use std::marker::PhantomData; use alga::general::Id; use na; use bounding_volume::AABB; use partitioning::BVTCostFn; use shape::{CompositeShape, Shape}; use query::distance_internal; use query::PointQuery; use math::{Isometry, Point}; /// Smallest distance between a composite shape and any other shape. pub fn composite_shape_against_shape( m1: &M, g1: &G1, m2: &M, g2: &Shape, ) -> P::Real where P: Point, M: Isometry

, G1: CompositeShape, { let mut cost_fn = CompositeShapeAgainstAnyDistCostFn::new(m1, g1, m2, g2); g1.bvt() .best_first_search(&mut cost_fn) .map(|(_, res)| res) .expect("The composite shape must not be empty.") } /// Smallest distance between a shape and a composite shape. pub fn shape_against_composite_shape( m1: &M, g1: &Shape, m2: &M, g2: &G2, ) -> P::Real where P: Point, M: Isometry

, G2: CompositeShape, { composite_shape_against_shape(m2, g2, m1, g1) } struct CompositeShapeAgainstAnyDistCostFn<'a, P: 'a + Point, M: 'a, G1: ?Sized + 'a> { msum_shift: P::Vector, msum_margin: P::Vector, m1: &'a M, g1: &'a G1, m2: &'a M, g2: &'a Shape, point_type: PhantomData

, } impl<'a, P, M, G1: ?Sized> CompositeShapeAgainstAnyDistCostFn<'a, P, M, G1> where P: Point, M: Isometry

, G1: CompositeShape, { pub fn new( m1: &'a M, g1: &'a G1, m2: &'a M, g2: &'a Shape, ) -> CompositeShapeAgainstAnyDistCostFn<'a, P, M, G1> { let ls_m2 = na::inverse(m1) * m2.clone(); let ls_aabb2 = g2.aabb(&ls_m2); CompositeShapeAgainstAnyDistCostFn { msum_shift: -ls_aabb2.center().coordinates(), msum_margin: ls_aabb2.half_extents(), m1: m1, g1: g1, m2: m2, g2: g2, point_type: PhantomData, } } } impl<'a, P, M, G1: ?Sized> BVTCostFn> for CompositeShapeAgainstAnyDistCostFn<'a, P, M, G1> where P: Point, M: Isometry

, G1: CompositeShape, { type UserData = P::Real; #[inline] fn compute_bv_cost(&mut self, bv: &AABB

) -> Option { // Compute the minkowski sum of the two AABBs. let msum = AABB::new( *bv.mins() + self.msum_shift + (-self.msum_margin), *bv.maxs() + self.msum_shift + self.msum_margin, ); // Compute the distance to the origin. Some(msum.distance_to_point(&Id::new(), &P::origin(), true)) } #[inline] fn compute_b_cost(&mut self, b: &usize) -> Option<(P::Real, P::Real)> { let mut res = None; self.g1.map_transformed_part_at(*b, self.m1, &mut |m1, g1| { let distance = distance_internal::distance(m1, g1, self.m2, self.g2); res = Some((distance, distance)) }); res } }