT_ROUNDS if ((rounding = Flt_Rounds) >= 2) { if (sign) rounding = rounding == 2 ? 0 : 2; else if (rounding != 2) rounding = 0; } #endif /* Get starting approximation = rv * 10**e1 */ if (e1 > 0) { if ((i = e1 & 15)) dval(&rv) *= tens[i]; if (e1 &= ~15) { if (e1 > DBL_MAX_10_EXP) { ovfl: *error = EOVERFLOW; /* Can't trust HUGE_VAL */ #ifdef Honor_FLT_ROUNDS switch (rounding) { case 0: /* toward 0 */ case 3: /* toward -infinity */ word0(&rv) = Big0; word1(&rv) = Big1; break; default: word0(&rv) = Exp_mask; word1(&rv) = 0; } #else /*Honor_FLT_ROUNDS*/ word0(&rv) = Exp_mask; word1(&rv) = 0; #endif /*Honor_FLT_ROUNDS*/ if (bd0) goto retfree; goto ret; } e1 >>= 4; for (j = 0; e1 > 1; j++, e1 >>= 1) if (e1 & 1) dval(&rv) *= bigtens[j]; /* The last multiplication could overflow. */ word0(&rv) -= P * Exp_msk1; dval(&rv) *= bigtens[j]; if ((z = word0(&rv) & Exp_mask) > Exp_msk1 * (DBL_MAX_EXP + Bias - P)) goto ovfl; if (z > Exp_msk1 * (DBL_MAX_EXP + Bias - 1 - P)) { /* set to largest number (Can't trust DBL_MAX) */ word0(&rv) = Big0; word1(&rv) = Big1; } else word0(&rv) += P * Exp_msk1; } } else if (e1 < 0) { e1 = -e1; if ((i = e1 & 15)) dval(&rv) /= tens[i]; if ((e1 >>= 4)) { if (e1 >= 1 << n_bigtens) goto undfl; if (e1 & Scale_Bit) scale = 2 * P; for (j = 0; e1 > 0; j++, e1 >>= 1) if (e1 & 1) dval(&rv) *= tinytens[j]; if (scale && (j = 2 * P + 1 - ((word0(&rv) & Exp_mask) >> Exp_shift)) > 0) { /* scaled rv is denormal; zap j low bits */ if (j >= 32) { word1(&rv) = 0; if (j >= 53) word0(&rv) = (P + 2) * Exp_msk1; else word0(&rv) &= 0xffffffff << (j - 32); } else word1(&rv) &= 0xffffffff << j; } if (!dval(&rv)) { undfl: dval(&rv) = 0.; if (bd0) goto retfree; goto ret; } } } /* Now the hard part -- adjusting rv to the correct value.*/ /* Put digits into bd: true value = bd * 10^e */ bd0 = s2b(s0, nd0, nd, y, &alloc); for (;;) { bd = Balloc(bd0->k, &alloc); Bcopy(bd, bd0); bb = d2b(&rv, &bbe, &bbbits, &alloc); /* rv = bb * 2^bbe */ bs = i2b(1, &alloc); if (e >= 0) { bb2 = bb5 = 0; bd2 = bd5 = e; } else { bb2 = bb5 = -e; bd2 = bd5 = 0; } if (bbe >= 0) bb2 += bbe; else bd2 -= bbe; bs2 = bb2; #ifdef Honor_FLT_ROUNDS if (rounding != 1) bs2++; #endif j = bbe - scale; i = j + bbbits - 1; /* logb(rv) */ if (i < Emin) /* denormal */ j += P - Emin; else j = P + 1 - bbbits; bb2 += j; bd2 += j; bd2 += scale; i = bb2 < bd2 ? bb2 : bd2; if (i > bs2) i = bs2; if (i > 0) { bb2 -= i; bd2 -= i; bs2 -= i; } if (bb5 > 0) { bs = pow5mult(bs, bb5, &alloc); bb1 = mult(bs, bb, &alloc); Bfree(bb, &alloc); bb = bb1; } if (bb2 > 0) bb = lshift(bb, bb2, &alloc); if (bd5 > 0) bd = pow5mult(bd, bd5, &alloc); if (bd2 > 0) bd = lshift(bd, bd2, &alloc); if (bs2 > 0) bs = lshift(bs, bs2, &alloc); delta = diff(bb, bd, &alloc); dsign = delta->sign; delta->sign = 0; i = cmp(delta, bs); #ifdef Honor_FLT_ROUNDS if (rounding != 1) { if (i < 0) { /* Error is less than an ulp */ if (!delta->p.x[0] && delta->wds <= 1) { /* exact */ break; } if (rounding) { if (dsign) { adj.d = 1.; goto apply_adj; } } else if (!dsign) { adj.d = -1.; if (!word1(&rv) && !