// // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // #ifndef RECAST_H #define RECAST_H /// The value of PI used by Recast. static const float RC_PI = 3.14159265f; /// Used to ignore unused function parameters and silence any compiler warnings. template void rcIgnoreUnused(const T&) { } /// Recast log categories. /// @see rcContext enum rcLogCategory { RC_LOG_PROGRESS = 1, ///< A progress log entry. RC_LOG_WARNING, ///< A warning log entry. RC_LOG_ERROR ///< An error log entry. }; /// Recast performance timer categories. /// @see rcContext enum rcTimerLabel { /// The user defined total time of the build. RC_TIMER_TOTAL, /// A user defined build time. RC_TIMER_TEMP, /// The time to rasterize the triangles. (See: #rcRasterizeTriangle) RC_TIMER_RASTERIZE_TRIANGLES, /// The time to build the compact heightfield. (See: #rcBuildCompactHeightfield) RC_TIMER_BUILD_COMPACTHEIGHTFIELD, /// The total time to build the contours. (See: #rcBuildContours) RC_TIMER_BUILD_CONTOURS, /// The time to trace the boundaries of the contours. (See: #rcBuildContours) RC_TIMER_BUILD_CONTOURS_TRACE, /// The time to simplify the contours. (See: #rcBuildContours) RC_TIMER_BUILD_CONTOURS_SIMPLIFY, /// The time to filter ledge spans. (See: #rcFilterLedgeSpans) RC_TIMER_FILTER_BORDER, /// The time to filter low height spans. (See: #rcFilterWalkableLowHeightSpans) RC_TIMER_FILTER_WALKABLE, /// The time to apply the median filter. (See: #rcMedianFilterWalkableArea) RC_TIMER_MEDIAN_AREA, /// The time to filter low obstacles. (See: #rcFilterLowHangingWalkableObstacles) RC_TIMER_FILTER_LOW_OBSTACLES, /// The time to build the polygon mesh. (See: #rcBuildPolyMesh) RC_TIMER_BUILD_POLYMESH, /// The time to merge polygon meshes. (See: #rcMergePolyMeshes) RC_TIMER_MERGE_POLYMESH, /// The time to erode the walkable area. (See: #rcErodeWalkableArea) RC_TIMER_ERODE_AREA, /// The time to mark a box area. (See: #rcMarkBoxArea) RC_TIMER_MARK_BOX_AREA, /// The time to mark a cylinder area. (See: #rcMarkCylinderArea) RC_TIMER_MARK_CYLINDER_AREA, /// The time to mark a convex polygon area. (See: #rcMarkConvexPolyArea) RC_TIMER_MARK_CONVEXPOLY_AREA, /// The total time to build the distance field. (See: #rcBuildDistanceField) RC_TIMER_BUILD_DISTANCEFIELD, /// The time to build the distances of the distance field. (See: #rcBuildDistanceField) RC_TIMER_BUILD_DISTANCEFIELD_DIST, /// The time to blur the distance field. (See: #rcBuildDistanceField) RC_TIMER_BUILD_DISTANCEFIELD_BLUR, /// The total time to build the regions. (See: #rcBuildRegions, #rcBuildRegionsMonotone) RC_TIMER_BUILD_REGIONS, /// The total time to apply the watershed algorithm. (See: #rcBuildRegions) RC_TIMER_BUILD_REGIONS_WATERSHED, /// The time to expand regions while applying the watershed algorithm. (See: #rcBuildRegions) RC_TIMER_BUILD_REGIONS_EXPAND, /// The time to flood regions while applying the watershed algorithm. (See: #rcBuildRegions) RC_TIMER_BUILD_REGIONS_FLOOD, /// The time to filter out small regions. (See: #rcBuildRegions, #rcBuildRegionsMonotone) RC_TIMER_BUILD_REGIONS_FILTER, /// The time to build heightfield layers. (See: #rcBuildHeightfieldLayers) RC_TIMER_BUILD_LAYERS, /// The time to build the polygon mesh detail. (See: #rcBuildPolyMeshDetail) RC_TIMER_BUILD_POLYMESHDETAIL, /// The time to merge polygon mesh details. (See: #rcMergePolyMeshDetails) RC_TIMER_MERGE_POLYMESHDETAIL, /// The maximum number of timers. (Used for iterating timers.) RC_MAX_TIMERS }; /// Provides an interface for optional logging and performance tracking of the Recast /// build process. /// /// This class does not provide logging or timer functionality on its /// own. Both must be provided by a concrete implementation /// by overriding the protected member functions. Also, this class does not /// provide an interface for extracting log messages. (Only adding them.) /// So concrete implementations must provide one. /// /// If no logging or timers are required, just pass an instance of this /// class through the Recast build process. /// /// @ingroup recast class rcContext { public: /// Constructor. /// @param[in] state TRUE if the logging and performance timers should be enabled. [Default: true] inline rcContext(bool state = true) : m_logEnabled(state), m_timerEnabled(state) {} virtual ~rcContext() {} /// Enables or disables logging. /// @param[in] state TRUE if logging should be enabled. inline void enableLog(bool state) { m_logEnabled = state; } /// Clears all log entries. inline void resetLog() { if (m_logEnabled) doResetLog(); } /// Logs a message. /// /// Example: /// @code /// // Where ctx is an instance of rcContext and filepath is a char array. /// ctx->log(RC_LOG_ERROR, "buildTiledNavigation: Could not load '%s'", filepath); /// @endcode /// /// @param[in] category The category of the message. /// @param[in] format The message. void log(const rcLogCategory category, const char* format, ...); /// Enables or disables the performance timers. /// @param[in] state TRUE if timers should be enabled. inline void enableTimer(bool state) { m_timerEnabled = state; } /// Clears all performance timers. (Resets all to unused.) inline void resetTimers() { if (m_timerEnabled) doResetTimers(); } /// Starts the specified performance timer. /// @param label The category of the timer. inline void startTimer(const rcTimerLabel label) { if (m_timerEnabled) doStartTimer(label); } /// Stops the specified performance timer. /// @param label The category of the timer. inline void stopTimer(const rcTimerLabel label) { if (m_timerEnabled) doStopTimer(label); } /// Returns the total accumulated time of the specified performance timer. /// @param label The category of the timer. /// @return The accumulated time of the timer, or -1 if timers are disabled or the timer has never been started. inline int getAccumulatedTime(const rcTimerLabel label) const { return m_timerEnabled ? doGetAccumulatedTime(label) : -1; } protected: /// Clears all log entries. virtual void doResetLog(); /// Logs a message. /// @param[in] category The category of the message. /// @param[in] msg The formatted message. /// @param[in] len The length of the formatted message. virtual void doLog(const rcLogCategory category, const char* msg, const int len) { rcIgnoreUnused(category); rcIgnoreUnused(msg); rcIgnoreUnused(len); } /// Clears all timers. (Resets all to unused.) virtual void doResetTimers() {} /// Starts the specified performance timer. /// @param[in] label The category of timer. virtual void doStartTimer(const rcTimerLabel label) { rcIgnoreUnused(label); } /// Stops the specified performance timer. /// @param[in] label The category of the timer. virtual void doStopTimer(const rcTimerLabel label) { rcIgnoreUnused(label); } /// Returns the total accumulated time of the specified performance timer. /// @param[in] label The category of the timer. /// @return The accumulated time of the timer, or -1 if timers are disabled or the timer has never been started. virtual int doGetAccumulatedTime(const rcTimerLabel label) const { rcIgnoreUnused(label); return -1; } /// True if logging is enabled. bool m_logEnabled; /// True if the performance timers are enabled. bool m_timerEnabled; }; /// A helper to first start a timer and then stop it when this helper goes out of scope. /// @see rcContext class rcScopedTimer { public: /// Constructs an instance and starts the timer. /// @param[in] ctx The context to use. /// @param[in] label The category of the timer. inline rcScopedTimer(rcContext* ctx, const