// // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // #include "DetourCommon.h" #include "DetourMath.h" ////////////////////////////////////////////////////////////////////////////////////////// void dtClosestPtPointTriangle(float* closest, const float* p, const float* a, const float* b, const float* c) { // Check if P in vertex region outside A float ab[3], ac[3], ap[3]; dtVsub(ab, b, a); dtVsub(ac, c, a); dtVsub(ap, p, a); float d1 = dtVdot(ab, ap); float d2 = dtVdot(ac, ap); if (d1 <= 0.0f && d2 <= 0.0f) { // barycentric coordinates (1,0,0) dtVcopy(closest, a); return; } // Check if P in vertex region outside B float bp[3]; dtVsub(bp, p, b); float d3 = dtVdot(ab, bp); float d4 = dtVdot(ac, bp); if (d3 >= 0.0f && d4 <= d3) { // barycentric coordinates (0,1,0) dtVcopy(closest, b); return; } // Check if P in edge region of AB, if so return projection of P onto AB float vc = d1*d4 - d3*d2; if (vc <= 0.0f && d1 >= 0.0f && d3 <= 0.0f) { // barycentric coordinates (1-v,v,0) float v = d1 / (d1 - d3); closest[0] = a[0] + v * ab[0]; closest[1] = a[1] + v * ab[1]; closest[2] = a[2] + v * ab[2]; return; } // Check if P in vertex region outside C float cp[3]; dtVsub(cp, p, c); float d5 = dtVdot(ab, cp); float d6 = dtVdot(ac, cp); if (d6 >= 0.0f && d5 <= d6) { // barycentric coordinates (0,0,1) dtVcopy(closest, c); return; } // Check if P in edge region of AC, if so return projection of P onto AC float vb = d5*d2 - d1*d6; if (vb <= 0.0f && d2 >= 0.0f && d6 <= 0.0f) { // barycentric coordinates (1-w,0,w) float w = d2 / (d2 - d6); closest[0] = a[0] + w * ac[0]; closest[1] = a[1] + w * ac[1]; closest[2] = a[2] + w * ac[2]; return; } // Check if P in edge region of BC, if so return projection of P onto BC float va = d3*d6 - d5*d4; if (va <= 0.0f && (d4 - d3) >= 0.0f && (d5 - d6) >= 0.0f) { // barycentric coordinates (0,1-w,w) float w = (d4 - d3) / ((d4 - d3) + (d5 - d6)); closest[0] = b[0] + w * (c[0] - b[0]); closest[1] = b[1] + w * (c[1] - b[1]); closest[2] = b[2] + w * (c[2] - b[2]); return; } // P inside face region. Compute Q through its barycentric coordinates (u,v,w) float denom = 1.0f / (va + vb + vc); float v = vb * denom; float w = vc * denom; closest[0] = a[0] + ab[0] * v + ac[0] * w; closest[1] = a[1] + ab[1] * v + ac[1] * w; closest[2] = a[2] + ab[2] * v + ac[2] * w; } bool dtIntersectSegmentPoly2D(const float* p0, const float* p1, const float* verts, int nverts, float& tmin, float& tmax, int& segMin, int& segMax) { static const float EPS = 0.000001f; tmin = 0; tmax = 1; segMin = -1; segMax = -1; float dir[3]; dtVsub(dir, p1, p0); for (int i = 0, j = nverts-1; i < nverts; j=i++) { float edge[3], diff[3]; dtVsub(edge, &verts[i*3], &verts[j*3]); dtVsub(diff, p0, &verts[j*3]); const float n = dtVperp2D(edge, diff); const float d = dtVperp2D(dir, edge); if (fabsf(d) < EPS) { // S is nearly parallel to this edge if (n < 0) return false; else continue; } const float t = n / d; if (d < 0) { // segment S is entering across this edge if (t > tmin) { tmin = t; segMin = j; // S enters after leaving polygon if (tmin > tmax) return false; } } else { // segment S is leaving across this edge if (t < tmax) { tmax = t; segMax = j; // S leaves before entering polygon if (tmax < tmin) return false; } } } return true; } float dtDistancePtSegSqr2D(const float* pt, const float* p, const float* q, float& t) { float pqx = q[0] - p[0]; float pqz = q[2] - p[2]; float dx = pt[0] - p[0]; float dz = pt[2] - p[2]; float d = pqx*pqx + pqz*pqz; t = pqx*dx + pqz*dz; if (d > 0) t /= d; if (t < 0) t = 0; else if (t > 1) t = 1; dx = p[0] + t*pqx - pt[0]; dz = p[2] + t*pqz - pt[2]; return dx*dx + dz*dz; } void dtCalcPolyCenter(float* tc, const unsigned short* idx, int nidx, const float* verts) { tc[0] = 0.0f; tc[1] = 0.0f; tc[2] = 0.0f; for (int j = 0; j < nidx; ++j) { const float* v = &verts[idx[j]*3]; tc[0] += v[0]; tc[1] += v[1]; tc[2] += v[2]; } const float s = 1.0f / nidx; tc[0] *= s; tc[1] *= s; tc[2] *= s; } bool dtClosestHeightPointTriangle(const float* p, const float* a, const float* b, const float* c, float& h) { const float EPS = 1e-6f; float v0[3], v1[3], v2[3]; dtVsub(v0, c, a); dtVsub(v1, b, a); dtVsub(v2, p, a); // Compute scaled