(word0(&rv) & Frac_mask)) { y = word0(&rv) & Exp_mask; if (!scale || y > 2 * P * Exp_msk1) { delta = lshift(delta, Log2P, &alloc); if (cmp(delta, bs) <= 0) adj.d = -0.5; } } apply_adj: if (scale && (y = word0(&rv) & Exp_mask) <= 2 * P * Exp_msk1) word0(&adj) += (2 * P + 1) * Exp_msk1 - y; dval(&rv) += adj.d * ulp(&rv); } break; } adj.d = ratio(delta, bs); if (adj.d < 1.) adj.d = 1.; if (adj.d <= 0x7ffffffe) { /* adj = rounding ? ceil(adj) : floor(adj); */ y = adj.d; if (y != adj.d) { if (!((rounding >> 1) ^ dsign)) y++; adj.d = y; } } if (scale && (y = word0(&rv) & Exp_mask) <= 2 * P * Exp_msk1) word0(&adj) += (2 * P + 1) * Exp_msk1 - y; adj.d *= ulp(&rv); if (dsign) dval(&rv) += adj.d; else dval(&rv) -= adj.d; goto cont; } #endif /*Honor_FLT_ROUNDS*/ if (i < 0) { /* Error is less than half an ulp -- check for special case of mantissa a power of two. */ if (dsign || word1(&rv) || word0(&rv) & Bndry_mask || (word0(&rv) & Exp_mask) <= (2 * P + 1) * Exp_msk1) { break; } if (!delta->p.x[0] && delta->wds <= 1) { /* exact result */ break; } delta = lshift(delta, Log2P, &alloc); if (cmp(delta, bs) > 0) goto drop_down; break; } if (i == 0) { /* exactly half-way between */ if (dsign) { if ((word0(&rv) & Bndry_mask1) == Bndry_mask1 && word1(&rv) == ((scale && (y = word0(&rv) & Exp_mask) <= 2 * P * Exp_msk1) ? (0xffffffff & (0xffffffff << (2 * P + 1 - (y >> Exp_shift)))) : 0xffffffff)) { /*boundary case -- increment exponent*/ word0(&rv) = (word0(&rv) & Exp_mask) + Exp_msk1; word1(&rv) = 0; dsign = 0; break; } } else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) { drop_down: /* boundary case -- decrement exponent */ if (scale) { L = word0(&rv) & Exp_mask; if (L <= (2 * P + 1) * Exp_msk1) { if (L > (P + 2) * Exp_msk1) /* round even ==> accept rv */ break; /* rv = smallest denormal */ goto undfl; } } L = (word0(&rv) & Exp_mask) - Exp_msk1; word0(&rv) = L | Bndry_mask1; word1(&rv) = 0xffffffff; break; } if (!(word1(&rv) & LSB)) break; if (dsign) dval(&rv) += ulp(&rv); else { dval(&rv) -= ulp(&rv); if (!dval(&rv)) goto undfl; } dsign = 1 - dsign; break; } if ((aadj = ratio(delta, bs)) <= 2.) { if (dsign) aadj = aadj1 = 1.; else if (word1(&rv) || word0(&rv) & Bndry_mask) { if (word1(&rv) == Tiny1 && !word0(&rv)) goto undfl; aadj = 1.; aadj1 = -1.; } else { /* special case -- power of FLT_RADIX to be rounded down... */ if (aadj < 2. / FLT_RADIX) aadj = 1. / FLT_RADIX; else aadj *= 0.5; aadj1 = -aadj; } } else { aadj *= 0.5; aadj1 = dsign ? aadj : -aadj; #ifdef Check_FLT_ROUNDS switch (Rounding) { case 2: /* towards +infinity */ aadj1 -= 0.5; break; case 0: /* towards 0 */ case 3: /* towards -infinity */ aadj1 += 0.5; } #else if (Flt_Rounds == 0) aadj1 += 0.5; #endif /*Check_FLT_ROUNDS*/ } y = word0(&rv) & Exp_mask; /* Check for overflow */ if (y == Exp_msk1 * (DBL_MAX_EXP + Bias - 1)) { dval(&rv0) = dval(&rv); word0(&rv) -= P * Exp_msk1; adj.d = aadj1 * ulp(&rv); dval(&rv) += adj.d; if ((word0(&rv) & Exp_mask) >= Exp_msk1 * (DBL_MAX_EXP + Bias - P)) { if (word0(&rv0) == Big0 && word1(&rv0) == Big1) goto ovfl; word0(&rv) = Big0; word1(&rv) = Big1; goto cont; } else word0(&rv) += P * Exp_msk1; } else { if (scale && y <= 2 * P * Exp_msk1) { if (aadj <= 0x7fffffff) { if ((z = (uint32_t)aadj) <= 0) z = 1; aadj = z; aadj1 = dsign ? aadj : -aadj; } dval(&aadj2) = aadj1; word0(&aadj2) += (2 * P + 1) * Exp_msk1 - y; aadj1 = dval(&aadj2); adj.d = aadj1 * ulp(&rv); dval(&rv) += adj.d; if (rv.d == 0.) goto undfl; } else { adj.d = aadj1 * ulp(&rv); dval(&rv) += adj.d; } } z = word0(&rv) & Exp_mask; if (!scale) if (y == z) { /* Can we stop now? */ L = (int32_t)aadj; aadj -= L; /* The tolerances below are conservative. */ if (dsign || word1(&rv) || word0(&rv) & Bndry_mask) { if (aadj < .4999999 || aadj > .5000001) break; } else if (aadj < .4999999 / FLT_RADIX) break; } cont: Bfree(bb, &alloc); Bfree(bd, &alloc); Bfree(bs, &alloc); Bfree(delta, &alloc); } if (scale) { word0(&rv0) = Exp_1 - 2 * P * Exp_msk1; word1(&rv0) = 0; dval(&rv) *= dval(&rv0); } retfree: Bfree(bb, &alloc); Bfree(bd, &alloc); Bfree(bs, &alloc); Bfree(bd0, &alloc); Bfree(delta, &alloc); ret: *se = s; return sign ? -dval(&rv) : dval(&rv); } static int quorem(Bigint *b, Bigint *S) { int n; uint32_t *bx = nullptr; uint32_t *bxe = nullptr; uint32_t *sx = nullptr; uint32_t *sxe = nullptr; uint64_t borrow = 0; uint64_t carry = 0; uint64_t y = 0; uint64_t ys = 0; n = S->wds; if (b->wds < n) return 0; sx = S->p.x; sxe = sx + --n; bx = b->p.x; bxe = bx + n; uint32_t q = *bxe / (*sxe + 1); /* ensure q <= true quotient */ if (q) { borrow = 0; carry = 0; do { ys = *sx++ * (uint64_t)q + carry; carry = ys >> 32; y = *bx - (ys & FFFFFFFF) - borrow; borrow = y >> 32 & (uint32_t)1; *bx++ = (uint32_t)(y & FFFFFFFF); } while (sx <= sxe); if (!*bxe) { bx = b->p.x; while (--bxe > bx && !*bxe) --n; b->wds = n; } } if (cmp(b, S) >= 0) { q++; borrow = 0; carry = 0; bx = b->p.x; sx = S->p.x; do { ys = *sx++ + carry; carry = ys >> 32; y = *bx - (ys & FFFFFFFF) - borrow; borrow = y >> 32 & (uint32_t)1; *bx++ = (uint32_t)(y & FFFFFFFF); } while (sx <= sxe); bx = b->p.x; bxe = bx + n; if (!*bxe) { while (--bxe > bx && !*bxe) --n; b->wds = n; } } return q; } /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. Inspired by "How to Print Floating-Point Numbers Accurately" by Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126]. Modifications: 1. Rather than iterating, we use a simple numeric overestimate to determine k= floor(log10(d)). We scale relevant quantities using O(log2(k)) rather than O(k) multiplications. 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't try to generate digits strictly left to right. Instead, we compute with fewer bits and propagate the carry if necessary when rounding the final digit up. This is often faster. 