rcTimerLabel label) : m_ctx(ctx), m_label(label) { m_ctx->startTimer(m_label); } inline ~rcScopedTimer() { m_ctx->stopTimer(m_label); } private: // Explicitly disabled copy constructor and copy assignment operator. rcScopedTimer(const rcScopedTimer&); rcScopedTimer& operator=(const rcScopedTimer&); rcContext* const m_ctx; const rcTimerLabel m_label; }; /// Specifies a configuration to use when performing Recast builds. /// @ingroup recast struct rcConfig { /// The width of the field along the x-axis. [Limit: >= 0] [Units: vx] int width; /// The height of the field along the z-axis. [Limit: >= 0] [Units: vx] int height; /// The width/height size of tile's on the xz-plane. [Limit: >= 0] [Units: vx] int tileSize; /// The size of the non-navigable border around the heightfield. [Limit: >=0] [Units: vx] int borderSize; /// The xz-plane cell size to use for fields. [Limit: > 0] [Units: wu] float cs; /// The y-axis cell size to use for fields. [Limit: > 0] [Units: wu] float ch; /// The minimum bounds of the field's AABB. [(x, y, z)] [Units: wu] float bmin[3]; /// The maximum bounds of the field's AABB. [(x, y, z)] [Units: wu] float bmax[3]; /// The maximum slope that is considered walkable. [Limits: 0 <= value < 90] [Units: Degrees] float walkableSlopeAngle; /// Minimum floor to 'ceiling' height that will still allow the floor area to /// be considered walkable. [Limit: >= 3] [Units: vx] int walkableHeight; /// Maximum ledge height that is considered to still be traversable. [Limit: >=0] [Units: vx] int walkableClimb; /// The distance to erode/shrink the walkable area of the heightfield away from /// obstructions. [Limit: >=0] [Units: vx] int walkableRadius; /// The maximum allowed length for contour edges along the border of the mesh. [Limit: >=0] [Units: vx] int maxEdgeLen; /// The maximum distance a simplified contour's border edges should deviate /// the original raw contour. [Limit: >=0] [Units: vx] float maxSimplificationError; /// The minimum number of cells allowed to form isolated island areas. [Limit: >=0] [Units: vx] int minRegionArea; /// Any regions with a span count smaller than this value will, if possible, /// be merged with larger regions. [Limit: >=0] [Units: vx] int mergeRegionArea; /// The maximum number of vertices allowed for polygons generated during the /// contour to polygon conversion process. [Limit: >= 3] int maxVertsPerPoly; /// Sets the sampling distance to use when generating the detail mesh. /// (For height detail only.) [Limits: 0 or >= 0.9] [Units: wu] float detailSampleDist; /// The maximum distance the detail mesh surface should deviate from heightfield /// data. (For height detail only.) [Limit: >=0] [Units: wu] float detailSampleMaxError; }; /// Defines the number of bits allocated to rcSpan::smin and rcSpan::smax. static const int RC_SPAN_HEIGHT_BITS = 13; /// Defines the maximum value for rcSpan::smin and rcSpan::smax. static const int RC_SPAN_MAX_HEIGHT = (1 << RC_SPAN_HEIGHT_BITS) - 1; /// The number of spans allocated per span spool. /// @see rcSpanPool static const int RC_SPANS_PER_POOL = 2048; /// Represents a span in a heightfield. /// @see rcHeightfield struct rcSpan { unsigned int smin : RC_SPAN_HEIGHT_BITS; ///< The lower limit of the span. [Limit: < #smax] unsigned int smax : RC_SPAN_HEIGHT_BITS; ///< The upper limit of the span. [Limit: <= #RC_SPAN_MAX_HEIGHT] unsigned int area : 6; ///< The area id assigned to the span. rcSpan* next; ///< The next span higher up in column. }; /// A memory pool used for quick allocation of spans within a heightfield. /// @see rcHeightfield struct rcSpanPool { rcSpanPool* next; ///< The next span pool. rcSpan items[RC_SPANS_PER_POOL]; ///< Array of spans in the pool. }; /// A dynamic heightfield representing obstructed space. /// @ingroup recast struct rcHeightfield { rcHeightfield(); ~rcHeightfield(); int width; ///< The width of the heightfield. (Along the x-axis in cell units.) int height; ///< The height of the heightfield. (Along the z-axis in cell units.) float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)] float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)] float cs; ///< The size of each cell. (On the xz-plane.) float ch; ///< The height of each cell. (The minimum increment along the y-axis.) rcSpan** spans; ///< Heightfield of spans (width*height). // memory pool for rcSpan instances. rcSpanPool* pools; ///< Linked list of span pools. rcSpan* freelist; ///< The next free span. private: // Explicitly-disabled copy constructor and copy assignment operator. rcHeightfield(const rcHeightfield&); rcHeightfield& operator=(const rcHeightfield&); }; /// Provides information on the content of a cell column in a compact heightfield. struct rcCompactCell { unsigned int index : 24; ///< Index to the first span in the column. unsigned int count : 8; ///< Number of spans in the column. }; /// Represents a span of unobstructed space within a compact heightfield. struct rcCompactSpan { unsigned short y; ///< The lower extent of the span. (Measured from the heightfield's base.) unsigned short reg; ///< The id of the region the span belongs to. (Or zero if not in a region.) unsigned int con : 24; ///< Packed neighbor connection data. unsigned int h : 8; ///< The height of the span. (Measured from #y.) }; /// A compact, static heightfield representing unobstructed space. /// @ingroup recast struct rcCompactHeightfield { rcCompactHeightfield(); ~rcCompactHeightfield(); int width; ///< The width of the heightfield. (Along the x-axis in cell units.) int height; ///< The height of the heightfield. (Along the z-axis in cell units.) int spanCount; ///< The number of spans in the heightfield. int walkableHeight; ///< The walkable height used during the build of the field. (See: rcConfig::walkableHeight) int walkableClimb; ///< The walkable climb used during the build of the field. (See: rcConfig::walkableClimb) int borderSize; ///< The AABB border size used during the build of the field. (See: rcConfig::borderSize) unsigned short maxDistance; ///< The maximum distance value of any span within the field. unsigned short maxRegions; ///< The maximum region id of any span within the field. float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)] float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)] float cs; ///< The size of each cell. (On the xz-plane.) float ch; ///< The height of each cell. (The minimum increment along the y-axis.) rcCompactCell* cells; ///< Array of cells. [Size: #width*#height] rcCompactSpan* spans; ///< Array of spans. [Size: #spanCount] unsigned short* dist; ///< Array containing border distance data. [Size: #spanCount] unsigned char* areas; ///< Array containing area id data. [Size: #spanCount] private: // Explicitly-disabled copy constructor and copy assignment operator. rcCompactHeightfield(const rcCompactHeightfield&); rcCompactHeightfield& operator=(const rcCompactHeightfield&); }; /// Represents a heightfield layer within a layer set. /// @see rcHeightfieldLayerSet struct rcHeightfieldLayer { float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)] float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)] float cs; ///< The size of each cell. (On the xz-plane.) float ch; ///< The height of each cell. (The minimum increment along the y-axis.) int width; ///< The width of the heightfield. (Along the x-axis in cell units.) int height; ///< The height of the heightfield. (Along the z-axis in cell units.) int minx; ///< The minimum x-bounds of usable