// // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // #include "DetourObstacleAvoidance.h" #include "DetourCommon.h" #include "DetourMath.h" #include "DetourAlloc.h" #include "DetourAssert.h" #include #include #include static const float DT_PI = 3.14159265f; static int sweepCircleCircle(const float* c0, const float r0, const float* v, const float* c1, const float r1, float& tmin, float& tmax) { static const float EPS = 0.0001f; float s[3]; dtVsub(s,c1,c0); float r = r0+r1; float c = dtVdot2D(s,s) - r*r; float a = dtVdot2D(v,v); if (a < EPS) return 0; // not moving // Overlap, calc time to exit. float b = dtVdot2D(v,s); float d = b*b - a*c; if (d < 0.0f) return 0; // no intersection. a = 1.0f / a; const float rd = dtMathSqrtf(d); tmin = (b - rd) * a; tmax = (b + rd) * a; return 1; } static int isectRaySeg(const float* ap, const float* u, const float* bp, const float* bq, float& t) { float v[3], w[3]; dtVsub(v,bq,bp); dtVsub(w,ap,bp); float d = dtVperp2D(u,v); if (dtMathFabsf(d) < 1e-6f) return 0; d = 1.0f/d; t = dtVperp2D(v,w) * d; if (t < 0 || t > 1) return 0; float s = dtVperp2D(u,w) * d; if (s < 0 || s > 1) return 0; return 1; } dtObstacleAvoidanceDebugData* dtAllocObstacleAvoidanceDebugData() { void* mem = dtAlloc(sizeof(dtObstacleAvoidanceDebugData), DT_ALLOC_PERM); if (!mem) return 0; return new(mem) dtObstacleAvoidanceDebugData; } void dtFreeObstacleAvoidanceDebugData(dtObstacleAvoidanceDebugData* ptr) { if (!ptr) return; ptr->~dtObstacleAvoidanceDebugData(); dtFree(ptr); } dtObstacleAvoidanceDebugData::dtObstacleAvoidanceDebugData() : m_nsamples(0), m_maxSamples(0), m_vel(0), m_ssize(0), m_pen(0), m_vpen(0), m_vcpen(0), m_spen(0), m_tpen(0) { } dtObstacleAvoidanceDebugData::~dtObstacleAvoidanceDebugData() { dtFree(m_vel); dtFree(m_ssize); dtFree(m_pen); dtFree(m_vpen); dtFree(m_vcpen); dtFree(m_spen); dtFree(m_tpen); } bool dtObstacleAvoidanceDebugData::init(const int maxSamples) { dtAssert(maxSamples); m_maxSamples = maxSamples; m_vel = (float*)dtAlloc(sizeof(float)*3*m_maxSamples, DT_ALLOC_PERM); if (!m_vel) return false; m_pen = (float*)dtAlloc(sizeof(float)*m_maxSamples, DT_ALLOC_PERM); if (!m_pen) return false; m_ssize = (float*)dtAlloc(sizeof(float)*m_maxSamples, DT_ALLOC_PERM); if (!m_ssize) return false; m_vpen = (float*)dtAlloc(sizeof(float)*m_maxSamples, DT_ALLOC_PERM); if (!m_vpen) return false; m_vcpen = (float*)dtAlloc(sizeof(float)*m_maxSamples, DT_ALLOC_PERM); if (!m_vcpen) return false; m_spen = (float*)dtAlloc(sizeof(float)*m_maxSamples, DT_ALLOC_PERM); if (!m_spen) return false; m_tpen = (float*)dtAlloc(sizeof(float)*m_maxSamples, DT_ALLOC_PERM); if (!m_tpen) return false; return true; } void dtObstacleAvoidanceDebugData::reset() { m_nsamples = 0; } void dtObstacleAvoidanceDebugData::addSample(const float* vel, const float ssize, const float pen, const float vpen, const float vcpen, const float spen, const float tpen) { if (m_nsamples >= m_maxSamples) return; dtAssert(m_vel); dtAssert(m_ssize); dtAssert(m_pen); dtAssert(m_vpen); dtAssert(m_vcpen); dtAssert(m_spen); dtAssert(m_tpen); dtVcopy(&m_vel[m_nsamples*3], vel); m_ssize[m_nsamples] = ssize; m_pen[m_nsamples] = pen; m_vpen[m_nsamples] = vpen; m_vcpen[m_nsamples] = vcpen; m_spen[m_nsamples] = spen; m_tpen[m_nsamples] = tpen; m_nsamples++; } static void normalizeArray(float* arr, const int n) { // Normalize penaly range. float