use ndhistogram::{ axis::{Category, Uniform, Variable}, ndhistogram, sparsehistogram, value::WeightedMean, Error, Hist1D, Hist2D, Hist3D, Histogram, Item, SparseHist1D, SparseHist2D, SparseHist3D, }; use num_traits::Float; use rand::{prelude::StdRng, Rng, SeedableRng}; use rand_distr::{Distribution, Normal, StandardNormal}; #[test] fn test_hashhistogram_fill() { let mut hist = sparsehistogram!(Uniform::new(10, 0.0, 10.0).unwrap(); i64); hist.fill(&0.5); hist.fill_with(&0.5, 2); assert_eq!(hist.value(&0.5), Some(&3)) } fn assert_float_eq(left: f64, right: f64) { assert!( (left - right).abs() < (1e-6 * (left + right)), "left={} does not equal right={}", left, right ) } #[test] fn test_hashhistogram_fill_with_weighted() { let mut hist = sparsehistogram!(Uniform::new(10, 0.0, 10.0).unwrap(); WeightedMean); hist.fill_with_weighted(&0.5, 1, 1); hist.fill_with_weighted(&0.5, 2, 2); hist.fill_with_weighted(&0.5, 3, 3); assert_float_eq(hist.value(&0.5).unwrap().mean(), 14.0 / 6.0) } #[test] fn test_hashhistogram_axes() -> Result<(), Error> { let x = Uniform::new(10, 0.0, 10.0)?; let y = Variable::new(vec![1.0, 2.0, 10.0])?; let z = Category::new(vec!["A", "B", "C"]); let sparsehist = sparsehistogram!(x.clone(), y.clone(), z.clone()); let vechist = ndhistogram!(x, y, z); assert_eq!(sparsehist.axes(), vechist.axes()); Ok(()) } fn random_2d_vec_and_sparse_hist() -> ( Hist2D, SparseHist2D, ) { let x = Uniform::new(10, 0.0, 10.0).unwrap(); let y = Variable::new(vec![0.0, 2.0, 5.0, 10.0]).unwrap(); let mut sparsehist = sparsehistogram!(x.clone(), y.clone(); i32); let mut vechist = ndhistogram!(x, y; i32); // fill both histograms with the same data let mut rng = StdRng::seed_from_u64(123); (0..1000) .map(|_| { let rx: f64 = rng.gen_range(-1.0..11.0); let ry: f64 = rng.gen_range(-1.0..11.0); let rz: i32 = rng.gen_range(1..10); (rx, ry, rz) }) .for_each(|(x, y, z)| { sparsehist.fill_with(&(x, y), z); vechist.fill_with(&(x, y), z); }); (vechist, sparsehist) } #[test] fn test_hashhistogram_iter() { let (vechist, sparsehist) = random_2d_vec_and_sparse_hist(); // check item iterator let mut sparseitems: Vec<_> = sparsehist.iter().collect(); let mut vecitems: Vec<_> = vechist.iter().filter(|item| *item.value > 0).collect(); sparseitems.sort_by_key(|item| item.index); vecitems.sort_by_key(|item| item.index); assert_eq!(sparseitems, vecitems); } #[test] fn test_hashhistogram_values() { let (vechist, sparsehist) = random_2d_vec_and_sparse_hist(); // check values iterator let mut sparseitems: Vec<_> = sparsehist.values().collect(); let mut vecitems: Vec<_> = vechist.values().filter(|value| **value > 0).collect(); sparseitems.sort(); vecitems.sort(); assert_eq!(sparseitems, vecitems); } #[test] fn test_hashhistogram_iter_mut() { let (mut vechist, mut sparsehist) = random_2d_vec_and_sparse_hist(); // check mutable item iterator let mut sparseitems: Vec<_> = sparsehist.iter_mut().collect(); let mut vecitems: Vec<_> = vechist.iter_mut().filter(|item| *item.value > 0).collect(); sparseitems.sort_by_key(|item| item.index); vecitems.sort_by_key(|item| item.index); assert_eq!