data. int maxx; ///< The maximum x-bounds of usable data. int miny; ///< The minimum y-bounds of usable data. (Along the z-axis.) int maxy; ///< The maximum y-bounds of usable data. (Along the z-axis.) int hmin; ///< The minimum height bounds of usable data. (Along the y-axis.) int hmax; ///< The maximum height bounds of usable data. (Along the y-axis.) unsigned char* heights; ///< The heightfield. [Size: width * height] unsigned char* areas; ///< Area ids. [Size: Same as #heights] unsigned char* cons; ///< Packed neighbor connection information. [Size: Same as #heights] }; /// Represents a set of heightfield layers. /// @ingroup recast /// @see rcAllocHeightfieldLayerSet, rcFreeHeightfieldLayerSet struct rcHeightfieldLayerSet { rcHeightfieldLayerSet(); ~rcHeightfieldLayerSet(); rcHeightfieldLayer* layers; ///< The layers in the set. [Size: #nlayers] int nlayers; ///< The number of layers in the set. private: // Explicitly-disabled copy constructor and copy assignment operator. rcHeightfieldLayerSet(const rcHeightfieldLayerSet&); rcHeightfieldLayerSet& operator=(const rcHeightfieldLayerSet&); }; /// Represents a simple, non-overlapping contour in field space. struct rcContour { int* verts; ///< Simplified contour vertex and connection data. [Size: 4 * #nverts] int nverts; ///< The number of vertices in the simplified contour. int* rverts; ///< Raw contour vertex and connection data. [Size: 4 * #nrverts] int nrverts; ///< The number of vertices in the raw contour. unsigned short reg; ///< The region id of the contour. unsigned char area; ///< The area id of the contour. }; /// Represents a group of related contours. /// @ingroup recast struct rcContourSet { rcContourSet(); ~rcContourSet(); rcContour* conts; ///< An array of the contours in the set. [Size: #nconts] int nconts; ///< The number of contours in the set. float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)] float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)] float cs; ///< The size of each cell. (On the xz-plane.) float ch; ///< The height of each cell. (The minimum increment along the y-axis.) int width; ///< The width of the set. (Along the x-axis in cell units.) int height; ///< The height of the set. (Along the z-axis in cell units.) int borderSize; ///< The AABB border size used to generate the source data from which the contours were derived. float maxError; ///< The max edge error that this contour set was simplified with. private: // Explicitly-disabled copy constructor and copy assignment operator. rcContourSet(const rcContourSet&); rcContourSet& operator=(const rcContourSet&); }; /// Represents a polygon mesh suitable for use in building a navigation mesh. /// @ingroup recast struct rcPolyMesh { rcPolyMesh(); ~rcPolyMesh(); unsigned short* verts; ///< The mesh vertices. [Form: (x, y, z) * #nverts] unsigned short* polys; ///< Polygon and neighbor data. [Length: #maxpolys * 2 * #nvp] unsigned short* regs; ///< The region id assigned to each polygon. [Length: #maxpolys] unsigned short* flags; ///< The user defined flags for each polygon. [Length: #maxpolys] unsigned char* areas; ///< The area id assigned to each polygon. [Length: #maxpolys] int nverts; ///< The number of vertices. int npolys; ///< The number of polygons. int maxpolys; ///< The number of allocated polygons. int nvp; ///< The maximum number of vertices per polygon. float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)] float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)] float cs; ///< The size of each cell. (On the xz-plane.) float ch; ///< The height of each cell. (The minimum increment along the y-axis.) int borderSize; ///< The AABB border size used to generate the source data from which the mesh was derived. float maxEdgeError; ///< The max error of the polygon edges in the mesh. private: // Explicitly-disabled copy constructor and copy assignment operator. rcPolyMesh(const rcPolyMesh&); rcPolyMesh& operator=(const rcPolyMesh&); }; /// Contains triangle meshes that represent detailed height data associated /// with the polygons in its associated polygon mesh object. /// @ingroup recast struct rcPolyMeshDetail { rcPolyMeshDetail(); unsigned int* meshes; ///< The sub-mesh data. [Size: 4*#nmeshes] float* verts; ///< The mesh vertices. [Size: 3*#nverts] unsigned char* tris; ///< The mesh triangles. [Size: 4*#ntris] int nmeshes; ///< The number of sub-meshes defined by #meshes. int nverts; ///< The number of vertices in #verts. int ntris; ///< The number of triangles in #tris. private: // Explicitly-disabled copy constructor and copy assignment operator. rcPolyMeshDetail(const rcPolyMeshDetail&); rcPolyMeshDetail& operator=(const rcPolyMeshDetail&); }; /// @name Allocation Functions /// Functions used to allocate and de-allocate Recast objects. /// @see rcAllocSetCustom /// @{ /// Allocates a heightfield object using the Recast allocator. /// @return A heightfield that is ready for initialization, or null on failure. /// @ingroup recast /// @see rcCreateHeightfield, rcFreeHeightField rcHeightfield* rcAllocHeightfield(); /// Frees the specified heightfield object using the Recast allocator. /// @param[in] heightfield A heightfield allocated using #rcAllocHeightfield /// @ingroup recast /// @see rcAllocHeightfield void rcFreeHeightField(rcHeightfield* heightfield); /// Allocates a compact heightfield object using the Recast allocator. /// @return A compact heightfield that is ready for initialization, or null on failure. /// @ingroup recast /// @see rcBuildCompactHeightfield, rcFreeCompactHeightfield rcCompactHeightfield* rcAllocCompactHeightfield(); /// Frees the specified compact heightfield object using the Recast allocator. /// @param[in] compactHeightfield A compact heightfield allocated using #rcAllocCompactHeightfield /// @ingroup recast /// @see rcAllocCompactHeightfield void rcFreeCompactHeightfield(rcCompactHeightfield* compactHeightfield); /// Allocates a heightfield layer set using the Recast allocator. /// @return A heightfield layer set that is ready for initialization, or null on failure. /// @ingroup recast /// @see rcBuildHeightfieldLayers, rcFreeHeightfieldLayerSet rcHeightfieldLayerSet* rcAllocHeightfieldLayerSet(); /// Frees the specified heightfield layer set using the Recast allocator. /// @param[in] layerSet A heightfield layer set allocated using #rcAllocHeightfieldLayerSet /// @ingroup recast /// @see rcAllocHeightfieldLayerSet void rcFreeHeightfieldLayerSet(rcHeightfieldLayerSet* layerSet); /// Allocates a contour set object using the Recast allocator. /// @return A contour set that is ready for initialization, or null on failure. /// @ingroup recast /// @see rcBuildContours, rcFreeContourSet rcContourSet* rcAllocContourSet(); /// Frees the specified contour set using the Recast allocator. /// @param[in] contourSet A contour set allocated using #rcAllocContourSet /// @ingroup recast /// @see rcAllocContourSet void rcFreeContourSet(rcContourSet* contourSet); /// Allocates a polygon mesh object using the Recast allocator. /// @return A polygon mesh that is ready for initialization, or null on failure. /// @ingroup recast /// @see rcBuildPolyMesh, rcFreePolyMesh rcPolyMesh* rcAllocPolyMesh(); /// Frees the specified polygon mesh using the Recast allocator. /// @param[in] polyMesh A polygon mesh allocated using #rcAllocPolyMesh /// @ingroup recast /// @see rcAllocPolyMesh void rcFreePolyMesh(rcPolyMesh* polyMesh); /// Allocates a detail mesh object using the Recast