minPen = FLT_MAX; float maxPen = -FLT_MAX; for (int i = 0; i < n; ++i) { minPen = dtMin(minPen, arr[i]); maxPen = dtMax(maxPen, arr[i]); } const float penRange = maxPen-minPen; const float s = penRange > 0.001f ? (1.0f / penRange) : 1; for (int i = 0; i < n; ++i) arr[i] = dtClamp((arr[i]-minPen)*s, 0.0f, 1.0f); } void dtObstacleAvoidanceDebugData::normalizeSamples() { normalizeArray(m_pen, m_nsamples); normalizeArray(m_vpen, m_nsamples); normalizeArray(m_vcpen, m_nsamples); normalizeArray(m_spen, m_nsamples); normalizeArray(m_tpen, m_nsamples); } dtObstacleAvoidanceQuery* dtAllocObstacleAvoidanceQuery() { void* mem = dtAlloc(sizeof(dtObstacleAvoidanceQuery), DT_ALLOC_PERM); if (!mem) return 0; return new(mem) dtObstacleAvoidanceQuery; } void dtFreeObstacleAvoidanceQuery(dtObstacleAvoidanceQuery* ptr) { if (!ptr) return; ptr->~dtObstacleAvoidanceQuery(); dtFree(ptr); } dtObstacleAvoidanceQuery::dtObstacleAvoidanceQuery() : m_invHorizTime(0), m_vmax(0), m_invVmax(0), m_maxCircles(0), m_circles(0), m_ncircles(0), m_maxSegments(0), m_segments(0), m_nsegments(0) { } dtObstacleAvoidanceQuery::~dtObstacleAvoidanceQuery() { dtFree(m_circles); dtFree(m_segments); } bool dtObstacleAvoidanceQuery::init(const int maxCircles, const int maxSegments) { m_maxCircles = maxCircles; m_ncircles = 0; m_circles = (dtObstacleCircle*)dtAlloc(sizeof(dtObstacleCircle)*m_maxCircles, DT_ALLOC_PERM); if (!m_circles) return false; memset(m_circles, 0, sizeof(dtObstacleCircle)*m_maxCircles); m_maxSegments = maxSegments; m_nsegments = 0; m_segments = (dtObstacleSegment*)dtAlloc(sizeof(dtObstacleSegment)*m_maxSegments, DT_ALLOC_PERM); if (!m_segments) return false; memset(m_segments, 0, sizeof(dtObstacleSegment)*m_maxSegments); return true; } void dtObstacleAvoidanceQuery::reset() { m_ncircles = 0; m_nsegments = 0; } void dtObstacleAvoidanceQuery::addCircle(const float* pos, const float rad, const float* vel, const float* dvel) { if (m_ncircles >= m_maxCircles) return; dtObstacleCircle* cir = &m_circles[m_ncircles++]; dtVcopy(cir->p, pos); cir->rad = rad; dtVcopy(cir->vel, vel); dtVcopy(cir->dvel, dvel); } void dtObstacleAvoidanceQuery::addSegment(const float* p, const float* q) { if (m_nsegments >= m_maxSegments) return; dtObstacleSegment* seg = &m_segments[m_nsegments++]; dtVcopy(seg->p, p); dtVcopy(seg->q, q); } void dtObstacleAvoidanceQuery::prepare(const float* pos, const float* dvel) { // Prepare obstacles for (int i = 0; i < m_ncircles; ++i) { dtObstacleCircle* cir = &m_circles[i]; // Side const float* pa = pos; const float* pb = cir->p; const float orig[3] = {0,0,0}; float dv[3]; dtVsub(cir->dp,pb,pa); dtVnormalize(cir->dp); dtVsub(dv, cir->dvel, dvel); const float a = dtTriArea2D(orig, cir->dp,dv); if (a < 0.01f) { cir->np[0] = -cir->dp[2]; cir->np[2] = cir->dp[0]; } else { cir->np[0] = cir->dp[2]; cir->np[2] = -cir->dp[0]; } } for (int i = 0; i < m_nsegments; ++i) { dtObstacleSegment* seg = &m_segments[i]; // Precalc if the agent is really close to the segment. const float r = 0.01f; float t; seg->touch = dtDistancePtSegSqr2D(pos, seg->p, seg->q, t) < dtSqr(r); } } /* Calculate the collision penalty for a given velocity vector * * @param vcand sampled velocity * @param dvel desired velocity * @param minPenalty threshold penalty for early out */ float dtObstacleAvoidanceQuery::processSample(const float* vcand, const float cs, const