3. Under the assumption that input will be rounded nearest, mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. That is, we allow equality in stopping tests when the round-nearest rule will give the same floating-point value as would satisfaction of the stopping test with strict inequality. 4. We remove common factors of powers of 2 from relevant quantities. 5. When converting floating-point integers less than 1e16, we use floating-point arithmetic rather than resorting to multiple-precision integers. 6. When asked to produce fewer than 15 digits, we first try to get by with floating-point arithmetic; we resort to multiple-precision integer arithmetic only if we cannot guarantee that the floating-point calculation has given the correctly rounded result. For k requested digits and "uniformly" distributed input, the probability is something like 10^(k-15) that we must resort to the int32_t calculation. */ static char *dtoa(double dd, int mode, int ndigits, int *decpt, int *sign, char **rve, char *buf, size_t buf_size) { /* Arguments ndigits, decpt, sign are similar to those of ecvt and fcvt; trailing zeros are suppressed from the returned string. If not null, *rve is set to point to the end of the return value. If d is +-Infinity or NaN, then *decpt is set to DTOA_OVERFLOW. mode: 0 ==> shortest string that yields d when read in and rounded to nearest. 1 ==> like 0, but with Steele & White stopping rule; e.g. with IEEE P754 arithmetic , mode 0 gives 1e23 whereas mode 1 gives 9.999999999999999e22. 2 ==> max(1,ndigits) significant digits. This gives a return value similar to that of ecvt, except that trailing zeros are suppressed. 3 ==> through ndigits past the decimal point. This gives a return value similar to that from fcvt, except that trailing zeros are suppressed, and ndigits can be negative. 4,5 ==> similar to 2 and 3, respectively, but (in round-nearest mode) with the tests of mode 0 to possibly return a shorter string that rounds to d. With IEEE arithmetic and compilation with -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same as modes 2 and 3 when FLT_ROUNDS != 1. 6-9 ==> Debugging modes similar to mode - 4: don't try fast floating-point estimate (if applicable). Values of mode other than 0-9 are treated as mode 0. Sufficient space is allocated to the return value to hold the suppressed trailing zeros. */ int bbits, b2, b5, be, dig, i, ieps, ilim = 0, ilim0, ilim1 = 0, j, j1, k, k0, k_check, leftright, m2, m5, s2, s5, spec_case, try_quick; int32_t L = 0; int denorm; uint32_t x = 0; Bigint *b, *b1, *delta, *mlo = nullptr, *mhi, *S; U d2, eps, u; double ds; char *s, *s0; #ifdef Honor_FLT_ROUNDS int rounding; #endif Stack_alloc alloc; alloc.begin = alloc.free = buf; alloc.end = buf + buf_size; memset(alloc.freelist, 0, sizeof(alloc.freelist)); u.d = dd; if (word0(&u) & Sign_bit) { /* set sign for everything, including 0's and NaNs */ *sign = 1; word0(&u) &= ~Sign_bit; /* clear sign bit */ } else *sign = 0; /* If infinity, set decpt to DTOA_OVERFLOW, if 0 set it to 1 */ if (((word0(&u) & Exp_mask) == Exp_mask && (*decpt = DTOA_OVERFLOW)) || (!dval(&u) && (*decpt = 1))) { /* Infinity, NaN, 0 */ char *res = (char *)dtoa_alloc(2, &alloc); res[0] = '0'; res[1] = '\0'; if (rve) *rve = res + 1; return res; } #ifdef Honor_FLT_ROUNDS if ((rounding = Flt_Rounds) >= 2) { if (*sign) rounding = rounding == 2 ? 