allocator. /// @return A detail mesh that is ready for initialization, or null on failure. /// @ingroup recast /// @see rcBuildPolyMeshDetail, rcFreePolyMeshDetail rcPolyMeshDetail* rcAllocPolyMeshDetail(); /// Frees the specified detail mesh using the Recast allocator. /// @param[in] detailMesh A detail mesh allocated using #rcAllocPolyMeshDetail /// @ingroup recast /// @see rcAllocPolyMeshDetail void rcFreePolyMeshDetail(rcPolyMeshDetail* detailMesh); /// @} /// Heightfield border flag. /// If a heightfield region ID has this bit set, then the region is a border /// region and its spans are considered un-walkable. /// (Used during the region and contour build process.) /// @see rcCompactSpan::reg static const unsigned short RC_BORDER_REG = 0x8000; /// Polygon touches multiple regions. /// If a polygon has this region ID it was merged with or created /// from polygons of different regions during the polymesh /// build step that removes redundant border vertices. /// (Used during the polymesh and detail polymesh build processes) /// @see rcPolyMesh::regs static const unsigned short RC_MULTIPLE_REGS = 0; /// Border vertex flag. /// If a region ID has this bit set, then the associated element lies on /// a tile border. If a contour vertex's region ID has this bit set, the /// vertex will later be removed in order to match the segments and vertices /// at tile boundaries. /// (Used during the build process.) /// @see rcCompactSpan::reg, #rcContour::verts, #rcContour::rverts static const int RC_BORDER_VERTEX = 0x10000; /// Area border flag. /// If a region ID has this bit set, then the associated element lies on /// the border of an area. /// (Used during the region and contour build process.) /// @see rcCompactSpan::reg, #rcContour::verts, #rcContour::rverts static const int RC_AREA_BORDER = 0x20000; /// Contour build flags. /// @see rcBuildContours enum rcBuildContoursFlags { RC_CONTOUR_TESS_WALL_EDGES = 0x01, ///< Tessellate solid (impassable) edges during contour simplification. RC_CONTOUR_TESS_AREA_EDGES = 0x02 ///< Tessellate edges between areas during contour simplification. }; /// Applied to the region id field of contour vertices in order to extract the region id. /// The region id field of a vertex may have several flags applied to it. So the /// fields value can't be used directly. /// @see rcContour::verts, rcContour::rverts static const int RC_CONTOUR_REG_MASK = 0xffff; /// An value which indicates an invalid index within a mesh. /// @note This does not necessarily indicate an error. /// @see rcPolyMesh::polys static const unsigned short RC_MESH_NULL_IDX = 0xffff; /// Represents the null area. /// When a data element is given this value it is considered to no longer be /// assigned to a usable area. (E.g. It is un-walkable.) static const unsigned char RC_NULL_AREA = 0; /// The default area id used to indicate a walkable polygon. /// This is also the maximum allowed area id, and the only non-null area id /// recognized by some steps in the build process. static const unsigned char RC_WALKABLE_AREA = 63; /// The value returned by #rcGetCon if the specified direction is not connected /// to another span. (Has no neighbor.) static const int RC_NOT_CONNECTED = 0x3f; /// @name General helper functions /// @{ /// Swaps the values of the two parameters. /// @param[in,out] a Value A /// @param[in,out] b Value B template inline void rcSwap(T& a, T& b) { T t = a; a = b; b = t; } /// Returns the minimum of two values. /// @param[in] a Value A /// @param[in] b Value B /// @return The minimum of the two values. template inline T rcMin(T a, T b) { return a < b ? a : b; } /// Returns the maximum of two values. /// @param[in] a Value A /// @param[in] b Value B /// @return The maximum of the two values. template inline T rcMax(T a, T b) { return a > b ? a : b; } /// Returns the absolute value. /// @param[in] a The value. /// @return The absolute value of the specified value. template inline T rcAbs(T a) { return a < 0 ? -a : a; } /// Returns the square of the value. /// @param[in] a The value. /// @return The square of the value. template inline T rcSqr(T a) { return a * a; } /// Clamps the value to the specified range. /// @param[in] value The value to clamp. /// @param[in] minInclusive The minimum permitted return value. /// @param[in] maxInclusive The maximum permitted return value. /// @return The value, clamped to the specified range. template inline T rcClamp(T value, T minInclusive, T maxInclusive) { return value < minInclusive ? minInclusive: (value > maxInclusive ? maxInclusive : value); } /// Returns the square root of the value. /// @param[in] x The value. /// @return The square root of the vlaue. float rcSqrt(float x); /// @} /// @name Vector helper functions. /// @{ /// Derives the cross product of two vectors. (@p v1 x @p v2) /// @param[out] dest The cross product. [(x, y, z)] /// @param[in] v1 A Vector [(x, y, z)] /// @param[in] v2 A vector [(x, y, z)] inline void rcVcross(float* dest, const float* v1, const float* v2) { dest[0] = v1[1]*v2[2] - v1[2]*v2[1]; dest[1] = v1[2]*v2[0] - v1[0]*v2[2]; dest[2] = v1[0]*v2[1] - v1[1]*v2[0]; } /// Derives the dot product of two vectors. (@p v1 . @p v2) /// @param[in] v1 A Vector [(x, y, z)] /// @param[in] v2 A vector [(x, y, z)] /// @return The dot product. inline float rcVdot(const float* v1, const float* v2) { return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2]; } /// Performs a scaled vector addition. (@p v1 + (@p v2 * @p s)) /// @param[out] dest The result vector. [(x, y, z)] /// @param[in] v1 The base vector. [(x, y, z)] /// @param[in] v2 The vector to scale and add to @p v1. [(x, y, z)] /// @param[in] s The amount to scale @p v2 by before adding to @p v1. inline void rcVmad(float* dest, const float* v1, const float* v2, const float s) { dest[0] = v1[0]+v2[0]*s; dest[1] = v1[1]+v2[1]*s; dest[2] = v1[2]+v2[2]*s; } /// Performs a vector addition. (@p v1 + @p v2) /// @param[out] dest The result vector. [(x, y, z)] /// @param[in] v1 The base vector. [(x, y, z)] /// @param[in] v2 The vector to add to @p v1. [(x, y, z)] inline void rcVadd(float* dest, const float* v1, const float* v2) { dest[0] = v1[0]+v2[0]; dest[1] = v1[1]+v2[1]; dest[2] = v1[2]+v2[2]; } /// Performs a vector subtraction. (@p v1 - @p v2) /// @param[out] dest The result vector. [(x, y, z)] /// @param[in] v1 The base vector. [(x, y, z)] /// @param[in] v2 The vector to subtract from @p v1. [(x, y, z)] inline void rcVsub(float* dest, const float* v1, const float* v2) { dest[0] = v1[0]-v2[0]; dest[1] = v1[1]-v2[1]; dest[2] = v1[2]-v2[2]; } /// Selects the minimum value of each element from the specified vectors. /// @param[in,out] mn A vector. (Will be updated with the result.) [(x, y, z)] /// @param[in] v A vector. [(x, y, z)] inline void rcVmin(float* mn, const float* v) { mn[0] = rcMin(mn[0], v[0]); mn[1] = rcMin(mn[1], v[1]); mn[2] = rcMin(mn[2], v[2]); } /// Selects the maximum value of each element from the specified vectors. /// @param[in,out] mx A vector. (Will be updated with the result.) [(x, y, z)] /// @param[in] v A vector. [(x, y, z)] inline void rcVmax(float* mx, const float* v) { mx[0] = rcMax(mx[0], v[0]); mx[1] = rcMax(mx[1], v[1]); mx[2] = rcMax(mx[2], v[2]); } /// Performs a vector copy. /// @param[out] dest The result. [(x, y, z)] /// @param[in] v The vector to copy. [(x, y, z)] inline void rcVcopy(float* dest, const float* v) { dest[0] = v[0]; dest[1] = v[1]; dest[2] = v[2]; } /// Returns the distance between two points. /// @param[in] v1 