# ndlife-rs ***ndlife*** is an implementation of infinite, N-dimensional game of life in Rust. A game of life is a cellular automaton devised by the British mathematician John Horton Conway in 1970. The game is a zero-player game, meaning that its evolution is determined by its initial state, requiring no further input. One interacts with the Game of Life by creating an initial configuration and observing how it evolves. This crate extends the game of life to N dimensions, where N is any positive integer. [**Documentation**](https://docs.rs/ndlife/latest/ndlife/ "docs.rs") [**Crate**](https://crates.io/crates/ndlife "crates.io") ### Example ```rust use std::collections::HashSet; use ndlife::Life; // setup conway's game of life let mut birth_rules = HashSet::with_capacity(1); birth_rules.insert(3); let mut survival_rules = HashSet::with_capacity(2); survival_rules.insert(2); survival_rules.insert(3); let mut life = Life::<2>::new(birth_rules, survival_rules).unwrap(); // or use shortcut // let mut life = conways_game_of_life(); // glider pattern let mut alive_cells = HashSet::with_capacity(5); alive_cells.insert([0, 0]); alive_cells.insert([1, 0]); alive_cells.insert([2, 0]); alive_cells.insert([2, 1]); alive_cells.insert([1, 2]); // set initial state life.set_alive_cells(alive_cells); // advance life by 4 generations (repeat cycle for glider) for _ in 0..4 { life.next_generation(); } // glider moves one cell diagonally (right-down) every 4 generations let mut expected_alive_cells = HashSet::with_capacity(5); expected_alive_cells.insert([1, -1]); expected_alive_cells.insert([2, -1]); expected_alive_cells.insert([3, -1]); expected_alive_cells.insert([3, 0]); expected_alive_cells.insert([2, 1]); // assert that is indeed what happened assert_eq!(life.alive_cells(), &expected_alive_cells); ```