(sparseitems, vecitems); } #[test] fn test_hashhistogram_values_mut() { let (mut vechist, mut sparsehist) = random_2d_vec_and_sparse_hist(); // check mutable values iterator let mut sparseitems: Vec<_> = sparsehist.values_mut().collect(); let mut vecitems: Vec<_> = vechist.values_mut().filter(|value| **value > 0).collect(); sparseitems.sort(); vecitems.sort(); assert_eq!(sparseitems, vecitems); } #[test] fn test_hashhistogram_display() { let hist = sparsehistogram!(Uniform::new(4, 0.0, 2.0).unwrap()); format!("{}", hist); } #[test] fn test_hashhistogram_clone() { let hist = sparsehistogram!(Uniform::new(4, 0.0, 2.0).unwrap()); let clone = hist.clone(); assert_eq!(hist, clone); } fn generate_normal_hist_1d(seed: u64) -> (Hist1D, SparseHist1D) { let mut vechist = ndhistogram!(Uniform::new(10, -5.0, 5.0).unwrap()); let mut sparsehist = sparsehistogram!(Uniform::new(10, -5.0, 5.0).unwrap()); generate_nomal(-1.0, 2.0, seed).take(1000).for_each(|it| { vechist.fill(&it); sparsehist.fill(&it); }); (vechist, sparsehist) } fn generate_normal_hist_3d( seed: u64, ) -> ( Hist3D, SparseHist3D, ) { let mut vechist = ndhistogram!( Uniform::new(10, -5.0, 5.0).unwrap(), Uniform::new(10, -5.0, 5.0).unwrap(), Uniform::new(10, -5.0, 5.0).unwrap(), ); let mut sparsehist = sparsehistogram!( Uniform::new(10, -5.0, 5.0).unwrap(), Uniform::new(10, -5.0, 5.0).unwrap(), Uniform::new(10, -5.0, 5.0).unwrap(), ); let x = generate_nomal(-1.0, 2.0, seed + 1); let y = generate_nomal(0.0, 2.0, seed + 2); let z = generate_nomal(1.0, 2.0, seed + 3); let xyz = x.zip(y).zip(z).map(|((x, y), z)| (x, y, z)); xyz.take(1000).for_each(|it| { vechist.fill(&it); sparsehist.fill(&it) }); (vechist, sparsehist) } macro_rules! impl_binary_op { ($fnname1d:tt, $fnname3d:tt, $fnnamefails:tt, $mathsymbol:tt) => { #[test] fn $fnname1d() { let (leftvec, leftsparse) = generate_normal_hist_1d(1); let (rightvec, rightsparse) = generate_normal_hist_1d(2); let haddvec = (&leftvec $mathsymbol &rightvec).unwrap(); let haddsparse = (&leftsparse $mathsymbol &rightsparse).unwrap(); let mut actual: Vec<_> = haddsparse .iter() .map(|it| Item{index:it.index, bin:it.bin, value:it.value}) .filter(|item| !item.value.is_nan()) .filter(|item| *item.value!=0.0) .collect(); let mut expected: Vec<_> = haddvec .iter() .filter(|item| !item.value.is_nan()) .filter(|item| *item.value!=0.0) .collect(); actual.sort_by_key(|item| item.index); expected.sort_by_key(|item| item.index); assert_eq!(actual, expected) } #[test] fn $fnnamefails() { let left = sparsehistogram!(Uniform::new(10, -5.0, 5.0).unwrap()); let right = sparsehistogram!(Uniform::new(10, -5.0, 6.0).unwrap()); let hadd = &left $mathsymbol &right; assert!(hadd.is_err()) } #[test] fn $fnname3d() { let (leftvec, leftsparse) = generate_normal_hist_3d(1); let (rightvec, rightsparse) = generate_normal_hist_3d(2); let haddvec = (&leftvec $mathsymbol &rightvec).unwrap(); let haddsparse = (&leftsparse $mathsymbol &rightsparse).unwrap(); let mut actual: Vec<_> = haddsparse .iter() .map(|it| Item{index:it.index, bin:it.bin, value:it.value}) .filter(|item| !item.value.is_nan()) .filter(|item| *item.value!