0 : 2; else if (rounding != 2) rounding = 0; } #endif b = d2b(&u, &be, &bbits, &alloc); if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask >> Exp_shift1)))) { dval(&d2) = dval(&u); word0(&d2) &= Frac_mask1; word0(&d2) |= Exp_11; /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 log10(x) = log(x) / log(10) ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) log10(d)= (i-Bias)*log(2)/log(10) + log10(d2) This suggests computing an approximation k to log10(d) by k= (i - Bias)*0.301029995663981 + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); We want k to be too large rather than too small. The error in the first-order Taylor series approximation is in our favor, so we just round up the constant enough to compensate for any error in the multiplication of (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, adding 1e-13 to the constant term more than suffices. Hence we adjust the constant term to 0.1760912590558. (We could get a more accurate k by invoking log10, but this is probably not worthwhile.) */ i -= Bias; denorm = 0; } else { /* d is denormalized */ i = bbits + be + (Bias + (P - 1) - 1); x = i > 32 ? word0(&u) << (64 - i) | word1(&u) >> (i - 32) : word1(&u) << (32 - i); dval(&d2) = x; word0(&d2) -= 31 * Exp_msk1; /* adjust exponent */ i -= (Bias + (P - 1) - 1) + 1; denorm = 1; } ds = (dval(&d2) - 1.5) * 0.289529654602168 + 0.1760912590558 + i * 0.301029995663981; k = (int)ds; if (ds < 0. && ds != k) k--; /* want k= floor(ds) */ k_check = 1; if (k >= 0 && k <= Ten_pmax) { if (dval(&u) < tens[k]) k--; k_check = 0; } j = bbits - i - 1; if (j >= 0) { b2 = 0; s2 = j; } else { b2 = -j; s2 = 0; } if (k >= 0) { b5 = 0; s5 = k; s2 += k; } else { b2 -= k; b5 = -k; s5 = 0; } if (mode < 0 || mode > 9) mode = 0; #ifdef Check_FLT_ROUNDS try_quick = Rounding == 1; #else try_quick = 1; #endif if (mode > 5) { mode -= 4; try_quick = 0; } leftright = 1; switch (mode) { case 0: case 1: ilim = ilim1 = -1; i = 18; ndigits = 0; break; case 2: leftright = 0; [[fallthrough]]; case 4: if (ndigits <= 0) ndigits = 1; ilim = ilim1 = i = ndigits; break; case 3: leftright = 0; [[fallthrough]]; case 5: i = ndigits + k + 1; ilim = i; ilim1 = i - 1; if (i <= 0) i = 1; } s = s0 = dtoa_alloc(i, &alloc); #ifdef Honor_FLT_ROUNDS if (mode > 1 && rounding != 1) leftright = 0; #endif if (ilim >= 0 && ilim <= Quick_max && try_quick) { /* Try to get by with floating-point arithmetic. */ i = 0; dval(&d2) = dval(&u); k0 = k; ilim0 = ilim; ieps = 2; /* conservative */ if (k > 0) { ds = tens[k & 0xf]; j = k >> 4; if (j & Bletch) { /* prevent overflows */ j &= Bletch - 1; dval(&u) /= bigtens[n_bigtens - 1]; ieps++; } for (; j; j >>= 1, i++) { if (j & 1) { ieps++; ds *= bigtens[i]; } } dval(&u) /= ds; } else if ((j1 = -k)) { dval(&u) *= tens[j1 & 0xf]; for (j = j1 >> 4; j; j >>= 1, i++) { if (j & 1) { ieps++; dval(&u) *= bigtens[i]; } } } if (k_check && dval(&u) < 1. && ilim > 0) { if (ilim1 <= 0) goto fast_failed; ilim = ilim1; k--; dval(&u) *= 10.; ieps++; } dval(&eps) = ieps * dval(&u) + 7.; word0(&eps) -= (P - 1) * Exp_msk1; if (ilim == 0) { S = mhi = nullptr; dval(&u) -= 5.; if (dval(&u) > dval(&eps)) goto one_digit; if (dval(&u) < -dval(&eps)) goto no_digits; goto fast_failed; } if (leftright) { /* Use Steele & White method of only generating digits needed. */ dval(&eps) = 0.5 / tens[ilim - 1] - dval(&eps); for (i = 0;;) { L = (int32_t)dval(&u); dval(&u) -= L; *s++ = '0' + (int)L; if (dval(&u) < dval(&eps)) goto ret1; if (1. - dval(&u) < dval(&eps)) goto bump_up; if (++i >= ilim) break; dval(&eps) *= 10.; dval(&u) *= 10.; } } else { /* Generate ilim digits, then fix them up. */ dval(&eps) *= tens[ilim - 1]; for (i = 1;; i++, dval(&u) *= 10.) { L = (int32_t)(dval(&u)); if (!(dval(&u) -= L)) ilim = i; *s++ = '0' + (int)L; if (i == ilim) { if (dval(&u) > 0.5 + dval(&eps)) goto bump_up; else if (dval(&u) < 0.5 - dval(&eps)) { while (*--s == '0') ; s++; goto ret1; } break; } } } fast_failed: s = s0; dval(&u) = dval(&d2); k = k0; ilim = ilim0; } /* Do we have a "small" integer? */ if (be >= 0 && k <= Int_max) { /* Yes. */ ds = tens[k]; if (ndigits < 0 && ilim <= 0) { S = mhi = nullptr; if (ilim < 0 || dval(&u) <= 5 * ds) goto no_digits; goto one_digit; } for (i = 1;; i++, dval(&u) *= 10.) { L = (int32_t)(dval(&u) / ds); dval(&u) -= L * ds; #ifdef Check_FLT_ROUNDS /* If FLT_ROUNDS == 2, L will usually be high by 1 */ if (dval(&u) < 0) { L--; dval(&u) += ds; } #endif *s++ = '0' + (int)L; if (!dval(&u)) { break; } if (i == ilim) { #ifdef Honor_FLT_ROUNDS if (mode > 1) { switch (rounding) { case 0: goto ret1; case 2: goto bump_up; } } #endif dval(&u) += dval(&u); if (dval(&u) > ds || (dval(&u) == ds && L & 1)) { bump_up: while (*--s == '9') if (s == s0) { k++; *s = '0'; break; } ++*s++; } break; } } goto ret1; } m2 = b2; m5 = b5; mhi = mlo = nullptr; if (leftright) { i = denorm ? be + (Bias + (P - 1) - 1 + 1) : 1 + P - bbits; b2 += i; s2 += i; mhi = i2b(1, &alloc); } if (m2 > 0 && s2 > 0) { i = m2 < s2 ? m2 : s2; b2 -= i; m2 -= i; s2 -= i; } if (b5 > 0) { if (leftright) { if (m5 > 0) { mhi = pow5mult(mhi, m5, &alloc); b1 = mult(mhi, b, &alloc); Bfree(b, &alloc); b = b1; } if ((j = b5 - m5)) b = pow5mult(b, j, &alloc); } else b = pow5mult(b, b5, &alloc); } S = i2b(1, &alloc); if (s5 > 0) S = pow5mult(S, s5, &alloc); /* Check for special case that d is a normalized power of 2. */ spec_case = 0; if ((mode < 2 || leftright) #ifdef Honor_FLT_ROUNDS && rounding == 1 #endif ) { if (!word1(&u) && !(word0(&u) & Bndry_mask) && word0(&u) & (Exp_mask & ~Exp_msk1)) { /* The special case */ b2 += Log2P; s2 += Log2P; spec_case = 1; } } /* Arrange for convenient computation of quotients: shift left if necessary so divisor has 4 leading 0 bits. Perhaps we should just compute leading 28 bits of S once a nd for all and pass them and a shift to quorem, so it can do shifts and ors to compute the numerator for q. */ if ((i = ((s5 ? 