barycentric coordinates float denom = v0[0] * v1[2] - v0[2] * v1[0]; if (fabsf(denom) < EPS) return false; float u = v1[2] * v2[0] - v1[0] * v2[2]; float v = v0[0] * v2[2] - v0[2] * v2[0]; if (denom < 0) { denom = -denom; u = -u; v = -v; } // If point lies inside the triangle, return interpolated ycoord. if (u >= 0.0f && v >= 0.0f && (u + v) <= denom) { h = a[1] + (v0[1] * u + v1[1] * v) / denom; return true; } return false; } /// @par /// /// All points are projected onto the xz-plane, so the y-values are ignored. bool dtPointInPolygon(const float* pt, const float* verts, const int nverts) { // TODO: Replace pnpoly with triArea2D tests? int i, j; bool c = false; for (i = 0, j = nverts-1; i < nverts; j = i++) { const float* vi = &verts[i*3]; const float* vj = &verts[j*3]; if (((vi[2] > pt[2]) != (vj[2] > pt[2])) && (pt[0] < (vj[0]-vi[0]) * (pt[2]-vi[2]) / (vj[2]-vi[2]) + vi[0]) ) c = !c; } return c; } bool dtDistancePtPolyEdgesSqr(const float* pt, const float* verts, const int nverts, float* ed, float* et) { // TODO: Replace pnpoly with triArea2D tests? int i, j; bool c = false; for (i = 0, j = nverts-1; i < nverts; j = i++) { const float* vi = &verts[i*3]; const float* vj = &verts[j*3]; if (((vi[2] > pt[2]) != (vj[2] > pt[2])) && (pt[0] < (vj[0]-vi[0]) * (pt[2]-vi[2]) / (vj[2]-vi[2]) + vi[0]) ) c = !c; ed[j] = dtDistancePtSegSqr2D(pt, vj, vi, et[j]); } return c; } static void projectPoly(const float* axis, const float* poly, const int npoly, float& rmin, float& rmax) { rmin = rmax = dtVdot2D(axis, &poly[0]); for (int i = 1; i < npoly; ++i) { const float d = dtVdot2D(axis, &poly[i*3]); rmin = dtMin(rmin, d); rmax = dtMax(rmax, d); } } inline bool overlapRange(const float amin, const float amax, const float bmin, const float bmax, const float eps) { return ((amin+eps) > bmax || (amax-eps) < bmin) ? false : true; } /// @par /// /// All vertices are projected onto the xz-plane, so the y-values are ignored. bool dtOverlapPolyPoly2D(const float* polya, const int npolya, const float* polyb, const int npolyb) { const float eps = 1e-4f; for (int i = 0, j = npolya-1; i < npolya; j=i++) { const float* va = &polya[j*3]; const float* vb = &polya[i*3]; const float n[3] = { vb[2]-va[2], 0, -(vb[0]-va[0]) }; float amin,amax,bmin,bmax; projectPoly(n, polya, npolya, amin,amax); projectPoly(n, polyb, npolyb, bmin,bmax); if (!overlapRange(amin,amax, bmin,bmax, eps)) { // Found separating axis return false; } } for (int i = 0, j = npolyb-1; i < npolyb; j=i++) { const float* va = &polyb[j*3]; const float* vb = &polyb[i*3]; const float n[3] = { vb[2]-va[2], 0, -(vb[0]-va[0]) }; float amin,amax,bmin,bmax; projectPoly(n, polya, npolya, amin,amax); projectPoly(n, polyb, npolyb, bmin,bmax); if (!overlapRange(amin,amax, bmin,bmax, eps)) { // Found separating axis return false; } } return true; } // Returns a random point in a convex polygon. // Adapted from Graphics Gems article. void dtRandomPointInConvexPoly(const float* pts, const int npts, float* areas, const float s, const float t, float* out) { // Calc triangle araes float areasum = 0.0f; for (int i = 2; i < npts; i++) { areas[i] = dtTriArea2D(&pts[0], &pts[(i-1)*3], &pts[i*3]); areasum += dtMax(0.001f, areas[i]); } // Find sub triangle weighted by area. const float thr = s*areasum; float acc = 0.0f; float u = 1.0f; int tri = npts - 1; for (int i = 2; i < npts; i++) { const float dacc = areas[i]; if (thr >= acc && thr < (acc+dacc)) { u = (thr - acc) / dacc; tri = i; break; } acc += dacc; } float v = dtMathSqrtf(t); const float a = 1 - v; const float b = (1 - u) * v; const float c = u * v; const float* pa = &pts[0]; const float* pb = &pts[(tri-1)*3]; const float* pc = &pts[tri*3]; out[0] = a*pa[0] + b*pb[0] + c*pc[0]; out[1] = a*pa[1] + b*pb[1] + c*pc[1]; out[2] = a*pa[2] + b*pb[2] + c*pc[2]; } inline float vperpXZ(const float* a, const float* b) { return a[0]*b[2] - a[2]*b[0]; } bool dtIntersectSegSeg2D(const float* ap, const float* aq, const float* bp, const float* bq, float& s, float& t) { float u[3], v[3], w[3]; dtVsub(u,aq,ap); dtVsub(v,bq,bp); dtVsub(w,ap,bp); float d = vperpXZ(u,v); if (fabsf(d) < 1e-6f) return false; s = vperpXZ(v,w) / d; t = vperpXZ(u,w) / d; return true; }