=0.0) .collect(); let mut expected: Vec<_> = haddvec .iter() .filter(|item| !item.value.is_nan()) .filter(|item| *item.value!=0.0) .collect(); actual.sort_by_key(|item| item.index); expected.sort_by_key(|item| item.index); assert_eq!(actual, expected) } } } impl_binary_op! {test_sparsehistogram_1d_elementwise_add, test_sparsehistogram_3d_elementwise_add, test_sparsehistogram_binning_mismatch_add, +} impl_binary_op! {test_sparsehistogram_1d_elementwise_mul, test_sparsehistogram_3d_elementwise_mul, test_sparsehistogram_binning_mismatch_mul, *} impl_binary_op! {test_sparsehistogram_1d_elementwise_sub, test_sparsehistogram_3d_elementwise_sub, test_sparsehistogram_binning_mismatch_sub, -} impl_binary_op! {test_sparsehistogram_1d_elementwise_div, test_sparsehistogram_3d_elementwise_div, test_sparsehistogram_binning_mismatch_div, /} pub fn generate_nomal(mu: T, sigma: T, seed: u64) -> impl Iterator where StandardNormal: Distribution, { let rng = StdRng::seed_from_u64(seed); Normal::new(mu, sigma).unwrap().sample_iter(rng) } macro_rules! impl_binary_op_with_owned { ($fnname:tt, $mathsymbol:tt) => { #[test] fn $fnname() { let (leftvec, leftsparse) = generate_normal_hist_1d(1); let (rightvec, rightsparse) = generate_normal_hist_1d(2); let haddvec = (&leftvec $mathsymbol &rightvec).unwrap(); let haddsparse = (leftsparse $mathsymbol &rightsparse).unwrap(); let mut actual: Vec<_> = haddsparse .iter() .map(|it| Item{index:it.index, bin:it.bin, value:it.value}) .filter(|item| !item.value.is_nan()) .filter(|item| *item.value!=0.0) .collect(); let mut expected: Vec<_> = haddvec .iter() .filter(|item| !item.value.is_nan()) .filter(|item| *item.value!=0.0) .collect(); actual.sort_by_key(|item| item.index); expected.sort_by_key(|item| item.index); assert_eq!(actual, expected) } } } impl_binary_op_with_owned! {test_sparsehistogram_1d_elementwise_add_with_owned, +} impl_binary_op_with_owned! {test_sparsehistogram_1d_elementwise_sub_with_owned, -} impl_binary_op_with_owned! {test_sparsehistogram_1d_elementwise_div_with_owned, /} impl_binary_op_with_owned! {test_sparsehistogram_1d_elementwise_mul_with_owned, *} macro_rules! impl_binary_op_assign { ($fnname:tt, $mathsymbol:tt) => { #[test] fn $fnname() { let (mut leftvec, mut leftsparse) = generate_normal_hist_1d(1); let (rightvec, rightsparse) = generate_normal_hist_1d(2); leftvec $mathsymbol &rightvec; leftsparse $mathsymbol &rightsparse; let mut actual: Vec<_> = leftsparse .iter() .map(|it| Item{index:it.index, bin:it.bin, value:it.value}) .filter(|item| !item.value.is_nan()) .filter(|item| *item.value!=0.0) .collect(); let mut expected: Vec<_> = leftvec .iter() .filter(|item| !item.value.is_nan()) .filter(|item| *item.value!=0.0) .collect(); actual.sort_by_key(|item| item.index); expected.sort_by_key(|item| item.index); assert_eq!(actual, expected) } } } impl_binary_op_assign! {test_sparsehistogram_1d_elementwise_add_assign, +=} impl_binary_op_assign! {test_sparsehistogram_1d_elementwise_sub_assign, -=} impl_binary_op_assign! {test_sparsehistogram_1d_elementwise_div_assign, /=} impl_binary_op_assign! {test_sparsehistogram_1d_elementwise_mul_assign, *=}