float* pos, const float rad, const float* vel, const float* dvel, const float minPenalty, dtObstacleAvoidanceDebugData* debug) { // penalty for straying away from the desired and current velocities const float vpen = m_params.weightDesVel * (dtVdist2D(vcand, dvel) * m_invVmax); const float vcpen = m_params.weightCurVel * (dtVdist2D(vcand, vel) * m_invVmax); // find the threshold hit time to bail out based on the early out penalty // (see how the penalty is calculated below to understand) float minPen = minPenalty - vpen - vcpen; float tThresold = (m_params.weightToi / minPen - 0.1f) * m_params.horizTime; if (tThresold - m_params.horizTime > -FLT_EPSILON) return minPenalty; // already too much // Find min time of impact and exit amongst all obstacles. float tmin = m_params.horizTime; float side = 0; int nside = 0; for (int i = 0; i < m_ncircles; ++i) { const dtObstacleCircle* cir = &m_circles[i]; // RVO float vab[3]; dtVscale(vab, vcand, 2); dtVsub(vab, vab, vel); dtVsub(vab, vab, cir->vel); // Side side += dtClamp(dtMin(dtVdot2D(cir->dp,vab)*0.5f+0.5f, dtVdot2D(cir->np,vab)*2), 0.0f, 1.0f); nside++; float htmin = 0, htmax = 0; if (!sweepCircleCircle(pos,rad, vab, cir->p,cir->rad, htmin, htmax)) continue; // Handle overlapping obstacles. if (htmin < 0.0f && htmax > 0.0f) { // Avoid more when overlapped. htmin = -htmin * 0.5f; } if (htmin >= 0.0f) { // The closest obstacle is somewhere ahead of us, keep track of nearest obstacle. if (htmin < tmin) { tmin = htmin; if (tmin < tThresold) return minPenalty; } } } for (int i = 0; i < m_nsegments; ++i) { const dtObstacleSegment* seg = &m_segments[i]; float htmin = 0; if (seg->touch) { // Special case when the agent is very close to the segment. float sdir[3], snorm[3]; dtVsub(sdir, seg->q, seg->p); snorm[0] = -sdir[2]; snorm[2] = sdir[0]; // If the velocity is pointing towards the segment, no collision. if (dtVdot2D(snorm, vcand) < 0.0f) continue; // Else immediate collision. htmin = 0.0f; } else { if (!isectRaySeg(pos, vcand, seg->p, seg->q, htmin)) continue; } // Avoid less when facing walls. htmin *= 2.0f; // The closest obstacle is somewhere ahead of us, keep track of nearest obstacle. if (htmin < tmin) { tmin = htmin; if (tmin < tThresold) return minPenalty; } } // Normalize side bias, to prevent it dominating too much. if (nside) side /= nside; const float spen = m_params.weightSide * side; const float tpen = m_params.weightToi * (1.0f/(0.1f+tmin*m_invHorizTime)); const float penalty = vpen + vcpen + spen + tpen; // Store different penalties for debug viewing if (debug) debug->addSample(vcand, cs, penalty, vpen, vcpen, spen, tpen); return penalty; } int dtObstacleAvoidanceQuery::sampleVelocityGrid(const float* pos, const float rad, const float vmax, const float* vel, const float* dvel, float* nvel, const dtObstacleAvoidanceParams* params, dtObstacleAvoidanceDebugData* debug) { prepare(pos, dvel); memcpy(&m_params, params, sizeof(dtObstacleAvoidanceParams)); m_invHorizTime = 1.0f / m_params.horizTime; m_vmax = vmax; m_invVmax = vmax > 0 ? 