A point. [(x, y, z)] /// @param[in] v2 A point. [(x, y, z)] /// @return The distance between the two points. inline float rcVdist(const float* v1, const float* v2) { float dx = v2[0] - v1[0]; float dy = v2[1] - v1[1]; float dz = v2[2] - v1[2]; return rcSqrt(dx*dx + dy*dy + dz*dz); } /// Returns the square of the distance between two points. /// @param[in] v1 A point. [(x, y, z)] /// @param[in] v2 A point. [(x, y, z)] /// @return The square of the distance between the two points. inline float rcVdistSqr(const float* v1, const float* v2) { float dx = v2[0] - v1[0]; float dy = v2[1] - v1[1]; float dz = v2[2] - v1[2]; return dx*dx + dy*dy + dz*dz; } /// Normalizes the vector. /// @param[in,out] v The vector to normalize. [(x, y, z)] inline void rcVnormalize(float* v) { float d = 1.0f / rcSqrt(rcSqr(v[0]) + rcSqr(v[1]) + rcSqr(v[2])); v[0] *= d; v[1] *= d; v[2] *= d; } /// @} /// @name Heightfield Functions /// @see rcHeightfield /// @{ /// Calculates the bounding box of an array of vertices. /// @ingroup recast /// @param[in] verts An array of vertices. [(x, y, z) * @p nv] /// @param[in] numVerts The number of vertices in the @p verts array. /// @param[out] minBounds The minimum bounds of the AABB. [(x, y, z)] [Units: wu] /// @param[out] maxBounds The maximum bounds of the AABB. [(x, y, z)] [Units: wu] void rcCalcBounds(const float* verts, int numVerts, float* minBounds, float* maxBounds); /// Calculates the grid size based on the bounding box and grid cell size. /// @ingroup recast /// @param[in] minBounds The minimum bounds of the AABB. [(x, y, z)] [Units: wu] /// @param[in] maxBounds The maximum bounds of the AABB. [(x, y, z)] [Units: wu] /// @param[in] cellSize The xz-plane cell size. [Limit: > 0] [Units: wu] /// @param[out] sizeX The width along the x-axis. [Limit: >= 0] [Units: vx] /// @param[out] sizeZ The height along the z-axis. [Limit: >= 0] [Units: vx] void rcCalcGridSize(const float* minBounds, const float* maxBounds, float cellSize, int* sizeX, int* sizeZ); /// Initializes a new heightfield. /// See the #rcConfig documentation for more information on the configuration parameters. /// /// @see rcAllocHeightfield, rcHeightfield /// @ingroup recast /// /// @param[in,out] context The build context to use during the operation. /// @param[in,out] heightfield The allocated heightfield to initialize. /// @param[in] sizeX The width of the field along the x-axis. [Limit: >= 0] [Units: vx] /// @param[in] sizeZ The height of the field along the z-axis. [Limit: >= 0] [Units: vx] /// @param[in] minBounds The minimum bounds of the field's AABB. [(x, y, z)] [Units: wu] /// @param[in] maxBounds The maximum bounds of the field's AABB. [(x, y, z)] [Units: wu] /// @param[in] cellSize The xz-plane cell size to use for the field. [Limit: > 0] [Units: wu] /// @param[in] cellHeight The y-axis cell size to use for field. [Limit: > 0] [Units: wu] /// @returns True if the operation completed successfully. bool rcCreateHeightfield(rcContext* context, rcHeightfield& heightfield, int sizeX, int sizeZ, const float* minBounds, const float* maxBounds, float cellSize, float cellHeight); /// Sets the area id of all triangles with a slope below the specified value /// to #RC_WALKABLE_AREA. /// /// Only sets the area id's for the walkable triangles. Does not alter the /// area id's for un-walkable triangles. /// /// See the #rcConfig documentation for more information on the configuration parameters. /// /// @see rcHeightfield, rcClearUnwalkableTriangles, rcRasterizeTriangles /// /// @ingroup recast /// @param[in,out] context The build context to use during the operation. /// @param[in] walkableSlopeAngle The maximum slope that is considered walkable. /// [Limits: 0 <= value < 90] [Units: Degrees] /// @param[in] verts The vertices. [(x, y, z) * @p nv] /// @param[in] numVerts The number of vertices. /// @param[in] tris The triangle vertex indices. [(vertA, vertB, vertC) * @p nt] /// @param[in] numTris The number of triangles. /// @param[out] triAreaIDs The triangle area ids. [Length: >= @p nt] void rcMarkWalkableTriangles(rcContext* context, float walkableSlopeAngle, const float* verts, int numVerts, const int* tris, int numTris, unsigned char* triAreaIDs); /// Sets the area id of all triangles with a slope greater than or equal to the specified value to #RC_NULL_AREA. /// /// Only sets the area id's for the un-walkable triangles. Does not alter the /// area id's for walkable triangles. /// /// See the #rcConfig documentation for more information on the configuration parameters. /// /// @see rcHeightfield, rcClearUnwalkableTriangles, rcRasterizeTriangles /// /// @ingroup recast /// @param[in,out] context The build context to use during the operation. /// @param[in] walkableSlopeAngle The maximum slope that is considered walkable. /// [Limits: 0 <= value < 90] [Units: Degrees] /// @param[in] verts The vertices. [(x, y, z) * @p nv] /// @param[in] numVerts The number of vertices. /// @param[in] tris The triangle vertex indices. [(vertA, vertB, vertC) * @p nt] /// @param[in] numTris The number of triangles. /// @param[out] triAreaIDs The triangle area ids. [Length: >= @p nt] void rcClearUnwalkableTriangles(rcContext* context, float walkableSlopeAngle, const float* verts, int numVerts, const int* tris, int numTris, unsigned char* triAreaIDs); /// Adds a span to the specified heightfield. /// /// The span addition can be set to favor flags. If the span is merged to /// another span and the new @p spanMax is within @p flagMergeThreshold units /// from the existing span, the span flags are merged. /// /// @ingroup recast /// @param[in,out] context The build context to use during the operation. /// @param[in,out] heightfield An initialized heightfield. /// @param[in] x The column x index where the span is to be added. /// [Limits: 0 <= value < rcHeightfield::width] /// @param[in] z The column z index where the span is to be added. /// [Limits: 0 <= value < rcHeightfield::height] /// @param[in] spanMin The minimum height of the span. [Limit: < @p spanMax] [Units: vx] /// @param[in] spanMax The maximum height of the span. [Limit: <= #RC_SPAN_MAX_HEIGHT] [Units: vx] /// @param[in] areaID The area id of the span. [Limit: <= #RC_WALKABLE_AREA) /// @param[in] flagMergeThreshold The merge threshold. [Limit: >= 0] [Units: vx] /// @returns True if the operation completed successfully. bool rcAddSpan(rcContext* context, rcHeightfield& heightfield, int x, int z, unsigned short spanMin, unsigned short spanMax, unsigned char areaID, int flagMergeThreshold); /// Rasterizes a single triangle into the specified heightfield. /// /// Calling this for each triangle in a mesh is less efficient than calling rcRasterizeTriangles /// /// No spans will be added if the triangle does not overlap the heightfield grid. /// /// @see rcHeightfield /// @ingroup recast /// @param[in,out] context The build context to use during the operation. /// @param[in] v0 Triangle vertex 0 [(x, y, z)] /// @param[in] v1 Triangle vertex 1 [(x, y, z)] /// @param[in] v2 Triangle vertex 2 [(x, y, z)] /// @param[in] areaID The area id of the triangle. [Limit: <= #RC_WALKABLE_AREA] /// @param[in,out] heightfield An initialized heightfield. /// @param[in] flagMergeThreshold The distance where the walkable flag is favored over the non-walkable flag. /// [Limit: >= 0] [Units: vx] /// @returns True if the operation completed successfully. bool rcRasterizeTriangle(rcContext* context, const float* v0, const float* v1, const float* v2, unsigned