32 - hi0bits(S->p.x[S->wds - 1]) : 1) + s2) & 0x1f)) i = 32 - i; if (i > 4) { i -= 4; b2 += i; m2 += i; s2 += i; } else if (i < 4) { i += 28; b2 += i; m2 += i; s2 += i; } if (b2 > 0) b = lshift(b, b2, &alloc); if (s2 > 0) S = lshift(S, s2, &alloc); if (k_check) { if (cmp(b, S) < 0) { k--; /* we botched the k estimate */ b = multadd(b, 10, 0, &alloc); if (leftright) mhi = multadd(mhi, 10, 0, &alloc); ilim = ilim1; } } if (ilim <= 0 && (mode == 3 || mode == 5)) { if (ilim < 0 || cmp(b, S = multadd(S, 5, 0, &alloc)) <= 0) { /* no digits, fcvt style */ no_digits: k = -1 - ndigits; goto ret; } one_digit: *s++ = '1'; k++; goto ret; } if (leftright) { if (m2 > 0) mhi = lshift(mhi, m2, &alloc); /* Compute mlo -- check for special case that d is a normalized power of 2. */ mlo = mhi; if (spec_case) { mhi = Balloc(mhi->k, &alloc); Bcopy(mhi, mlo); mhi = lshift(mhi, Log2P, &alloc); } for (i = 1;; i++) { dig = quorem(b, S) + '0'; /* Do we yet have the shortest decimal string that will round to d? */ j = cmp(b, mlo); delta = diff(S, mhi, &alloc); j1 = delta->sign ? 1 : cmp(b, delta); Bfree(delta, &alloc); if (j1 == 0 && mode != 1 && !(word1(&u) & 1) #ifdef Honor_FLT_ROUNDS && rounding >= 1 #endif ) { if (dig == '9') goto round_9_up; if (j > 0) dig++; *s++ = dig; goto ret; } if (j < 0 || (j == 0 && mode != 1 && !(word1(&u) & 1))) { if (!b->p.x[0] && b->wds <= 1) { goto accept_dig; } #ifdef Honor_FLT_ROUNDS if (mode > 1) switch (rounding) { case 0: goto accept_dig; case 2: goto keep_dig; } #endif /*Honor_FLT_ROUNDS*/ if (j1 > 0) { b = lshift(b, 1, &alloc); j1 = cmp(b, S); if ((j1 > 0 || (j1 == 0 && dig & 1)) && dig++ == '9') goto round_9_up; } accept_dig: *s++ = dig; goto ret; } if (j1 > 0) { #ifdef Honor_FLT_ROUNDS if (!rounding) goto accept_dig; #endif if (dig == '9') { /* possible if i == 1 */ round_9_up: *s++ = '9'; goto roundoff; } *s++ = dig + 1; goto ret; } #ifdef Honor_FLT_ROUNDS keep_dig: #endif *s++ = dig; if (i == ilim) break; b = multadd(b, 10, 0, &alloc); if (mlo == mhi) mlo = mhi = multadd(mhi, 10, 0, &alloc); else { mlo = multadd(mlo, 10, 0, &alloc); mhi = multadd(mhi, 10, 0, &alloc); } } } else for (i = 1;; i++) { *s++ = dig = quorem(b, S) + '0'; if (!b->p.x[0] && b->wds <= 1) { goto ret; } if (i >= ilim) break; b = multadd(b, 10, 0, &alloc); } /* Round off last digit */ #ifdef Honor_FLT_ROUNDS switch (rounding) { case 0: goto trimzeros; case 2: goto roundoff; } #endif b = lshift(b, 1, &alloc); j = cmp(b, S); if (j > 0 || (j == 0 && dig & 1)) { roundoff: while (*--s == '9') if (s == s0) { k++; *s++ = '1'; goto ret; } ++*s++; } else { #ifdef Honor_FLT_ROUNDS trimzeros: #endif while (*--s == '0') ; s++; } ret: Bfree(S, &alloc); if (mhi) { if (mlo && mlo != mhi) Bfree(mlo, &alloc); Bfree(mhi, &alloc); } ret1: Bfree(b, &alloc); *s = 0; *decpt = k + 1; if (rve) *rve = s; return s0; }