1.0f / vmax : FLT_MAX; dtVset(nvel, 0,0,0); if (debug) debug->reset(); const float cvx = dvel[0] * m_params.velBias; const float cvz = dvel[2] * m_params.velBias; const float cs = vmax * 2 * (1 - m_params.velBias) / (float)(m_params.gridSize-1); const float half = (m_params.gridSize-1)*cs*0.5f; float minPenalty = FLT_MAX; int ns = 0; for (int y = 0; y < m_params.gridSize; ++y) { for (int x = 0; x < m_params.gridSize; ++x) { float vcand[3]; vcand[0] = cvx + x*cs - half; vcand[1] = 0; vcand[2] = cvz + y*cs - half; if (dtSqr(vcand[0])+dtSqr(vcand[2]) > dtSqr(vmax+cs/2)) continue; const float penalty = processSample(vcand, cs, pos,rad,vel,dvel, minPenalty, debug); ns++; if (penalty < minPenalty) { minPenalty = penalty; dtVcopy(nvel, vcand); } } } return ns; } // vector normalization that ignores the y-component. inline void dtNormalize2D(float* v) { float d = dtMathSqrtf(v[0] * v[0] + v[2] * v[2]); if (d==0) return; d = 1.0f / d; v[0] *= d; v[2] *= d; } // vector normalization that ignores the y-component. inline void dtRorate2D(float* dest, const float* v, float ang) { float c = cosf(ang); float s = sinf(ang); dest[0] = v[0]*c - v[2]*s; dest[2] = v[0]*s + v[2]*c; dest[1] = v[1]; } int dtObstacleAvoidanceQuery::sampleVelocityAdaptive(const float* pos, const float rad, const float vmax, const float* vel, const float* dvel, float* nvel, const dtObstacleAvoidanceParams* params, dtObstacleAvoidanceDebugData* debug) { prepare(pos, dvel); memcpy(&m_params, params, sizeof(dtObstacleAvoidanceParams)); m_invHorizTime = 1.0f / m_params.horizTime; m_vmax = vmax; m_invVmax = vmax > 0 ? 1.0f / vmax : FLT_MAX; dtVset(nvel, 0,0,0); if (debug) debug->reset(); // Build sampling pattern aligned to desired velocity. float pat[(DT_MAX_PATTERN_DIVS*DT_MAX_PATTERN_RINGS+1)*2]; int npat = 0; const int ndivs = (int)m_params.adaptiveDivs; const int nrings= (int)m_params.adaptiveRings; const int depth = (int)m_params.adaptiveDepth; const int nd = dtClamp(ndivs, 1, DT_MAX_PATTERN_DIVS); const int nr = dtClamp(nrings, 1, DT_MAX_PATTERN_RINGS); const float da = (1.0f/nd) * DT_PI*2; const float ca = cosf(da); const float sa = sinf(da); // desired direction float ddir[6]; dtVcopy(ddir, dvel); dtNormalize2D(ddir); dtRorate2D (ddir+3, ddir, da*0.5f); // rotated by da/2 // Always add sample at zero pat[npat*2+0] = 0; pat[npat*2+1] = 0; npat++; for (int j = 0; j < nr; ++j) { const float r = (float)(nr-j)/(float)nr; pat[npat*2+0] = ddir[(j%2)*3] * r; pat[npat*2+1] = ddir[(j%2)*3+2] * r; float* last1 = pat + npat*2; float* last2 = last1; npat++; for (int i = 1; i < nd-1; i+=2) { // get next point on the "right" (rotate CW) pat[npat*2+0] = last1[0]*ca + last1[1]*sa; pat[npat*2+1] = -last1[0]*sa + last1[1]*ca; // get next point on the "left" (rotate CCW) pat[npat*2+2] = last2[0]*ca - last2[1]*sa; pat[npat*2+3] = last2[0]*sa + last2[1]*ca; last1 = pat + npat*2; last2 = last1 + 2; npat += 2; } if ((nd&1) == 0) { pat[npat*2+2] = last2[0]*ca - last2[1]*sa; pat[npat*2+3] = last2[0]*sa + last2[1]*ca; npat++; } } // Start sampling. float cr = vmax * (1.0f - m_params.velBias); float res[3]; dtVset(res, dvel[0] * m_params.velBias, 0, dvel[2] * m_params.velBias); int ns = 0; for (int k = 0; k < depth; ++k) { float minPenalty = FLT_MAX; float bvel[3]; dtVset(bvel, 0,0,0); for (int i = 0; i < npat; ++i) { float vcand[3]; vcand[0] = res[0] + pat[i*2+0]*cr; vcand[1] = 0; vcand[2] = res[2] + pat[i*2+1]*cr; if (dtSqr(vcand[0])+dtSqr(vcand[2]) > dtSqr(vmax+0.001f)) continue; const float penalty = processSample(vcand,cr/10, pos,rad,vel,dvel, minPenalty, debug); ns++; if (penalty < minPenalty) { minPenalty = penalty; dtVcopy(bvel, vcand); } } dtVcopy(res, bvel); cr *= 0.5f; } dtVcopy(nvel, res); return ns; }