char areaID, rcHeightfield& heightfield, int flagMergeThreshold = 1); /// Rasterizes an indexed triangle mesh into the specified heightfield. /// /// Spans will only be added for triangles that overlap the heightfield grid. /// /// @see rcHeightfield /// @ingroup recast /// @param[in,out] context The build context to use during the operation. /// @param[in] verts The vertices. [(x, y, z) * @p nv] /// @param[in] numVerts The number of vertices. (unused) TODO (graham): Remove in next major release /// @param[in] tris The triangle indices. [(vertA, vertB, vertC) * @p nt] /// @param[in] triAreaIDs The area id's of the triangles. [Limit: <= #RC_WALKABLE_AREA] [Size: @p nt] /// @param[in] numTris The number of triangles. /// @param[in,out] heightfield An initialized heightfield. /// @param[in] flagMergeThreshold The distance where the walkable flag is favored over the non-walkable flag. /// [Limit: >= 0] [Units: vx] /// @returns True if the operation completed successfully. bool rcRasterizeTriangles(rcContext* context, const float* verts, int numVerts, const int* tris, const unsigned char* triAreaIDs, int numTris, rcHeightfield& heightfield, int flagMergeThreshold = 1); /// Rasterizes an indexed triangle mesh into the specified heightfield. /// /// Spans will only be added for triangles that overlap the heightfield grid. /// /// @see rcHeightfield /// @ingroup recast /// @param[in,out] context The build context to use during the operation. /// @param[in] verts The vertices. [(x, y, z) * @p nv] /// @param[in] numVerts The number of vertices. (unused) TODO (graham): Remove in next major release /// @param[in] tris The triangle indices. [(vertA, vertB, vertC) * @p nt] /// @param[in] triAreaIDs The area id's of the triangles. [Limit: <= #RC_WALKABLE_AREA] [Size: @p nt] /// @param[in] numTris The number of triangles. /// @param[in,out] heightfield An initialized heightfield. /// @param[in] flagMergeThreshold The distance where the walkable flag is favored over the non-walkable flag. /// [Limit: >= 0] [Units: vx] /// @returns True if the operation completed successfully. bool rcRasterizeTriangles(rcContext* context, const float* verts, int numVerts, const unsigned short* tris, const unsigned char* triAreaIDs, int numTris, rcHeightfield& heightfield, int flagMergeThreshold = 1); /// Rasterizes a triangle list into the specified heightfield. /// /// Expects each triangle to be specified as three sequential vertices of 3 floats. /// /// Spans will only be added for triangles that overlap the heightfield grid. /// /// @see rcHeightfield /// @ingroup recast /// @param[in,out] context The build context to use during the operation. /// @param[in] verts The triangle vertices. [(ax, ay, az, bx, by, bz, cx, by, cx) * @p nt] /// @param[in] triAreaIDs The area id's of the triangles. [Limit: <= #RC_WALKABLE_AREA] [Size: @p nt] /// @param[in] numTris The number of triangles. /// @param[in,out] heightfield An initialized heightfield. /// @param[in] flagMergeThreshold The distance where the walkable flag is favored over the non-walkable flag. /// [Limit: >= 0] [Units: vx] /// @returns True if the operation completed successfully. bool rcRasterizeTriangles(rcContext* context, const float* verts, const unsigned char* triAreaIDs, int numTris, rcHeightfield& heightfield, int flagMergeThreshold = 1); /// Marks non-walkable spans as walkable if their maximum is within @p walkableClimb of the span below them. /// /// This removes small obstacles and rasterization artifacts that the agent would be able to walk over /// such as curbs. It also allows agents to move up terraced structures like stairs. /// /// Obstacle spans are marked walkable if: obstacleSpan.smax - walkableSpan.smax < walkableClimb /// /// @warning Will override the effect of #rcFilterLedgeSpans. If both filters are used, call #rcFilterLedgeSpans only after applying this filter. /// /// @see rcHeightfield, rcConfig /// /// @ingroup recast /// @param[in,out] context The build context to use during the operation. /// @param[in] walkableClimb Maximum ledge height that is considered to still be traversable. /// [Limit: >=0] [Units: vx] /// @param[in,out] heightfield A fully built heightfield. (All spans have been added.) void rcFilterLowHangingWalkableObstacles(rcContext* context, int walkableClimb, rcHeightfield& heightfield); /// Marks spans that are ledges as not-walkable. /// /// A ledge is a span with one or more neighbors whose maximum is further away than @p walkableClimb /// from the current span's maximum. /// This method removes the impact of the overestimation of conservative voxelization /// so the resulting mesh will not have regions hanging in the air over ledges. /// /// A span is a ledge if: rcAbs(currentSpan.smax - neighborSpan.smax) > walkableClimb /// /// @see rcHeightfield, rcConfig /// /// @ingroup recast /// @param[in,out] context The build context to use during the operation. /// @param[in] walkableHeight Minimum floor to 'ceiling' height that will still allow the floor area to /// be considered walkable. [Limit: >= 3] [Units: vx] /// @param[in] walkableClimb Maximum ledge height that is considered to still be traversable. /// [Limit: >=0] [Units: vx] /// @param[in,out] heightfield A fully built heightfield. (All spans have been added.) void rcFilterLedgeSpans(rcContext* context, int walkableHeight, int walkableClimb, rcHeightfield& heightfield); /// Marks walkable spans as not walkable if the clearance above the span is less than the specified walkableHeight. /// /// For this filter, the clearance above the span is the distance from the span's /// maximum to the minimum of the next higher span in the same column. /// If there is no higher span in the column, the clearance is computed as the /// distance from the top of the span to the maximum heightfield height. /// /// @see rcHeightfield, rcConfig /// @ingroup recast /// /// @param[in,out] context The build context to use during the operation. /// @param[in] walkableHeight Minimum floor to 'ceiling' height that will still allow the floor area to /// be considered walkable. [Limit: >= 3] [Units: vx] /// @param[in,out] heightfield A fully built heightfield. (All spans have been added.) void rcFilterWalkableLowHeightSpans(rcContext* context, int walkableHeight, rcHeightfield& heightfield); /// Returns the number of spans contained in the specified heightfield. /// @ingroup recast /// @param[in,out] context The build context to use during the operation. /// @param[in] heightfield An initialized heightfield. /// @returns The number of spans in the heightfield. int rcGetHeightFieldSpanCount(rcContext* context, const rcHeightfield& heightfield); /// @} /// @name Compact Heightfield Functions /// @see rcCompactHeightfield /// @{ /// Builds a compact heightfield representing open space, from a heightfield representing solid space. /// /// This is just the beginning of the process of fully building a compact heightfield. /// Various filters may be applied, then the distance field and regions built. /// E.g: #rcBuildDistanceField and #rcBuildRegions /// /// See the #rcConfig documentation for more information on the configuration parameters. /// /// @see rcAllocCompactHeightfield, rcHeightfield, rcCompactHeightfield, rcConfig /// @ingroup recast /// /// @param[in,out] context The build context to use during the operation. /// @param[in] walkableHeight Minimum floor to 'ceiling' height that will still allow the floor area /// to be considered walkable. [Limit: >= 3] [Units: vx] /// @param[in] walkableClimb Maximum ledge height that is considered to still be traversable. /// [Limit: >=0] [Units: vx] /// @param[in] heightfield The heightfield to be compacted. /// @param[out] compactHeightfield The resulting compact heightfield. (Must be pre-allocated.) /// @returns True if the operation completed successfully. bool rcBuildCompactHeightfield(rcContext* context, int walkableHeight, int walkableClimb, const rcHeightfield& heightfield, rcCompactHeightfield& compactHeightfield); /// Erodes the walkable area within the heightfield by the specified radius. /// /// Basically, any spans that are closer to a boundary or obstruction than the specified radius /// are marked as un-walkable. /// /// This method is usually called immediately after the heightfield has been built. /// /// @see rcCompactHeightfield, rcBuildCompactHeightfield, rcConfig::walkableRadius /// @ingroup recast /// /// @param[in,out] context The build context to use during the operation. /// @param[in] erosionRadius The radius of erosion. [Limits: 0 < value < 255] [Units: vx] /// @param[in,out] compactHeightfield The populated compact heightfield to erode. /// @returns True if the operation completed successfully. bool rcErodeWalkableArea(rcContext* context, int erosionRadius, rcCompactHeightfield& compactHeightfield); /// Applies a median filter to walkable area types (based on area id), removing noise. /// /// This filter is usually applied after applying area id's using functions /// such as #rcMarkBoxArea, #rcMarkConvexPolyArea, and #rcMarkCylinderArea. /// /// @see rcCompactHeightfield /// @ingroup recast /// /// @param[in,out] context The build context to use during the operation. /// @param[in,out] compactHeightfield A populated compact heightfield. /// @returns True if the operation completed successfully. bool rcMedianFilterWalkableArea(rcContext* context, rcCompactHeightfield& compactHeightfield); /// Applies an area id to all spans within the specified bounding box. (AABB) /// /// @see rcCompactHeightfield, rcMedianFilterWalkableArea /// @ingroup recast /// /// @param[in,out] context The build context to use during the operation. /// @param[in] boxMinBounds The minimum extents of the bounding box. [(x, y, z)] [Units: wu] /// @param[in] boxMaxBounds The maximum extents of the bounding box. [(x, y, z)] [Units: wu] /// @param[in] areaId The area id to apply. [Limit: <= #RC_WALKABLE_AREA] /// @param[in,out] compactHeightfield A populated compact heightfield. void rcMarkBoxArea(rcContext* context, const float* boxMinBounds, const float* boxMaxBounds, unsigned char areaId, rcCompactHeightfield& compactHeightfield); /// Applies the area id to the all spans within the specified convex polygon. /// /// The value of spacial parameters are in world units. /// /// The y-values of the polygon vertices are ignored. So the polygon is effectively /// projected onto the xz-plane, translated to @p minY, and extruded to @p maxY. /// /// @see rcCompactHeightfield, rcMedianFilterWalkableArea /// @ingroup recast /// /// @param[in,out] context The build context to use during the operation. /// @param[in] verts The vertices of the polygon [For: (x, y, z) * @p numVerts] /// @param[in] numVerts The number of vertices in the polygon. /// @param[in] minY The height of the base of the polygon. [Units: wu] /// @param[in] maxY The height of the top of the polygon. [Units: wu] /// @param[in] areaId The area id to apply. [Limit: <= #RC_WALKABLE_AREA] /// @param[in,out] compactHeightfield A populated compact heightfield. void rcMarkConvexPolyArea(rcContext* context, const float* verts, int numVerts, float minY, float maxY, unsigned char areaId, rcCompactHeightfield& compactHeightfield); /// Expands a convex polygon along its vertex normals by the given offset amount. /// Inserts extra vertices to bevel sharp corners. /// /// Helper function to offset convex polygons for rcMarkConvexPolyArea. /// /// @ingroup recast /// /// @param[in] verts The vertices of the polygon [Form: (x, y, z) * @p numVerts] /// @param[in] numVerts The number of vertices in the polygon. /// @param[in] offset How much to offset the polygon by. [Units: wu] /// @param[out] outVerts The offset vertices (should hold up to 2 * @p numVerts) [Form: (x, y, z) * return value] /// @param[in] maxOutVerts The max number of vertices that can be stored to @p outVerts. /// @returns Number of vertices in the offset polygon or 0 if too few vertices in @p outVerts. int rcOffsetPoly(const float* verts, int numVerts, float offset, float* outVerts, int maxOutVerts); /// Applies the area id to all spans within the specified y-axis-aligned cylinder. /// /// @see rcCompactHeightfield, rcMedianFilterWalkableArea /// /// @ingroup recast /// /// @param[in,out] context The build context to use during the operation. /// @param[in] position The center of the base of the cylinder. [Form: (x, y, z)] [Units: wu] /// @param[in] radius The radius of the cylinder. [Units: wu] [Limit: > 0] /// @param[in] height The height of the cylinder. [Units: wu] [Limit: > 0] /// @param[in] areaId The area id to apply. [Limit: <= #RC_WALKABLE_AREA] /// @param[in,out] compactHeightfield A populated compact heightfield. void rcMarkCylinderArea(rcContext* context, const float* position, float radius, float height, unsigned char areaId, rcCompactHeightfield& compactHeightfield); /// Builds the distance field for the specified compact heightfield. /// @ingroup recast /// @param[in,out] ctx The build context to use during the operation. /// @param[in,out] chf A populated compact heightfield. /// @returns True if the operation completed successfully. bool rcBuildDistanceField(rcContext* ctx, rcCompactHeightfield& chf); /// Builds region data for the heightfield using watershed partitioning. /// @ingroup recast /// @param[in,out] ctx The build context to use during the operation. /// @param[in,out] chf A populated compact heightfield. /// @param[in] borderSize The size of the non-navigable border around the heightfield. /// [Limit: >=0] [Units: vx] /// @param[in] minRegionArea The minimum number of cells allowed to form isolated island areas. /// [Limit: >=0] [Units: vx]. /// @param[in] mergeRegionArea Any regions with a span count smaller than this value will, if possible, /// be merged with larger regions. [Limit: >=0] [Units: vx] /// @returns True if the operation completed successfully. bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf, int borderSize, int minRegionArea, int mergeRegionArea); /// Builds region data for the heightfield by partitioning the heightfield in non-overlapping layers. /// @ingroup recast /// @param[in,out] ctx The build context to use during the operation. /// @param[in,out] chf A populated compact heightfield. /// @param[in] borderSize The size of the non-navigable border around the heightfield. /// [Limit: >=0] [Units: vx] /// @param[in] minRegionArea The minimum number of cells allowed to form isolated island areas. /// [Limit: >=0] [Units: vx]. /// @returns True if the operation completed successfully. bool rcBuildLayerRegions(rcContext* ctx, rcCompactHeightfield& chf, int borderSize, int minRegionArea); /// Builds region data for the heightfield using simple monotone partitioning. /// @ingroup recast /// @param[in,out] ctx The build context to use during the operation. /// @param[in,out] chf A populated compact heightfield. /// @param[in] borderSize The size of the non-navigable border around the heightfield. /// [Limit: >=0] [Units: vx] /// @param[in] minRegionArea The minimum number of cells allowed to form isolated island areas. /// [Limit: >=0] [Units: vx]. /// @param[in] mergeRegionArea Any regions with a span count smaller than this value will, if possible, /// be merged with larger regions. [Limit: >=0] [Units: vx] /// @returns True if the operation completed successfully. bool rcBuildRegionsMonotone(rcContext* ctx, rcCompactHeightfield& chf, int borderSize, int minRegionArea, int mergeRegionArea); /// Sets the neighbor connection data for the specified direction. /// @param[in] span The span to update. /// @param[in] direction The direction to set. [Limits: 0 <= value < 4] /// @param[in] neighborIndex The index of the neighbor span. inline void rcSetCon(rcCompactSpan& span, int direction, int neighborIndex) { const unsigned int shift = (unsigned int)direction * 6; const unsigned int con = span.con; span.con = (con & ~(0x3f << shift)) | (((unsigned int)neighborIndex & 0x3f) << shift); } /// Gets neighbor connection data for the specified direction. /// @param[in] span The span to check. /// @param[in] direction The direction to check. [Limits: 0 <= value < 4] /// @return The neighbor connection data for the specified direction, or #RC_NOT_CONNECTED if there is no connection. inline int rcGetCon(const rcCompactSpan& span, int direction) { const unsigned int shift = (unsigned int)direction * 6; return (span.con >> shift) & 0x3f; } /// Gets the standard width (x-axis) offset for the specified direction. /// @param[in] direction The direction. [Limits: 0 <= value < 4] /// @return The width offset to apply to the current cell position to move in the direction. inline int rcGetDirOffsetX(int direction) { static const int offset[4] = { -1, 0, 1, 0, }; return offset[direction & 0x03]; } // TODO (graham): Rename this to rcGetDirOffsetZ /// Gets the standard height (z-axis) offset for the specified direction. /// @param[in] direction The direction. [Limits: 0 <= value < 4] /// @return The height offset to apply to the current cell position to move in the direction. inline int rcGetDirOffsetY(int direction) { static const int offset[4] = { 0, 1, 0, -1 }; return offset[direction & 0x03]; } /// Gets the direction for the specified offset. One of x and y should be 0. /// @param[in] offsetX The x offset. [Limits: -1 <= value <= 1] /// @param[in] offsetZ The z offset. [Limits: -1 <= value <= 1] /// @return The direction that represents the offset. inline int rcGetDirForOffset(int offsetX, int offsetZ) { static const int dirs[5] = { 3, 0, -1, 2, 1 }; return dirs[((offsetZ + 1) << 1) + offsetX]; } /// @} /// @name Layer, Contour, Polymesh, and Detail Mesh Functions /// @see rcHeightfieldLayer, rcContourSet, rcPolyMesh, rcPolyMeshDetail /// @{ /// Builds a layer set from the specified compact heightfield. /// @ingroup recast /// @param[in,out] ctx The build context to use during the operation. /// @param[in] chf A fully built compact heightfield. /// @param[in] borderSize The size of the non-navigable border around the heightfield. [Limit: >=0] /// [Units: vx] /// @param[in] walkableHeight Minimum floor to 'ceiling' height that will still allow the floor area /// to be considered walkable. [Limit: >= 3] [Units: vx] /// @param[out] lset The resulting layer set. (Must be pre-allocated.) /// @returns True if the operation completed successfully. bool rcBuildHeightfieldLayers(rcContext* ctx, const rcCompactHeightfield& chf, int borderSize, int walkableHeight, rcHeightfieldLayerSet& lset); /// Builds a contour set from the region outlines in the provided compact heightfield. /// @ingroup recast /// @param[in,out] ctx The build context to use during the operation. /// @param[in] chf A fully built compact heightfield. /// @param[in] maxError The maximum distance a simplified contour's border edges should deviate /// the original raw contour. [Limit: >=0] [Units: wu] /// @param[in] maxEdgeLen The maximum allowed length for contour edges along the border of the mesh. /// [Limit: >=0] [Units: vx] /// @param[out] cset The resulting contour set. (Must be pre-allocated.) /// @param[in] buildFlags The build flags. (See: #rcBuildContoursFlags) /// @returns True if the operation completed successfully. bool rcBuildContours(rcContext* ctx, const rcCompactHeightfield& chf, float maxError, int maxEdgeLen, rcContourSet& cset, int buildFlags = RC_CONTOUR_TESS_WALL_EDGES); /// Builds a polygon mesh from the provided contours. /// @ingroup recast /// @param[in,out] ctx The build context to use during the operation. /// @param[in] cset A fully built contour set. /// @param[in] nvp The maximum number of vertices allowed for polygons generated during the /// contour to polygon conversion process. [Limit: >= 3] /// @param[out] mesh The resulting polygon mesh. (Must be re-allocated.) /// @returns True if the operation completed successfully. bool rcBuildPolyMesh(rcContext* ctx, const rcContourSet& cset, const int nvp, rcPolyMesh& mesh); /// Merges multiple polygon meshes into a single mesh. /// @ingroup recast /// @param[in,out] ctx The build context to use during the operation. /// @param[in] meshes An array of polygon meshes to merge. [Size: @p nmeshes] /// @param[in] nmeshes The number of polygon meshes in the meshes array. /// @param[in] mesh The resulting polygon mesh. (Must be pre-allocated.) /// @returns True if the operation completed successfully. bool rcMergePolyMeshes(rcContext* ctx, rcPolyMesh** meshes, const int nmeshes, rcPolyMesh& mesh); /// Builds a detail mesh from the provided polygon mesh. /// @ingroup recast /// @param[in,out] ctx The build context to use during the operation. /// @param[in] mesh A fully built polygon mesh. /// @param[in] chf The compact heightfield used to build the polygon mesh. /// @param[in] sampleDist Sets the distance to use when sampling the heightfield. [Limit: >=0] [Units: wu] /// @param[in] sampleMaxError The maximum distance the detail mesh surface should deviate from /// heightfield data. [Limit: >=0] [Units: wu] /// @param[out] dmesh The resulting detail mesh. (Must be pre-allocated.) /// @returns True if the operation completed successfully. bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompactHeightfield& chf, float sampleDist, float sampleMaxError, rcPolyMeshDetail& dmesh); /// Copies the poly mesh data from src to dst. /// @ingroup recast /// @param[in,out] ctx The build context to use during the operation. /// @param[in] src The source mesh to copy from. /// @param[out] dst The resulting detail mesh. (Must be pre-allocated, must be empty mesh.) /// @returns True if the operation completed successfully. bool rcCopyPolyMesh(rcContext* ctx, const rcPolyMesh& src, rcPolyMesh& dst); /// Merges multiple detail meshes into a single detail mesh. /// @ingroup recast /// @param[in,out] ctx The build context to use during the operation. /// @param[in] meshes An array of detail meshes to merge. [Size: @p nmeshes] /// @param[in] nmeshes The number of detail meshes in the meshes array. /// @param[out] mesh The resulting detail mesh. (Must be pre-allocated.) /// @returns True if the operation completed successfully. bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int nmeshes, rcPolyMeshDetail& mesh); /// @} #endif // RECAST_H /////////////////////////////////////////////////////////////////////////// // Due to the large amount of detail documentation for this file, // the content normally located at the end of the header file has been separated // out to a file in /Docs/Extern.